An Empirical–Analytical Model of Mine Water Level Rebound
Abstract
1. Introduction
2. Materials and Methods
2.1. Data on Mine Water Level Rebound
2.2. Assumptions and Equations
- (1)
- The mine is hydraulically isolated;
- (2)
- Homogeneous rock properties within the area are affected by mining and remaining cavity volumes;
- (3)
- Inflow to the mine is driven by the difference between the almost static groundwater head on the outer boundary and the MWL;
- (4)
- The inflow rate to the mine is proportional to the rate of water exchange before the MWL rebound in the quasi-steady state as the integral indicator of the flow property of the entire mine;
- (5)
- Mine drainage is inactive during the period of flooding.
2.3. Deviation Between Measured and Calculated Time Series
- means for “excellent” fitting;
- does “good” fitting;
- does “acceptable” fitting;
- does “poor” fitting;
- does “unacceptable” fitting.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
a.s.l. | Above Sea Level |
MWL | Mine Water Level |
RMSD | Root Mean Square Deviation |
References
- To Be in Line with the UN Paris Climate Agreement European and OECD Countries Need to Be Coal-Power Free by 2030 at the Latest. Available online: https://beyondfossilfuels.org/europes-coal-exit/ (accessed on 27 July 2025).
- Guizhou to Lift Coal Capacity to 250 Million Tonnes. Available online: https://thecoalhub.com/guizhou-to-lift-coal-capacity-to-250-million-tonnes.html (accessed on 27 July 2025).
- Coal India Plans to Shut 37 Mines This Fiscal Year. Available online: https://www.businesstoday.in/latest/corporate/story/coal-india-plans-to-shut-37-mines-this-fiscal-year-76432-2017-06-09 (accessed on 27 July 2025).
- The Number of Producing, U.S. Coal Mines Fell in 2020. Available online: https://www.eia.gov/todayinenergy/detail.php?id=48936 (accessed on 27 July 2025).
- Environmental Assessment and Recovery Priorities for Eastern Ukraine; OSCE Report; VAITE: Kyiv, Ukraine, 2017; 88p.
- Wyatt, L.M.; Moorhouse, A.M.L.; Kershaw, S.; Iwanskyj, B. Mine water: Management post-closure and lessons learned, risks from poor closure and mine water management. In Mine Closure 2013, Proceedings of the Eighth International Seminar on Mine Closure, Cornwall, England, 18–20 September 2013; Tibbett, M., Fourie, A.B., Digby, D., Eds.; Australian Centre for Geomechanics: Cornwall, UK, 2013; pp. 279–292. [Google Scholar] [CrossRef]
- Gee, D.; Bateson, L.; Grebby, S.; Novellino, A.; Sowter, A.; Wyatt, L.; Marsh, S.; Morgenstern, R.; Athab, A. Modelling groundwater rebound in recently abandoned coalfields using DInSAR. Remote Sens. Environ. 2020, 249, 112021. [Google Scholar] [CrossRef]
- Zhao, J.; Konietzky, H.; Herbst, M.; Morgenstern, R. Numerical simulation of flooding induced uplift for abandoned coal mines: Simulation schemes and parameter sensitivity. Int. J. Coal Sci. Technol. 2021, 8, 1238–1249. [Google Scholar] [CrossRef]
- Adams, R.; Younger, P.L. A strategy for Modeling Ground Water Rebound in Abandoned Deep Mine Systems. Groundwater 2001, 39, 249–261. [Google Scholar] [CrossRef]
- Adams, R. A Review of Mine Water Rebound Predictions from the VSS–NET Model. Mine Water Environ. 2014, 33, 384–388. [Google Scholar] [CrossRef]
- Kim, S.-M.; Choi, Y. SIMPL: A Simplified Model-Based Program for the Analysis and Visualization of Groundwater Rebound in Abandoned Mines to Prevent Contamination of Water and Soils by Acid Mine Drainage. Int. J. Environ. Res. Public Health 2018, 15, 951. [Google Scholar] [CrossRef] [PubMed]
- Eckart, M.; Kories, H.; Rengers, R.; Unland, W. Application of a numerical model to facilitate mine water management in large coal fields in Germany. In Proceedings of the Mine Water 2004—Process, Policy and Progress, Newcastle upon Tyne, UK, 20–24 September 2004; Volume 2, pp. 209–218. [Google Scholar]
- Eckart, M. BoxModel Concept: ReacFlow3D, Modelling of the Flow of Mine Water and Groundwater, Mass and Heat Transport; DMT GmbH & Co. KG: Essen, Germany, 2011; 34p. [Google Scholar]
- Boyaud, C.; Therrien, R. Numerical modeling of mine water rebound in Saizerais, northeastern France. Dev. Water Sci. 2004, 55, 977–989. [Google Scholar] [CrossRef]
- Witthüser, K.T.; Holland, M.; Seidel, T.; König, C.M. Numerical modelling of mine dewatering and flooding in the Evander gold basin, South Africa. S. Afr. J. Geol. 2015, 118, 71–82. [Google Scholar] [CrossRef]
- González-Quirós, A.; Fernández-Álvarez, J.P. Conceptualization and finite element groundwater flow modeling of a flooded underground mine reservoir in the Asturian Coal Basin, Spain. J. Hydrol. 2019, 578, 124036. [Google Scholar] [CrossRef]
- Seidel, T.; König, C.h.M.; Hahn, F.; Nehler, M. Numerische Modellierung der Saisonalen Wärmespeicherung in Stillgelegten Bergwerken. In Proceedings of the International Conference Kassel24 “Let’s Talk Grubenwasser”, Kassel, Germany, 2–4 September 2024; Available online: https://grubenwasser.org/wp-content/uploads/2024/09/Seidel_kassel24.pdf (accessed on 27 July 2025).
- Bazaluk, O.; Sadovenko, I.; Zahrytsenko, A.; Saik, P.; Lozynskyi, V.; Dychkovskyi, R. Forecasting Underground Water Dynamics within the Technogenic Environment of a Mine Field. Case Study. Sustain. 2021, 13, 7161. [Google Scholar] [CrossRef]
- Liu, B.; Liu, G.; Sha, J.; Sun, J.; Zhao, X.; Ren, S.; Liu, R.; Li, S. Numerical simulation of the interaction between mine water drainage and recharge: A case study of Wutongzhuang coal mine in Heibei Province, China. Ecol. Indic. 2024, 158, 111568. [Google Scholar] [CrossRef]
- Rudakov, D.; Inkin, O.; Wohnlich, S.; Schiffer, R. Numerical modelling of flow and heat transport in closed mines. Case study Walsum drainage province in the Ruhr coal-mining area. E3S Web Conf. Miner. Resour. Energy Congr. 2024, 526, 01002. [Google Scholar] [CrossRef]
- Rudakov, D.; Westermann, S. Analytical modeling of mine water rebound: Three case studies in closed hard-coal mines in Germany. MMD 2021, 15, 22–30. [Google Scholar] [CrossRef]
- Melchers, C.; Westermann, S.; Reker, B. (Eds.) Evaluation of Mine Water Rebound Processes; Project report; Technische Hochschule Georg Agricola University: Bochum, Germany, 2020; 129p. [Google Scholar]
- Wolkersdorfer, C. Water Management at Abandoned Flooded Underground Mines Fundamentals, Tracer Tests, Modelling, Water Treatment, 1st ed.; Springer: Berlin, Germany, 2008; p. XX+465. [Google Scholar] [CrossRef]
- Rosner, P. Der Grubenwasseranstieg im Aachener und Südlimburger Steinkohlenrevier—Eine Hydrogeologisch-Bergbauliche Analyse der Wirkungszusammenhänge. PhD Thesis, RWTH Aachen University, Aachen, Germany, 2011. [Google Scholar]
- Mann, S.; Wedekind, C. Die Flutung des Wismut-Bergbaus am Standort Dresden-Gittersee unter Berücksichtigung des historischen Steinkohlenbergbaus sowie vorhandenen Altlasten–ein Rückblick [The flooding of Wismut mining at the Dresden-Gittersee site considering historical coal mining and existing contaminated sites—A review]. In Proceedings of the 10. Altbergbau-Kolloquium, Freiberg, Germany, 4–6 November 2010; VGE: Essen, Germany, 2010; pp. 177–188. [Google Scholar] [CrossRef]
- Hamilton, R.M.; Bowen, G.G.; Postlethwaite, N.A.; Dussek, C.J. The abandonment of Wheal Jane, a tin mine in South West England. In Proceedings of the 5th International Mine Water Congress, Nottingham, UK, 18–23 September 1994; Reddish, D.J., Ed.; University of Nottingham, IMWA: Nottingham, UK, 1994. [Google Scholar]
- Hölting, B.; Coldewey, W.G. Hydrogeologie—Einführung in die Allgemeine und Angewandte Hydrogeologie [Hydrogeology—Introduction to General and Applied Hydrogeology], 8th ed.; Springer Spektrum: Heidelberg, Germany, 2013; p. XXXVII+438. [Google Scholar] [CrossRef]
- Semmler, W. Untersuchungen, Wassermessungen und Farbungsversuche zur Ermittelung der Herkunft der Wasserzuflüsse im Felde der Grube Victoria [Investigations, water measurements, and dye tracer tests to determine the origin of water inflows in the field of the Victoria Mine]. Der Bergbau 1937, 50, 87–93. [Google Scholar] [CrossRef]
- Schäfer, A. Zur Verteilung der Bewegungen an der Tagesoberfläche nach Grubenwasseranstieg in einer Steinkohlenlagerstätte. Markscheidewesen 2016, 123, 21–28. [Google Scholar]
- Corbel, S.; Kaiser, J.; Vicentin, S. Coal Mine Flooding in the Lorraine-Saar Basin: Experience from the French Mines. In Proceedings of the 13th International Mine Water Association Congress—Mine Water & Circular Economy, Lappeenranta, Finland, 25–30 June 2017. [Google Scholar]
- Koeberlé, N.; Levicki, R.; Kaiser, J.; Heitz, S. Treating Mine Waters in the Lorraine Coal Field—Feedback from the La Houve Treatment Plant. In Proceedings of the 8th International Conference on Mine Closure, Australian Centre for Geomechanics, Perth, Western Australia, 9–11 July 2013; Australian Centre for Geomechanics: Cornwall, UK, 2013. [Google Scholar]
- Cosquer, R. Compte Rendu d’Activités DPSM—Année 2015/Lorraine—Rapport Final; BRGM: Orléans, France, 2016.
- Ordóñez, A.; Jardón, S.; Álvarez, R.; Andrés, C.; Pendás, F. Hydrogeological Definition and Applicability of Abandoned Coal Mines as Water Reservoirs. J. Environ. Monit. 2012, 14, 2127–2136. [Google Scholar] [CrossRef]
- Pastor, J.; Klinger, C.; Talbot, C.; Whitworth, K.; Suso Llamas, J.M. Optimisation of Mine Water Discharge by Monitoring and Modeling of Geochemical Processes and Development of Measures to Protect Aquifers and Active Mining Areas from Mine Water Contamination—Final Report; Ministry of the Environment: Luxembourg, 2008; 130p.
- Kortas, L.; Younger, P.L. Using the GRAM Model to Reconstruct the Important Factors in Historic Groundwater Rebound in Part of the Durham Coalfield, UK. Mine Water Environ. 2007, 26, 60–69. [Google Scholar] [CrossRef]
- Sherwood, J.M. Modeling Mine Water Flow and Quality Changes after Coalfield Closure. PhD Thesis, University of Newcastle upon Tyne, Newcastle upon Tyne, UK, 1997. [Google Scholar]
- Whitworth, K.R. The Monitoring and Modelling of Mine Water Recovery in UK Coalfields. In Mine Water Hydrogeology and Geochemistry; Geological Society of London: London, UK, 2002. [Google Scholar] [CrossRef]
- Burke, S.; Barber, J. An Overview of Mine Water Rebound in a South Yorkshire Coalfield. In Proceedings of the International Mine Water Association Symposium, Braga, Portugal, Oviedo, Spain, 6–11 July 2025; University of Newcastle upon Tyne: Newcastle upon Tyne, UK, 2004. [Google Scholar]
- Watson, I. Managing Rising Mine Water to Prevent Aquifer Pollution. In Contaminated Ground, Contaminated Groundwater? UK Groundwater Forum: London, UK, 2011. [Google Scholar]
- Cairney, T.; Frost, R.C. A Case Study of Mine Water Quality Deterioration, Mainsforth Colliery, County Durham. J. Hydrol. 1975, 25, 275–293. [Google Scholar] [CrossRef]
- Burke, S.P.; Younger, P.L. Groundwater Rebound in the South Yorkshire Coalfield: A First Approximation Using the GRAM Model. Q. J. Eng. Geol. Hydrogeol. 2000, 33, 149–160. [Google Scholar] [CrossRef]
- Burke, S.P.; Potter, H.A.B.; Jarvis, A. Groundwater Rebound in the South Yorkshire Coalfield: A Review of Initial Modelling. In Proceedings of the 9th International Mine Water Association Congress—Mining Closure, Department of Mining Exploitation and Prospecting, Oviedo, Spain, 5–7 September 2005; University of Oviedo: Oviedo, Spain, 2005. [Google Scholar]
- Gandy, C.J.; Younger, P.L. Predicting Groundwater Rebound in the South Yorkshire Coalfield, UK. Mine. Water Environ. 2007, 26, 70–78. [Google Scholar] [CrossRef]
- Younger, P.L.; Adams, R. Predicting Mine Water Rebound; Environment Agency: Bristol, UK, 1999.
- Burnside, N.M.; Banks, D.; Boyce, A.J.; Athresh, A. Hydrochemistry and Stable Isotopes as Tools for Understanding the Sustainability of Minewater Geothermal Energy Production from a ‘Standing Column’ Heat Pump System: Markham Colliery, Bolsover, Derbyshire, UK. Int. J. Coal Geol. 2016, 165, 223–230. [Google Scholar] [CrossRef]
Name of Mine | Country | Flooding Duration, Month 1 | Number of Measurements | Increase in the MWL, m | Range of Flooding, m a.s.l. | Inflow Before Flooding, m3/a | Sources in Reference List |
---|---|---|---|---|---|---|---|
Königsborn | Germany | 230 | 230 | 918.54 | −894.52…24.02 | n. a. 2 | [24] |
Westfalen | Germany | 195 | 60 | 746.92 | −1178.20…−431.28 | n. a. | RAG data |
Westfeld Ibbenbüren | Germany | 32 | 32 | 560.88 | −493.06…67.82 | n. a. | [24] |
Witten | Germany | 29 | 29 | 509.38 | −431.17…78.21 | n. a. | RAG data |
Warndt | Germany | 95 | 95 | 966.66 | −850.88…115.78 | n. a. | [29] |
Houve | France | 78 | 78 | 772.96 | −575.50…197.46 | n. a. | [30] |
Vouters | France | 116 | 116 | 1158.98 | −1033.19…125.79 | n. a. | [31,32] |
Simon 5 | France | 113 | 113 | 893.92 | −768.19…125.73 | n. a. | [31,32] |
Barredo | Spain | 10 | 10 | 277.23 | −134.40…142.83 | n. a. | [33] |
Figaredo | Spain | 10 | 10 | 335.05 | −185.83…149.22 | n. a. | [33] |
Fishburn | The U.K. | 154 | 54 | 210.02 | −142.96…67.06 | 15,056 | [34,35] |
Michael | The U.K. | 90 | 84 | 252 | −298.95…−46.95 | 23,000 | [36,37] |
Barnsley Main | The U.K. | 240 | 240 | 370.76 | −328.91…41.85 | n. a. | [37,38,39] |
Wellesley | The U.K. | 269 | 113 | 322.78 | −525.78…−203.00 | n. a. | [36] |
Horden | The U.K. | 127 | 127 | 250.55 | −258.80…−8.25 | 40,800 | [6,34,39] |
Dawdon | The U.K. | 126 | 126 | 253.28 | −260.25…−6.97 | 1680 | [34,37,39] |
Easington | The U.K. | 154 | 154 | 406.80 | −415.80…−8.99 | 9840 | [34,37,39] |
Hawthorn | The U.K. | 124 | 124 | 265.88 | −267.45…−1.57 | n. a. | [34,39] |
Wheal Jane No.2 | The U.K. | 8 | 8 | 368.05 | −358.73…9.32 | 60,000 | [26] |
Sherburn Hill | The U.K. | 126 | 126 | 69.54 | −45.01…24.53 | 6240 | [34,37] |
Nicholsons | The U.K. | 126 | 126 | 73.56 | −75.83…−2.27 | 3120 | [34] |
Lumley 6th | The U.K. | 126 | 126 | 86.06 | −95.20…−4.14 | 2880 | [34] |
Mainsforth | The U.K. | 235 | 235 | 247.36 | −175.42…71.94 | 16,400 | [34,40] |
Bates | The U.K. | 183 | 183 | 49.49 | −46.26…3.23 | 280 | [6] |
Bedlington | The U.K. | 220 | 220 | 93.33 | −90.03…3.30 | n. a. | [6] |
New Delaval | The U.K. | 220 | 220 | 78.40 | −78.88…−0.48 | n. a. | [6] |
Ladysmith | The U.K. | 240 | 240 | 40.49 | 68.54…109.03 | 9820 | [35] |
Woodhouses | The U.K. | 240 | 240 | 40.53 | 67.39…107.92 | n. a. | [35] |
Thurcroft | The U.K. | 236 | 64 | 636.60 | −724.10…−87.50 | 960 | [41,42,43,44] |
Kilnhurst | The U.K. | 240 | 154 | 528.43 | −486.58…41.85 | 2000 | [38,43] |
Oxcroft | The U.K. | 104 | 104 | 124.48 | −109.31…15.17 | n. a. | [6] |
Langton | The U.K. | 82 | 82 | 164.71 | −177.66…−12.95 | n. a. | [6] |
Lochhead | The U.K. | 77 | 76 | 233.66 | −276.55…−42.89 | 9029 | [36,37] |
Frances | The U.K. | 185 | 185 | 216.48 | −218.51…−2.03 | 6.135 | [6,36] |
Markham Main | The U.K. | 58 | 58 | 102.80 | −167.08…−64.28 | n. a. | [45] |
Name of Mine | , m | , % | Rate of Exponential Fitting | Best Fit for βopt, 1/d | Best Fitting Curve |
---|---|---|---|---|---|
Königsborn | 52.45 25.30 1 | 5.71 3.54 1 | Acceptable Good 1 | 0.00033 0.000305 1 | Exponential |
Westfalen | 72.88 | 9.76 | Poor | 0.000246 | Linear, other |
Westfeld Ibbenbüren | 29.71 | 5.30 | Acceptable | 0.0048 | Exponential |
Witten | 28.80 | 5.65 | Acceptable | 0.00396 | Exponential |
Warndt | 71.05 | 7.35 | Acceptable | 0.00087 | Exponential |
Houve | 38.67 | 5.00 | Acceptable | 0.00258 | Other |
Vouters | 33.87 | 2.92 | Excellent | 0.00104 | Exponential |
Simon 5 | 47.87 | 5.36 | Acceptable | 0.001 | Exponential |
Barredo | 39.10 | 14.10 | Poor | 0.0059 | Linear |
Figaredo | 37.12 | 11.08 | Poor | 0.0057 | Linear |
Fishburn | 11.3 | 5.38 | Acceptable | 0.00143 | Exponential |
Michael | 7.07 | 2.81 | Excellent | 0.00099 | Exponential |
Barnsley Main | 7.62 | 2.06 | Excellent | 0.00086 | Exponential |
Wellesley | 2.28 | 0.71 | Excellent | 0.00063 | Exponential |
Horden | 9.55 | 3.81 | Good | 0.00092 | Exponential |
Dawdon | 10.70 | 4.22 | Good | 0.00079 | Exponential |
Easington | 20.08 | 4.94 | Good | 0.00069 | Exponential |
Hawthorn | 11.46 | 4.31 | Good | 0.00072 | Exponential |
Wheal Jane No.2 | 7.27 | 1.97 | Excellent | 0.0193 | Exponential |
Sherburn Hill | 2.96 2 5.19 3 | 5.690 2 10.90 3 | Good 2 Poor 3 | 0.0024 2 0.0007 3 | Exponential |
Nicholsons | 9.44 | 12.83 | Poor | 0.00042 | Linear |
Lumley 6th | 10.73 | 12.47 | Poor | 0.00038 | Linear |
Mainsforth | 9.82 | 3.97 | Good | 0.00075 | Exponential |
Bates | 2.65 | 5.36 | Acceptable | 0.00055 | Exponential |
Bedlington | 3.45 | 3.69 | Good | 0.00053 | Exponential |
New Delaval | 4.80 | 6.12 | Acceptable | 0.00047 | Exponential, linear |
Ladysmith | 2.79 | 6.90 | Acceptable | 0.00082 | Exponential |
Woodhouses | 2.48 | 6.12 | Acceptable | 0.00082 | Exponential |
Thurcroft | 5.92 | 0.93 | Excellent | 0.0005 | Exponential |
Kilnhurst | 30.78 9.66 4 | 5.83 2.94 4 | Acceptable Excellent 4 | 0.00049 0.00091 4 | Exponential |
Oxcroft | 17.87 | 14.36 | Poor | 0.00106 | Other |
Langton | 9.73 | 5.91 | Acceptable | 0.00072 | Linear |
Lochhead | 11.44 | 4.90 | Good | 0.00133 | Exponential |
Frances | 1.83 | 0.85 | Excellent | 0.00075 | Exponential |
Markham Main | 9.55 | 9.29 | Poor | 0.00106 | Linear |
Name of the Mine | The Parameter β, 1/d, Assessed by | ||
---|---|---|---|
Equation (4) based on the data on residual volume | Equation (5) with calculations of floodable volume | Fitting of experimental curve by Equations (6) and (7) | |
Königsborn | 0.00083 | 0.00051 | 0.000305…0.00033 |
Westfalen | 0.00035 | 0.00007 | 0.000246 |
Westfeld Ibbenbüren | 0.00215 | 0.00187 | 0.0048 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rudakov, D.; Sharifi, S.; Westermann, S. An Empirical–Analytical Model of Mine Water Level Rebound. Mining 2025, 5, 59. https://doi.org/10.3390/mining5040059
Rudakov D, Sharifi S, Westermann S. An Empirical–Analytical Model of Mine Water Level Rebound. Mining. 2025; 5(4):59. https://doi.org/10.3390/mining5040059
Chicago/Turabian StyleRudakov, Dmytro, Somayeh Sharifi, and Sebastian Westermann. 2025. "An Empirical–Analytical Model of Mine Water Level Rebound" Mining 5, no. 4: 59. https://doi.org/10.3390/mining5040059
APA StyleRudakov, D., Sharifi, S., & Westermann, S. (2025). An Empirical–Analytical Model of Mine Water Level Rebound. Mining, 5(4), 59. https://doi.org/10.3390/mining5040059