Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives
Abstract
:1. Introduction
2. General Toxicity
3. The Decomposition Products
4. Materials and Methods
4.1. Materials
4.2. Methods
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Standard and Poor’s (S&P) Global Commodity Insights. Available online: https://www.spglobal.com/commodityinsights/en/ci/products/explosives-and-blasting-chemical-economics-handbook.html (accessed on 3 October 2023).
- Biegańska, J.; Barański, K. Environmental aspects of the use of biomass to produce high-energy. In Proceedings of the International Conference Energy Fuels Environment, Kraków, Poland, 20–23 September 2022. [Google Scholar]
- Oluwoye, I.; Dlugogorski, B.Z.; Gore, J.; Oskierski, H.C.; Altarawneh, M. Atmospheric emission of NOx from mining explosives: A critical review. Atmos. Environ. 2017, 167, 81–96. [Google Scholar] [CrossRef]
- Abdulazeem, M.S. Shock and detonation properties of solid explosives with gaseous products. J. Hazard. Mater. 2010, 177, 372–376. [Google Scholar] [CrossRef]
- Onderka, Z. Inżynieria Strzelnicza Część I (Blasting Technique Part I); Skrypt AGH Kraków: Kraków, Polska, 1981. [Google Scholar]
- Keshavarz, M.H.; Poretedal, H.R. Simple determination of performance of explosives without using any experimental data. J. Hazard. Mater. 2005, 119, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Cybulski, W. Badania nad ilościowym składem gazów odstrzałowych. (Research on quantitive composition of fumes). Przegląd Górniczy 1966, 1, 114–121. [Google Scholar]
- Cybulska, R. Badania nad Możliwością Zatruć Gazami Odstrzałowymi w Robotach Kamiennych i Węglowych (Research on the possibility of Poisoning by Fumes Derived from Blasting Works in Open-Pits and Coal Mines). Ph.D. Thesis, Wydział Górniczy Politechniki Śląskiej, Gliwice, Poland, 1968. [Google Scholar]
- Turcotte, R.; Yang, R.; Lee, M.; Short, B.; Shomaker, R. Factors affecting fume production in surface coal blasting operations. In Proceedings of the 28th Conference on Explosives and Blasting Technique, Las Vegas, NV, USA, 10–13 February 2002. [Google Scholar]
- Volk, F. Detonation gases and residues of composite explosives. J. Energetic Mater. 1986, 41, 93–113. [Google Scholar] [CrossRef]
- Volk, F. Energy output of insensitive high explosives by measuring the detonation products. J. Philos. Trans. R. Soc. Lond. Ser. A Phys. Eng. Sci. 1992, 339, 335–343. [Google Scholar] [CrossRef]
- Onderra, I.; Bailey, V.; Cavanough, G.; Torrance, A. Understanding main causes of nitrogen oxide fumes in surface blasting. J. Min. Technol. 2012, 121, 151–159. [Google Scholar] [CrossRef]
- McLaren, D. A comparative global assessment of potential negative emissions technologies. Process Saf. Environ. Prot. 2012, 90, 489–500. [Google Scholar] [CrossRef]
- Kukuczka, M. A new method for determining explosibility of complex gas mixtures. Mech. Autom. Gor. 1982, 164, 36–39. [Google Scholar]
- Attalla, M.I.; Day, S.J.; Lange, T.; Lilley, W.; Morgan, S. NOx emissions from blasting operations in open-cut coal mining. Atmos. Environ. 2008, 42, 7874–7883. [Google Scholar] [CrossRef]
- Silveter, S.A.; Lowndes, L.S.; Gargreaves, D.M. A computational study of particulate emissions from an open pit quarry under neutral atmospheric conditions. Atmos. Environ. 2009, 43, 6415–6424. [Google Scholar] [CrossRef]
- Biessikirski, A.; Barań, K.; Pytlik, M.; Kuterasiński, Ł.; Biegańska, J.; Słowiński, K. Application of Silicon Dioxide as the Inert Component or Oxide Component Enhancer in ANFO. Energies 2021, 14, 2152. [Google Scholar] [CrossRef]
- Biessikirski, A.; Gotovac Atlagić, S.; Pytlik, M.; Kuterasiński, Ł.; Dworzak, M.; Twardosz, M.; Nowak-Senderowska, D.; Napruszewska, B.D. The Influence of Microstructured Charcoal Additive on ANFO’s Properties. Energies 2021, 14, 4354. [Google Scholar] [CrossRef]
- Biessikirski, A.; Czerwonka, D.; Biegańska, J.; Kuterasiński, Ł.; Ziąbka, M.; Dworzak, M.; Twardosz, M. Research on the Possible Application of Polyolefin Waste-Derived Pyrolysis Oils for ANFO Manufacturing. Energies 2021, 14, 172. [Google Scholar] [CrossRef]
- Araos, M.; Onderra, I. Detonation Characteristics of a NOx-Free Mining Explosive Based on Sensitised Mixtures of Low Concentration Hydrogen Peroxide and Fuel. Cent. Eur. J. Energ. Mater. 2017, 14, 759–774. [Google Scholar] [CrossRef] [PubMed]
- Kuterasiński, Ł.; Wojtkiewicz, A.M.; Sadowska, M.; Żeliszewska, P.; Napruszewska, B.D.; Zimowska, M.; Pytlik, M.; Biessikirski, A. Variously Prepared Zeolite Y as a Modifier of ANFO. Materials 2022, 15, 5855. [Google Scholar] [CrossRef]
- Bhattacharyya, M.M.; Singh, P.K.; Ram, P.; Paul, R.K. Some Factors Influencing Toxic Fume Generation by NG-based Semigel Explosives in Laboratory Studies. Propellants Explos. Pyrotech. 2001, 26, 69–74. [Google Scholar] [CrossRef]
- Torno, S.; Toraño, J. On the prediction of toxic fumes from underground blasting operations and dilution ventilation. Conv. Numer. Models Tunn. Undergr. Space Technol. 2020, 96, 103194. [Google Scholar] [CrossRef]
- Tiile, R.N. Investigating Blast Fume Propagation, Concentration and Clearance in Underground Mines Using Computational Fluid Dynamics (CFD). Doctoral Dissertation, Missouri University of Science and Technology, St. Rolla, MO, USA, 2019. [Google Scholar]
- Suceska, M.; Tumara, B.S.; Skrlec, V.; Stankovic, S. Prediction of concentration of toxic gases produced by detonation of commercial explosives by thermochemical equilibrium calculations. Def. Technol. 2022, 18, 2181–2189. [Google Scholar] [CrossRef]
- Zawadzka-Małota, I. Testing of mining explosives with regard to the content of carbon oxides and nitrogen oxides in their detonation products. J. Sustain. Min. 2015, 14, 173–178. [Google Scholar] [CrossRef]
- Harris, M.L.; Mainiero, J.R. Monitoring and removal of CO in blasting operations. Saf. Sci. 2008, 46, 1393–1405. [Google Scholar] [CrossRef]
- Cengiz, F.; Ulas, A. Numerical prediction of steady—State detonation properties of condensed—Phase explosives. J. Hazard. Mater. 2009, 172, 1646–1651. [Google Scholar] [CrossRef]
- EN 13631-16:2004; Explosives for Civil Uses. iTeh Standards: Newark, DE, USA, 2015.
- Sobala, J.; Zawadzka-Małota, I. Amendment of regulations relating to explosives admitting to applying in the underground mining in the reference to the in-vestigations after—Detonation gases according to the Directive 93/15 EEC and European Standard. WUG Bezpieczeństwo Pr. Ochr. Sr. W Górnictwie 2007, 9, 116–120. [Google Scholar]
- Zawadzka-Małota, I. Wpływ struktury i składu górniczych materiałów wybuchowych na zawartość toksycznych składników w gazach postrzałowych (Influence of structure and composition of mining explosive materials on contentof toxic components in post-shot gases). Pr. Nauk. GiG 2009, 3, 113–129. [Google Scholar]
- The Decree of The Minister of Labor and Social Policy of 15.10.2005. Polish Ministry of Economy and Labor 2015, 1769.
- L’institut National de l’Environnement Industriel et des Risques, 2012. Unpublished work.
- Akhavan, J. The Chemistry of Explosives; The Royal Society of Chemistry: Cambridge, UK, 2004. [Google Scholar]
- Salzano, E.; Basco, A. Comparision of the explosion thermodynamics of TNT and black powder using Le Chatelier diagrams. Propellants Explos. Pyrotech. 2012, 37, 724–731. [Google Scholar] [CrossRef]
- Biessikirski, A.; Pytlik, M.; Kuterasiński, Ł.; Dworzak, M.; Twardosz, M.; Napruszewska, B.D. Influence of the Ammonium Nitrate(V) Porous Prill Assortments and Absorption Index on Ammonium Nitrate Fuel Oil Blasting Properties. Energies 2020, 13, 3763. [Google Scholar] [CrossRef]
- PN-EN 13631-16:2006; Polish Standard. Materiały Wybuchowe do Użytku Cywilnego. Materiały Wybuchowe Kruszące. Część 16: Wykrywanie i Oznaczanie Gazów Toksycznych. PKN: Warszawa, Poland, 2006.
- EN 13631-14:2003; European Commission. Explosives for Civil Uses. High Explosives. Part 14: Determination of Velocity of Detonation. European Committee for Standardization: Brussels, Belgium, 2003.
- Ni, O.; Zhang, K.; Yu, Z.; Tang, S. Powder Emulsion Explosives. A new Excellent Industrial Explosive. J. Energ. Mater. 2012, 30, 183–195. [Google Scholar] [CrossRef]
- Yakhoub, H.A.; Maslava, I.; Haldenwang, R. Highly concentrated emulsions: Role of droplet size. Chem. Eng. Commun. 2010, 198, 147–171. [Google Scholar] [CrossRef]
Name of Oxide | MPC, mg/m3 |
---|---|
CO | 23 |
NO2 | 3.5 |
Country | Standard Requirements for an Amount of CO and NOx |
---|---|
Belgian | No more than 50 dm3 of CO and NOx from 1 kg of explosive LCO rel = [XCO] + 5[YNOx] |
Bulgaria | No more than 100 dm3 of CO and NOx from 1 kg of explosive LCO rel = [XCO] + 6.5[YNox] |
Czech | No more than 50 dm3 of CO and NOx from 1 kg of explosive LCO rel = [XCO] + 6.5[YNox] |
France | No more than 50 dm3 of CO and NOx (as a sum) from 1 kg of explosive LCO rel = [XCO] + 8[YNox] |
Spain | After the detonation process, the explosive material is given the following class: A—beneath 22.7 dm3 CO and NOx ·kg−1 of explosive. B—22.7 ÷ 46.7 dm3 CO and NOx ·kg−1 of explosive. C—above 46.7 dm3 CO and NOx ·kg−1 of explosive. |
German | No more than 40 dm3 of CO and 5 dm3 of NOx from 1 kg of explosive |
Poland | No more than 27 dm3 of CO and 16 dm3 of NOx were calculated per NO2 from a detonation of 1 kg of explosive No equation of general toxicity |
Russia | No more than 50 dm3 of CO and 5 dm3 of NOx from a 1 kg explosive LCO rel = [XCO] + 6.5[YNOx] |
Slovakia | No more than 50 dm3 of CO and NOx from 1 kg of explosive LCO rel = [XCO] + 6.5[YNOx] |
U.S.A. | No more than 100 dm3 of CO. CO2. NO. NO2 H2S. SO2 (as a sum of gases) NOx from 1 kg of explosive |
Italy | No more than 60 dm3 of CO and NOx from 1 kg of explosive LCO rel = [XCO] + 8[YNOx] |
Explosive | Dynamite Sample 1 | Dynamite Sample 2 | Dynamite Sample 3 | Dynamite Sample 4 |
---|---|---|---|---|
Ammonium nitrate(V) | 71.29 | 53.8 | N/A | 58.0 |
Sodium nitrate(V) | - | 10.0 | N/A | 4.0 |
Nitrocellulose | 0.7 | 1.0 | N/A | 0.9 |
Nitroglicerine | 13.2 | 16.8 | N/A | 16.2 |
Nitroglycol | 8.8 | 11.2 | N/A | 10.8 |
Trotyl | - | 3.0 | N/A | - |
Fuels | 7.0 | 4.2 | N/A | 5.6 |
Modifiers | 0.01 | 0.3 | N/A | 3.6 |
Parameter | Sample 1 | Sample 2 | Sample 3 | Sample 4 |
---|---|---|---|---|
Organic component, % | 5.5 | 4.2 | 4.8 | 5.3 |
Oxidizers, % | 88.5 | 87.6 | 79.7 | 83.4 |
Water, % | 4.0 | 3.2 | 15.6 | 7.1 |
Modifications, % | - | - | 0.2 | 0.2 |
Aluminum powder, % | 20 | 5.0 | - | 4.0 |
Explosive | Density | VOD |
---|---|---|
g/cm3 | m/s | |
ANFO sample 1 | 0.829 | 2415 ± 27 |
ANFO sample 2 | 0.738 | 1678 ± 20 |
ANFO sample 3 | 0.733 | 1997 ± 25 |
ANFO sample 4 | 0.712 | 1282.5 ± 13 |
ANFO sample 5 | 0.707 | 1925 ± 27 |
ANFO sample 6 | 0.823 | 3140 ± 38 |
ANFO sample 7 | 0.746 | 1700 ± 22 |
ANFO sample 8 | 0.695 | 2024 ± 22 |
Explosive | The Amount of CO | The Amount of NOx Calculated per NO2 | General Toxicity (L) k = 5 | General Toxicity (L) k = 6 | General Toxicity (L) k = 10 |
---|---|---|---|---|---|
dm3/kg | dm3/kg | dm3/kg | dm3/kg | dm3/kg | |
ANFO sample 1 | 17.50 | 10.70 | 71.00 | 81.70 | 124.50 |
ANFO sample 2 | 10.20 | 11.20 | 66.20 | 77.40 | 122.20 |
ANFO sample 3 | 16.20 | 9.40 | 63.20 | 72.60 | 110.20 |
ANFO sample 4 | 7.80 | 10.20 | 58.80 | 69.00 | 109.80 |
ANFO sample 5 | 6.00 | 12.40 | 68.00 | 80.40 | 130.00 |
ANFO sample 6 | 16.40 | 13.10 | 81.90 | 95.00 | 147.40 |
ANFO sample 7 | 15.00 | 10.2 | 66.0 | 76.20 | 117.00 |
ANFO sample 8 | 4.01 | 7.64 | 42.21 | 49.85 | 80.41 |
Average | 11.63 | 10.61 | 64.66 | 75.27 | 117.69 |
STD, % | ±1.27 | ±1.3 | - | - | - |
Explosive | Density | VOD |
---|---|---|
g/cm3 | m/s | |
Emulsion sample 1 | 1.101 | 3712 ± 45 |
Emulsion sample 2 | 1.060 | 3900 ± 66 |
Emulsion sample 3 | 1.096 | 3700 ± 42 |
Emulsion sample 4 | 1.060 | 4080 ± 41 |
Name of Explosive | The Amount of CO | The Amount of NOx Calculated per NO2 | General Toxicity (L) k = 5 | General Toxicity (L) k = 6 | General Toxicity (L) k = 10 |
---|---|---|---|---|---|
dm3/kg | dm3/kg | dm3/kg | dm3/kg | dm3/kg | |
Emulsion sample 1 | 9.10 | 5.40 | 36.1 | 41.50 | 63.10 |
Emulsion sample 2 | 9.80 | 4.60 | 32.8 | 37.40 | 55.80 |
Emulsion sample 3 | 19.80 | 4.20 | 40.8 | 45.00 | 61.80 |
Emulsion sample 4 | 10.20 | 5.40 | 37.2 | 42.60 | 64.20 |
Average | 12.23 | 4.9 | 36.73 | 41.63 | 61.23 |
STD, % | ±1.14 | ±1.19 | - | - | - |
Explosive | Density | VOD | Oxygen Balance |
---|---|---|---|
g/cm3 | m/s | % | |
Dynamite sample 1 | 0.829 | 2415 ± 24 | +6.64 |
Dynamite sample 2 | 0.738 | 1678 ± 20 | +7.81 |
Dynamite sample 3 | 0.733 | 1997 ± 26 | +3.62 |
Dynamite sample 4 | 0.712 | 1282.5 ± 13 | +5.53 |
Name of Explosive | The Amount of CO | The Amount of NOx Calculated per NO2 | General Toxicity (L) k = 5 | General Toxicity (L) k = 6 | General Toxicity (L) k = 10 |
---|---|---|---|---|---|
dm3/kg | dm3/kg | dm3/kg | dm3/kg | dm3/kg | |
Dynamite sample 1 | 15.67 | 15.2 | 91.67 | 106.87 | 167.67 |
Dynamite sample 2 | 16.4 | 10.0 | 66.40 | 76.40 | 116.40 |
Dynamite sample 3 | 22.31 | 12.27 | 83.66 | 95.93 | 145.01 |
Dynamite sample 4 | 23.93 | 12.53 | 86.58 | 99.11 | 149.23 |
Average | 19.58 | 12.50 | 82.08 | 94.58 | 144.58 |
STD, % | ±1.08 | ±1.09 | - | - | - |
Name of Explosive | The Amount of CO | The Amount of NOx Calculated per NO2 | General Toxicity (L) k = 5 | General Toxicity (L) k = 6 | General Toxicity (L) k = 10 |
---|---|---|---|---|---|
dm3/kg | dm3/kg | dm3/kg | dm3/kg | dm3/kg | |
ANFO | 11.63 ± 1.27% | 10.61 ± 1.30% | 64.66 | 75.27 | 117.69 |
Emulsion | 12.23 ± 1.14% | 4.90 ± 1.19% | 36.73 | 41.63 | 61.23 |
Dynamite | 19.58 ± 1.08% | 12.50 ± 1.09% | 82.08 | 94.58 | 144.58 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biessikirski, A.; Dworzak, M.; Twardosz, M. Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives. Mining 2023, 3, 605-617. https://doi.org/10.3390/mining3040033
Biessikirski A, Dworzak M, Twardosz M. Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives. Mining. 2023; 3(4):605-617. https://doi.org/10.3390/mining3040033
Chicago/Turabian StyleBiessikirski, Andrzej, Michał Dworzak, and Michał Twardosz. 2023. "Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives" Mining 3, no. 4: 605-617. https://doi.org/10.3390/mining3040033
APA StyleBiessikirski, A., Dworzak, M., & Twardosz, M. (2023). Composition of Fumes and Its Influence on the General Toxicity and Applicability of Mining Explosives. Mining, 3(4), 605-617. https://doi.org/10.3390/mining3040033