Development of Decorative Mortars with Pigments from Acid Mine Drainage: Analysis of Physical and Mechanical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of AMD and Pigment
2.2. Pigment Characterization
2.3. Production of Decorative Coating Mortar
2.4. Mortar Characterization
3. Results and Discussion
3.1. Characteristics of the Pigment Produced
3.2. Decorative Coating Mortars
3.2.1. Mechanical Resistance
3.2.2. Dimensional Variation
3.2.3. Loss of Mass
3.2.4. Colorimetry
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weiler, J.; Schneider, I.A.H. Pyrite Utilization in the Carboniferous Region of Santa Catarina, Brazil-Potentials, Challenges, and Environmental Advantages. REM-Int. Eng. J. 2019, 72, 515–522. [Google Scholar] [CrossRef]
- Hadadi, F.; Jodeiri Shokri, B.; Zare Naghadehi, M.; Doulati Ardejani, F. Probabilistic Prediction of Acid Mine Drainage Generation Risk Based on Pyrite Oxidation Process in Coal Washery Rejects—A Case Study. J. Min. Environ. 2021, 12, 127–137. [Google Scholar]
- León, R.; Macías, F.; Cánovas, C.R.; Millán-Becerro, R.; Pérez-López, R.; Ayora, C.; Nieto, J.M. Evidence of Rare Earth Elements Origin in Acid Mine Drainage from the Iberian Pyrite Belt (SW Spain). Ore Geol. Rev. 2023, 154, 105336. [Google Scholar] [CrossRef]
- Caldeira, J.G.; Zancan, F.L.; Gomes, C.J.B.; Dalpont, G. Coal Resources, Production, Use, and Reducing Emissions in Brazil. In The Coal Handbook; Elsevier: Amsterdam, The Netherlands, 2023; pp. 257–300. [Google Scholar]
- Weiler, J.; do Amaral Filho, J.R.; Schneider, I.A.H. Processamento de Rejeito de Carvão Visando a Redução de Custos No Tratamento Da Drenagem Ácida de Minas-Estudo de Caso Na Região Carbonífera de Santa Catarina. Eng. Sanitária Ambient. 2016, 21, 337–345. [Google Scholar] [CrossRef]
- Silva, R.d.A.; Secco, M.P.; Menezes, J.C.S.d.S.; Schneider, I.A.H.; Lermen, R.T. Reduction of High-Chromium-Containing Wastewater in the Leaching of Pyritic Waste Rocks from Coal Mines. Sustainability 2022, 14, 11814. [Google Scholar] [CrossRef]
- Tong, L.; Fan, R.; Yang, S.; Li, C. Development and Status of the Treatment Technology for Acid Mine Drainage. Min. Metall. Explor. 2021, 38, 315–327. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, Y.; Zhang, Z.; Zhang, Y. Acid Mine Drainage (AMD) in Abandoned Coal Mines of Shanxi, China. Water 2020, 13, 8. [Google Scholar] [CrossRef]
- De Almeida Silva, R.; Secco, M.P.; Lermen, R.T.; Schneider, I.A.H.; Hidalgo, G.E.N.; Sampaio, C.H. Optimizing the Selective Precipitation of Iron to Produce Yellow Pigment from Acid Mine Drainage. Miner. Eng. 2019, 135, 111–117. [Google Scholar] [CrossRef]
- Hedin, R.S. Long-Term Minimization of Mine Water Treatment Costs through Passive Treatment and Production of a Saleable Iron Oxide Sludge. In Mining Meets Water–Conflicts and Solutions, Proceedings of the IMWA 2016 Conference, Leipzig, Germany, 11–15 July 2016; International Mine Water Association: Freiberg, Germany, 2016; pp. 1267–1273. [Google Scholar]
- Masindi, V.; Foteinis, S.; Renforth, P.; Ndiritu, J.; Maree, J.P.; Tekere, M.; Chatzisymeon, E. Challenges and Avenues for Acid Mine Drainage Treatment, Beneficiation, and Valorisation in Circular Economy: A Review. Ecol. Eng. 2022, 183, 106740. [Google Scholar] [CrossRef]
- Johnson, D.B.; Hallberg, K.B. Acid Mine Drainage Remediation Options: A Review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Kefeni, K.K.; Msagati, T.A.M.; Mamba, B.B. Acid Mine Drainage: Prevention, Treatment Options, and Resource Recovery: A Review. J. Clean. Prod. 2017, 151, 475–493. [Google Scholar] [CrossRef]
- Yuan, J.; Ding, Z.; Bi, Y.; Li, J.; Wen, S.; Bai, S. Resource Utilization of Acid Mine Drainage (AMD): A Review. Water 2022, 14, 2385. [Google Scholar] [CrossRef]
- Hedin, R.S. Recovery of Marketable Iron Oxide from Mine Drainage in the USA. Land Contam. Reclam. 2003, 11, 93–98. [Google Scholar] [CrossRef]
- Ryan, M.J.; Kney, A.D.; Carley, T.L. A Study of Selective Precipitation Techniques Used to Recover Refined Iron Oxide Pigments for the Production of Paint from a Synthetic Acid Mine Drainage Solution. Appl. Geochem. 2017, 79, 27–35. [Google Scholar] [CrossRef]
- Marcello, R.R.; Galato, S.; Peterson, M.; Riella, H.G.; Bernardin, A.M. Inorganic Pigments Made from the Recycling of Coal Mine Drainage Treatment Sludge. J. Environ. Manag. 2008, 88, 1280–1284. [Google Scholar] [CrossRef]
- Masindi, V.; Tekere, M. Innovative Routes for Acid Mine Drainage (AMD) Valorization: Advocating for a Circular Economy. In Recovery of Byproducts from Acid Mine Drainage Treatment; John Wiley & Sons: Hoboken, NJ, USA, 2020; pp. 189–218. [Google Scholar]
- Tau, A.L.; Maree, J.P.; Letjiane, S.L.; Adeniyi, A.; Onyango, M.S. Pigment Recovered from Iron Rich Mine Water for Use in Colored Concrete. In Proceedings of the 36th Int’l Conference on “Chemical, Biological, Environmental & Natural Resources” (CBENR-23), Kuala Lumpur, Malaysia, 31 May–2 June 2023. [Google Scholar]
- Sadasivam, S.; Thomas, H.R. Colour and Toxic Characteristics of Metakaolinite–Hematite Pigment for Integrally Coloured Concrete, Prepared from Iron Oxide Recovered from a Water Treatment Plant of an Abandoned Coal Mine. J. Solid State Chem. 2016, 239, 246–250. [Google Scholar] [CrossRef]
- Hatami, L.; Jamshidi, M.; Yavari, M. Improving Mechanical/Colorimetric Properties of Self-Compacting Mortar Using an Intensively Colored-Nanoparticle Containing Polymeric Paste. J. Build. Eng. 2023, 66, 105841. [Google Scholar] [CrossRef]
- De Oliveira, G.F.F.; de Souza, E.J.; de Lima Gomes, A.J. Study of the Technical Feasibility of Using Colored Mortar for Coating. Int. J. Geosci. Eng. Technol. 2023, 7, 8–15. [Google Scholar]
- Miranda, J.; Costa, H.; Valença, J.; do Carmo, R.; Júlio, E. Design and Durability Assessment of Restoring Mortar for Concrete Heritage. Materials 2021, 14, 4508. [Google Scholar] [CrossRef]
- Miranda, J.; Valenca, J.; Julio, E. Colored Concrete Restoration Method: For Chromatic Design and Application of Restoration Mortars on Smooth Surfaces of Colored Concrete. Struct. Concr. 2019, 20, 1391–1401. [Google Scholar] [CrossRef]
- Lima, L.; Trindade, E.; Alencar, L.; Alencar, M.; Silva, L. Sustainability in the Construction Industry: A Systematic Review of the Literature. J. Clean. Prod. 2021, 289, 125730. [Google Scholar] [CrossRef]
- Norouzi, M.; Chàfer, M.; Cabeza, L.F.; Jiménez, L.; Boer, D. Circular Economy in the Building and Construction Sector: A Scientific Evolution Analysis. J. Build. Eng. 2021, 44, 102704. [Google Scholar] [CrossRef]
- Mohammed, S.A.; Koting, S.; Katman, H.Y.B.; Babalghaith, A.M.; Abdul Patah, M.F.; Ibrahim, M.R.; Karim, M.R. A Review of the Utilization of Coal Bottom Ash (CBA) in the Construction Industry. Sustainability 2021, 13, 8031. [Google Scholar] [CrossRef]
- Menezes, J.; Colling, A.V.; Silva, R.A.S.; Scheneider, I.A.H. Effect of Pyrite Concentration on the Quality of Ferric Sulfate Coagulants Obtained by Leaching from Coal Tailings. Miner. Metall. Process. 2016, 33, 77–81. [Google Scholar] [CrossRef]
- Cornell, R.M.; Schwertmann, U. The Iron Oxides: Structure, Properties, Reactions, Occurrences, and Uses; Wiley-VCH: Weinheim, Germany, 2003; Volume 664. [Google Scholar]
- Schwertmann, U.; Murad, E. Effect of PH on the Formation of Goethite and Hematite from Ferrihydrite. Clays Clay Miner. 1983, 31, 277–284. [Google Scholar] [CrossRef]
- Schwertmann, U.; Stanjek, H.; Becher, H.-H. Long-Term in Vitro Transformation of 2-Line Ferrihydrite to Goethite/Hematite at 4, 10, 15 and 25 C. Clay Miner. 2004, 39, 433–438. [Google Scholar] [CrossRef]
- Silva, R.d.A.; Castro, C.D.; Petter, C.O.; Schneider, I.A.H. Production of Iron Pigments (Goethite and Haematite) from Acid Mine Drainage. In Proceedings of the 11th International Mine Water Association Congress, Aachen, Germany, 4–11 September 2011; pp. 469–474. [Google Scholar]
- Akinwekomi, V.; Maree, J.P.; Masindi, V.; Zvinowanda, C.; Osman, M.S.; Foteinis, S.; Mpenyana-Monyatsi, L.; Chatzisymeon, E. Beneficiation of Acid Mine Drainage (AMD): A Viable Option for the Synthesis of Goethite, Hematite, Magnetite, and Gypsum–Gearing towards a Circular Economy Concept. Miner. Eng. 2020, 148, 106204. [Google Scholar] [CrossRef]
- Carasek, H.; Araújo, R.C.; Cascudo, O.; Angelim, R. Parâmetros Da Areia Que Influenciam a Consistência e a Densidade de Massa Das Argamassas de Revestimento. Matéria 2016, 21, 714–732. [Google Scholar] [CrossRef]
- BS EN 459-1; Building Lime—Definitions, Specifications and Conformity Criteria. British Standards Institution: London, UK, 2015.
- Lee, H.-S.; Lee, J.-Y.; Yu, M.-Y. Influence of Inorganic Pigments on the Fluidity of Cement Mortars. Cem. Concr. Res. 2005, 35, 703–710. [Google Scholar] [CrossRef]
- ABNT NBR 13276; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação Do Índice de Consistência. Associação Brasileira de Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2016.
- ABNT NBR 13279; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação Da Resistência à Tração Na Flexão e à Compressão. Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2005.
- ABNT NBR 15261; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação Da Variação Dimensional (Retratação Ou Expansão Linear). Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brazil, 2005.
- DIN DIN 6174; Farbmetrische Bestimmung von Farbabständen Bei Körperfarben Nach Der CIELAB-Formel. Deutsche Institut für Normung: Berlin, Germany, 1979.
- Silva, R.d.A. Recuperação Hidrometalúrgica de Metais Da Drenagem Ácida de Minas Por Precipitação Seletiva. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2010. [Google Scholar]
- EPA. Summary Report: Control and Treatment Technology for the Metal Finishing Industry; Sulfide Precipitation; Environmental Protection Agency: Boston, MA, USA, 1980; Volume 625.
- Morais, C.F.; Belo, B.R.; Bezerra, A.C.S.; Loura, R.M.; Porto, M.P.; Bessa, S.A.L. Thermal and Mechanical Analyses of Colored Mortars Produced Using Brazilian Iron Ore Tailings. Constr. Build. Mater. 2021, 268, 121073. [Google Scholar] [CrossRef]
- Hall, D.A.; Stevens, R.; Jazairi, B. El Effect of Water Content on the Structure and Mechanical Properties of Magnesia-phosphate Cement Mortar. J. Am. Ceram. Soc. 1998, 81, 1550–1556. [Google Scholar] [CrossRef]
Cement type | Physical Properties | |||||||||
Setting time | Blaine cm2/g | #200 % | #325 % | HE 1 Mm | D 2 g/cm3 | Compressive strength (average) | ||||
Initial min | Last min | 3 days MPa | 7 days MPa | 28 days MPa | ||||||
CP II-Z 32 | 201 | 240 | 3.743 | 1.42 | 6.75 | 0.25 | 2.92 | 26.5 ± 0.6 | 32.7 ± 1.2 | 41.6 ± 0.3 |
Cement type | Chemical Properties (wt.%) | |||||||||
Al2O3 | SiO2 | Fe2O3 | CaO | MgO | SO3 | LOI 3 | Free CaO | I.R. 4 | A.E. 5 | |
CP II-Z 32 | 6.77 | 22.59 | 3.10 | 53.20 | 3.94 | 2.77 | 5.01 | 0.80 | 12.31 | 0.80 |
Properties | Composition (wt.%) | |||||||
---|---|---|---|---|---|---|---|---|
Chemical | CaO | SiO2 | K2O | Fe2O3 | Al2O3 | MgO | Others | LOI |
41.54 | 0.75 | 0.10 | 0.57 | 0.35 | 28.77 | 2.58 | 25.34 | |
Physical | Fineness (%) | #28 | 0.47 | |||||
#200 | 14.88 | |||||||
Water retention (%) | 75.00 | |||||||
Bulk density (g/cm3) | 2.640 | |||||||
Plasticity (%) | 114.50 |
Sand Granulometry | Sieve Size (mm) | ||||||||
---|---|---|---|---|---|---|---|---|---|
9.5 | 6.3 | 4.75 | 2.36 | 1.18 | 0.6 | 0.3 | 0.15 | Botton | |
% weight retained | 0 | 0 | 0 | 0 | 0.91 | 0.19 | 13.97 | 75.30 | 0.33 |
% cumulative weight retained | 0 | 0 | 0 | 0 | 0.91 | 1.09 | 15.07 | 90.37 | 100 |
Physical properties of the sand | |||||||||
Fineness Modulus | 1.07 | ||||||||
Bulk mass (g/cm3) | 1.48 | ||||||||
Specific gravity (g/cm3) | 2.51 |
% Replacement | Cement (g) | Lime (g) | Sand (g) | Pigment (g) | Water (g) |
---|---|---|---|---|---|
0% (reference) | 330 | 660 | 2000 | 0 | 620 |
2% | 330 | 660 | 1960 | 40 | 660 |
4% | 330 | 660 | 1920 | 80 | 770 |
6% | 330 | 660 | 1880 | 120 | 800 |
Pigment Type | Chemical Composition (wt.%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
F2O3 | Na2O | K2O | SO3 | As2O3 | SiO2 | CaO | MnO | ZnO | PbO | CuO | Others | |
IND-Pi | 98.2 | -- | -- | 1.3 | -- | 0.3 | 0.06 | 0.12 | -- | -- | 0.02 | -- |
AMD-Pi | 91.2 | -- | 7.3 | 0.3 | 0.5 | 0.2 | -- | -- | 0.1 | 0.1 | -- | 0.3 |
Raw AMD | 93.0 | 3.7 | -- | 0.4 | -- | 1.1 | 1.1 | 0.08 | 0.5 | -- | 0.04 | 0.08 |
Pigment Type | L* | a* | b* | ΔEL*a*b* |
---|---|---|---|---|
AMD-Pi | 61.11 | 16.73 | 30.71 | 15.38 |
IND-Pi | 50.43 | 14.87 | 41.63 | 0.00 |
% Replacement | Samples | L* | a* | b* | ΔE*Lab |
---|---|---|---|---|---|
0% | without pigment | 77.57 | 0.55 | 6.91 | - |
2% | IND-Pi | 69.25 | 12.53 | 43.81 | 15.47 |
AMD-Pi | 73.12 | 6.71 | 30.01 | ||
4% | IND-Pi | 68.02 | 12.36 | 43.03 | 14.22 |
AMD-Pi | 67.06 | 7.33 | 29.76 | ||
6% | IND-Pi | 66.53 | 12.08 | 40.85 | 13.60 |
AMD-Pi | 72.61 | 6.93 | 29.84 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lermen, R.T.; Orlando, G.d.O.; Silva, R.d.A. Development of Decorative Mortars with Pigments from Acid Mine Drainage: Analysis of Physical and Mechanical Properties. Mining 2023, 3, 696-711. https://doi.org/10.3390/mining3040038
Lermen RT, Orlando GdO, Silva RdA. Development of Decorative Mortars with Pigments from Acid Mine Drainage: Analysis of Physical and Mechanical Properties. Mining. 2023; 3(4):696-711. https://doi.org/10.3390/mining3040038
Chicago/Turabian StyleLermen, Richard Thomas, Gabriela de Oliveira Orlando, and Rodrigo de Almeida Silva. 2023. "Development of Decorative Mortars with Pigments from Acid Mine Drainage: Analysis of Physical and Mechanical Properties" Mining 3, no. 4: 696-711. https://doi.org/10.3390/mining3040038
APA StyleLermen, R. T., Orlando, G. d. O., & Silva, R. d. A. (2023). Development of Decorative Mortars with Pigments from Acid Mine Drainage: Analysis of Physical and Mechanical Properties. Mining, 3(4), 696-711. https://doi.org/10.3390/mining3040038