Presurgical Decompensation in Patients Affected by Class III Dentoskeletal Malocclusion: A Comparison between Two Different Bracket Systems
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Han, B.; Xu, T. Effect of different combinations of bracket, archwire and ligature on resistance to sliding and axial rotational control during the first stage of orthodontic treatment: An in-vitro study. Korean J. Orthod. 2019, 49, 21–31. [Google Scholar] [CrossRef]
- Machibya, F.M.; Bao, X.; Zhao, L.; Hu, M. Treatment time, outcome, and anchorage loss comparisons of self-ligating and conventional brackets. Angle Orthod. 2013, 83, 280–285. [Google Scholar] [CrossRef] [PubMed]
- Celikoglu, M.; Bayram, M.; Nur, M.; Kilkis, D. Mandibular changes during initial alignment with SmartClip self-ligating and conventional brackets: A single-center prospective randomized controlled clinical trial. Korean J. Orthod. 2015, 45, 89–94. [Google Scholar] [CrossRef]
- Dehbi, H.; Azaroual, M.F.; Zaoui, F.; Halimi, A.; Benyahia, H. Therapeutic efficacy of self-ligating brackets: A systematic review. Int. Orthod. 2017, 15, 297–311. [Google Scholar] [CrossRef]
- Malik, D.E.S.; Fida, M.; Afzal, E.; Irfan, S. Comparison of anchorage loss between conventional and self-ligating brackets during canine retraction—A systematic review and meta-analysis. Int. Orthod. 2020, 18, 41–53. [Google Scholar] [CrossRef] [PubMed]
- Fleming, P.S.; DiBiase, A.T.; Sarri, G.; Lee, R.T. Comparison of mandibular arch changes during alignment and leveling with 2 preadjusted edgewise appliances. Am. J. Orthod. Dentofac. Orthop. 2009, 136, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Lundström, F. Orthodontic treatment efficiency with self-ligating and conventional edgewise twin brackets: A prospective randomized clinical trial. Angle Orthod. 2012, 82, 929–934. [Google Scholar] [CrossRef] [PubMed]
- Fleming, P.S.; Springate, S.D.; Chate, R.A.C. Myths and realities in orthodontics. Br. Dent. J. 2015, 218, 105–110. [Google Scholar] [CrossRef]
- Pandis, N.; Polychronopoulou, A.; Eliades, T. Self-ligating vs conventional brackets in the treatment of mandibular crowding: A prospective clinical trial of treatment duration and dental effects. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 208–215. [Google Scholar] [CrossRef]
- Songra, G.; Clover, M.; Atack, N.E.; Ewings, P.; Sherriff, M.; Sandy, J.R.; Ireland, A.J. Comparative assessment of alignment efficiency and space closure of active and passive self-ligating vs conventional appliances in adolescents: A single-center randomized controlled trial. Am. J. Orthod. Dentofac. Orthop. 2014, 145, 569–578. [Google Scholar] [CrossRef]
- Jahanbin, A.; Hasanzadeh, N.; Khaki, S.; Shafaee, H. Comparison of self-ligating Damon3 and conventional MBT brackets regarding alignment efficiency and pain experience: A randomized clinical trial. J. Dent. Res. Dent. Clin. Dent. Prospect. 2019, 13, 281–288. [Google Scholar] [CrossRef]
- Bashir, R.; Sonar, S.; Batra, P.; Srivastava, A.; Singla, A. Comparison of transverse maxillary dental arch width changes with self-ligating and conventional brackets in patients requiring premolar extraction—A randomised clinical trial. Int. Orthod. 2019, 17, 687–692. [Google Scholar] [CrossRef]
- Yang, X.; Xue, C.; He, Y.; Zhao, M.; Luo, M.; Wang, P.; Bai, D. Transversal changes, space closure, and efficiency of conventional and self-ligating appliances: A quantitative systematic review. J. Orofac. Orthop. 2018, 79, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Abu-Shahba, R.; Alassiry, A. Comparative evaluation of the maxillary canine retraction rate and anchorage loss between two types of self-ligating brackets using sliding mechanics. J. Orthod. Sci. 2019, 8, 3. [Google Scholar] [CrossRef]
- Al-Thomali, Y.; Mohamed, R.N.; Basha, S. Torque expression in self-ligating orthodontic brackets and conventionally ligated brackets: A systematic review. J. Clin. Exp. Dent. 2017, 9, e123–e128. [Google Scholar]
- Liao, Y.-F.; Chiu, Y.-T.; Huang, C.-S.; Ko, E.W.-C.; Chen, Y.-R. Presurgical Orthodontics versus No Presurgical Orthodontics: Treatment Outcome of Surgical-Orthodontic Correction for Skeletal Class III Open Bite. Plast. Reconstr. Surg. 2010, 126, 2074–2083. [Google Scholar] [CrossRef]
- Sabri, R. Orthodontic objectives in orthognathic surgery: State of the art today. World J. Orthod. 2006, 7, 177–191. [Google Scholar]
- Vernucci, R.A.; Mazzoli, V.; Incisivo, V.; Guarnieri, R.; Cascone, P.; Barbato, E.; Silvestri, A.; Galluccio, G. Factors affecting duration of post-surgical orthodontics in the Surgery First/Early Approach: A retrospective study. J. Stomatol. Oral. Maxillofac. Surg. 2023, 124, 101323. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.H.; Ahn, H.W.; Kwon, Y.H.; Choi, J.Y. Surgery-first approach in skeletal class III malocclusion treated with 2-jaw surgery: Evaluation of surgical movement and postoperative orthodontic treatment. J. Craniofacial Surg. 2010, 21, 332–338. [Google Scholar] [CrossRef]
- Aristizábal, J.F.; Martínez Smit, R.; Villegas, C. The “surgery first” approach with passive self-ligating brackets for expedited treatment of skeletal Class III malocclusion. J. Clin. Orthod. 2015, 49, 361–370. [Google Scholar]
- Aristizábal, J.F.; Martínez-Smit, R.; Díaz, C.; Pereira Filho, V.A. Surgery-first approach with 3D customized passive self-ligating brackets and 3D surgical planning: Case report. Dent. Press. J. Orthod. 2018, 23, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Alfaro, F.; Guijarro-Martínez, R. On a definition of the appropriate timing for surgical intervention in orthognathic surgery. Int. J. Oral. Maxillofac. Surg. 2014, 43, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Peiró-Guijarro, M.A.; Guijarro-Martínez, R.; Hernández-Alfaro, F. Surgery first in orthognathic surgery: A systematic review of the literature. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 448–462. [Google Scholar] [CrossRef]
- Pandis, N.; Polychronopoulou, A.; Makou, M.; Eliades, T. Mandibular dental arch changes associated with treatment of crowding using self-ligating and conventional brackets. Eur. J. Orthod. 2010, 32, 248–253. [Google Scholar] [CrossRef]
- Moyano, J.; Montagut, D.; Perera, R.; Fernández-Bozal, J.; Puigdollers, A. Comparison of changes in the dental transverse and sagittal planes between patients treated with self-ligating and with conventional brackets. Dent. Press. J. Orthod. 2020, 25, 47–55. [Google Scholar] [CrossRef]
- Anand, M.; Turpin, D.L.; Jumani, K.S.; Spiekerman, C.F.; Huang, G.J. Retrospective investigation of the effects and efficiency of self-ligating and conventional brackets. Am. J. Orthod. Dentofac. Orthop. 2015, 148, 67–75. [Google Scholar] [CrossRef]
- Burrow, S.J. Friction and resistance to sliding in orthodontics: A critical review. Am. J. Orthod. Dentofac. Orthop. 2009, 135, 442–447. [Google Scholar] [CrossRef] [PubMed]
- Heo, W.; Baek, S.H. Friction properties according to vertical and horizontal tooth displacement and bracket type during initial leveling and alignment. Angle Orthod. 2011, 81, 653–661. [Google Scholar] [CrossRef]
- Thorstenson, G.A.; Kusy, R.P. Effect of archwire size and material on the resistance to sliding of self-ligating brackets with second-order angulation in the dry state. Am. J. Orthod. Dentofac. Orthop. 2002, 122, 295–305. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, C.; Jian, F.; McIntyre, G.T.; Millett, D.T.; Hickman, J.; Lai, W. Initial arch wires used in orthodontic treatment with fixed appliances. Cochrane Database Syst. Rev. 2018, 2018. [Google Scholar] [CrossRef] [PubMed]
- Whitley, J.Q.; Kusy, R.P. Influence of interbracket distances on the resistance to sliding of orthodontic appliances. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 360–372. [Google Scholar] [CrossRef] [PubMed]
- Whitley, J.Q.; Kusy, R.P. Resistance to sliding of titanium brackets tested against stainless steel and beta-titanium archwires with second-order angulation in the dry and wet states. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 400–411. [Google Scholar] [CrossRef] [PubMed]
Patient | Age | ANB T0 | U1^ANS-PNS T0 | U1^ANS-PNS T1 | IMPA T0 | IMPA T1 | Time Needed for Presurgical Orthodontics |
---|---|---|---|---|---|---|---|
Mean | 27.40 | −1.88 | 118.04 | 111.28 | 83.64 | 86.96 | 24.88 |
S.D. | 3.71 | 1.42 | 3.46 | 2.82 | 4.55 | 4.15 | 6.28 |
Std. Error | 0.74 | 0.28 | 0.69 | 0.56 | 0.91 | 0.83 | 1.26 |
Lower 95 | 25.95 | −2.44 | 116.68 | 110.17 | 81.85 | 85.33 | 22.42 |
Upper 95 | 28.85 | −1.32 | 119.40 | 112.39 | 85.43 | 88.59 | 27.34 |
Min | 21.00 | −4.00 | 112.00 | 106.00 | 75.00 | 80.00 | 14.00 |
Max | 35.00 | 0.00 | 127.00 | 116.00 | 91.00 | 94.00 | 36.00 |
Patient | Age | ANB T0 | U1^ANS-PNS T0 | U1^ANS-PNS T1 | IMPA T0 | IMPA T1 | Time Needed for Presurgical Orthodontics |
---|---|---|---|---|---|---|---|
Mean | 27.20 | −2.10 | 117.60 | 110.90 | 84.20 | 88.30 | 22.90 |
S.D. | 4.24 | 1.52 | 3.24 | 2.47 | 4.21 | 3.62 | 8.45 |
Std. Error | 1.34 | 0.48 | 1.02 | 0.78 | 1.33 | 1.15 | 2.67 |
Lower 95 | 24.57 | −3.04 | 115.59 | 109.37 | 81.59 | 86.05 | 17.66 |
Upper 95 | 29.83 | −1.16 | 119.61 | 112.43 | 86.81 | 90.55 | 28.14 |
Min | 21.00 | −4.00 | 112.00 | 105.00 | 78.00 | 83.00 | 11.00 |
Max | 33.00 | 0.00 | 122.00 | 113.00 | 90.00 | 93.00 | 36.00 |
Difference U1^ANS-PNS | Difference IMPA | |||
---|---|---|---|---|
Patient | G1 | G2 | G1 | G2 |
Mean | −6.64 | −6.70 | 3.20 | 4.10 |
S.D. | 2.90 | 1.95 | 1.12 | 0.88 |
Std. Error | 0.58 | 0.62 | 0.22 | 0.28 |
Lower 95 | −7.78 | −7.91 | 2.76 | 3.56 |
Upper 95 | −5.50 | −5.49 | 3.64 | 4.64 |
Min | −13.00 | −10.00 | 2.00 | 3.00 |
Max | −3.00 | −4.00 | 5.00 | 5.00 |
Comparison G1 vs. G2 | Analysis | t | V | W | p-Value | Significance |
---|---|---|---|---|---|---|
ANB T0 | Wilcoxon rank-sum test | 136.8 | 0.668 | |||
U1^ANS-PNS T0 | t-test | 0.35605 | 0.726 | |||
IMPA T0 | t-test | −0.3471 | 0.7326 | |||
U1^ANS-PNS T1 | Wilcoxon signed-rank test | 137.5 | 0.6419 | |||
IMPA T1 | Wilcoxon signed-rank test | 98.5 | 1.3302 | |||
Difference U1^ANS-PNS | Wilcoxon signed-rank test | 136 | 0.6852 | |||
Difference IMPA | Wilcoxon signed-rank test | 67 | 0.0278 | * | ||
Duration | t-test | 0.7625 | 0.4512 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariani, A.; Vernucci, R.A.; Guarnieri, R.; De Stefano, A.; Di Giorgio, R.; Barbato, E.; Galluccio, G. Presurgical Decompensation in Patients Affected by Class III Dentoskeletal Malocclusion: A Comparison between Two Different Bracket Systems. Oral 2023, 3, 402-410. https://doi.org/10.3390/oral3030032
Mariani A, Vernucci RA, Guarnieri R, De Stefano A, Di Giorgio R, Barbato E, Galluccio G. Presurgical Decompensation in Patients Affected by Class III Dentoskeletal Malocclusion: A Comparison between Two Different Bracket Systems. Oral. 2023; 3(3):402-410. https://doi.org/10.3390/oral3030032
Chicago/Turabian StyleMariani, Andrea, Roberto Antonio Vernucci, Rosanna Guarnieri, Adriana De Stefano, Roberto Di Giorgio, Ersilia Barbato, and Gabriella Galluccio. 2023. "Presurgical Decompensation in Patients Affected by Class III Dentoskeletal Malocclusion: A Comparison between Two Different Bracket Systems" Oral 3, no. 3: 402-410. https://doi.org/10.3390/oral3030032
APA StyleMariani, A., Vernucci, R. A., Guarnieri, R., De Stefano, A., Di Giorgio, R., Barbato, E., & Galluccio, G. (2023). Presurgical Decompensation in Patients Affected by Class III Dentoskeletal Malocclusion: A Comparison between Two Different Bracket Systems. Oral, 3(3), 402-410. https://doi.org/10.3390/oral3030032