Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis
Abstract
:1. Introduction
2. The Amyloidogenic Clone
3. The Clonal Distinction of AL PCs May Aid in Diagnosis
4. The Plasma Cell Clonal Features Aid in the Individual Patient Treatment
5. The Amyloid Deposition and Novel Strategies for Removal and Their Significance
6. The Patient’s Burden of AL on Health-Related Quality of Life
7. From the Patient to the Bench Side: The Case for LC Toxicity and Other Laboratory Data Influenced by Data Accumulating from Patient Care
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kyle, R.A.; Rajkumar, S.V. Epidemiology of the plasma-cell disorders. Best Pr. Res. Clin. Haematol. 2007, 20, 637–664. [Google Scholar] [CrossRef]
- Palumbo, A.; Anderson, K. Multiple myeloma. N. Engl. J. Med. 2011, 364, 1046–1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Korde, N.; Kristinsson, S.Y.; Landgren, O. Monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM): Novel biological insights and development of early treatment strategies. Blood 2011, 117, 5573–5581. [Google Scholar] [CrossRef] [Green Version]
- Kyle, R.A.; Rajkumar, S.V.; Buadi, F.I. Management of monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Oncology 2011, 25, 578–586. [Google Scholar]
- Gertz, M.A. Immunoglobulin light chain amyloidosis: 2013 update on diagnosis, prognosis, and treatment. Am. J. Hematol. 2013, 88, 416–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlini, G.; Seldin, D.C.; Gertz, M.A. Amyloidosis: Pathogenesis and New Therapeutic Options. J. Clin. Oncol. 2011, 29, 1924–1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Merlini, G.; Stone, M.J. Dangerous small B-cell clones. Blood 2006, 108, 2520–2530. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obici, L.; Perfetti, V.; Palladini, G.; Moratti, R.; Merlini, G. Clinical aspects of systemic amyloid diseases. Biochim. Biophys. Acta Proteins Proteom. 2005, 1753, 11–22. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Cremer, F.W.; Heiss, C.; Benner, A.; Hose, D.; Moos, M.; Bila, J.; Bartram, C.R.; Ho, A.D.; et al. Evaluation of the cytogenetic aberration pattern in amyloid light chain amyloidosis as compared with monoclonal gammopathy of undetermined significance reveals common pathways of karyotypic instability. Blood 2008, 111, 4700–4705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Granzow, M.; Hegenbart, U.; Hinderhofer, K.; Hose, D.; Seckinger, A.; Bochtler, T.; Hemminki, K.; Goldschmidt, H.; Schönland, S.O.; Jauch, A. Novel recurrent chromosomal aberrations detected in clonal plasma cells of light chain amyloidosis patients show potential adverse prognostic effect: First results from a genome-wide copy number array analysis. Haematologica 2017, 102, 1281–1290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, N.; Paiva, B.; Lasa, M.; Burgos, L.; Perez, J.J.; Merino, J.; Moreno, C.; Vidriales, M.-B.; Toboso, D.G.; Cedena, M.-T.; et al. Flow cytometry for fast screening and automated risk assessment in systemic light-chain amyloidosis. Leukemia 2018, 33, 1256–1267. [Google Scholar] [CrossRef]
- Alameda, D.; Goicoechea, I.; Vicari, M.; Arriazu, E.; Nevone, A.; Rodriguez, S.; Lasa, M.; Puig, N.; Cedena, M.T.; Alignani, D.; et al. Tumor cells in light-chain amyloidosis and myeloma show distinct transcriptional rewiring of normal plasma cell development. Blood 2021, 138, 1583–1589. [Google Scholar] [CrossRef]
- Cuenca, I.; Alameda, D.; Sanchez-Vega, B.; Gómez-Sánchez, D.; Alignani, D.; Lasa, M.; Onecha, E.; Lecumberri, R.; Prosper, F.; Ocio, E.M.; et al. Immunogenetic characterization of clonal plasma cells in systemic light-chain amyloidosis. Leukemia 2021, 35, 245–249. [Google Scholar] [CrossRef] [Green Version]
- Ledergor, G.; Weiner, A.; Zada, M.; Wang, S.-Y.; Cohen, Y.C.; Gatt, M.E.; Snir, N.; Magen, H.; Koren-Michowitz, M.; Herzog-Tzarfati, K.; et al. Single cell dissection of plasma cell heterogeneity in symptomatic and asymptomatic myeloma. Nat. Med. 2018, 24, 1867–1876. [Google Scholar] [CrossRef]
- Merlini, G.; Palladini, G. Differential diagnosis of monoclonal gammopathy of undetermined significance. Hematology 2012, 2012, 595–603. [Google Scholar] [CrossRef]
- Palladini, G.; Merlini, G. What is new in diagnosis and management of light chain amyloidosis? Blood 2016, 128, 159–168. [Google Scholar] [CrossRef] [PubMed]
- Gatt, M.E.; Palladini, G. Light chain amyloidosis 2012: A new era. Br. J. Haematol. 2013, 160, 582–598. [Google Scholar] [CrossRef] [PubMed]
- Lousada, I.; Comenzo, R.L.; Landau, H.; Guthrie, S.; Merlini, G. Light Chain Amyloidosis: Patient Experience Survey from the Amyloidosis Research Consortium. Adv. Ther. 2015, 32, 920–928. [Google Scholar] [CrossRef] [Green Version]
- McCausland, K.L.; White, M.K.; Guthrie, S.D.; Quock, T.; Finkel, M.; Lousada, I.; Bayliss, M.S. Light Chain (AL) Amyloidosis: The Journey to Diagnosis. Patient Patient Cent. Outcomes Res. 2018, 11, 207–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayliss, M.; McCausland, K.L.; Guthrie, S.D.; White, M.K. The burden of amyloid light chain amyloidosis on health-related quality of life. Orphanet J. Rare Dis. 2017, 12, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Milani, P.; Valentini, V.; Ferraro, G.; Basset, M.; Russo, F.; Foli, A.; Palladini, G.; Merlini, G. A patient with AL amyloidosis with negative free light chain results. Clin. Chem. Lab. Med. 2016, 54, 1035–1037. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Papassotiriou, I.; Merlini, G.; Milani, P.; Terpos, E.; Basset, M.; Akalestos, A.; Russo, F.; Psimenou, E.; Apostolakou, F.; et al. Growth differentiation factor-15 is a new biomarker for survival and renal outcomes in light chain amyloidosis. Blood 2018, 131, 1568–1575. [Google Scholar] [CrossRef]
- Kastritis, E.; Papassotiriou, I.; Terpos, E.; Roussou, M.; Gavriatopoulou, M.; Komitopoulou, A.; Skevaki, C.; Eleutherakis-Papaiakovou, E.; Pamboucas, C.; Psimenou, E.; et al. Clinical and prognostic significance of serum levels of von Willebrand factor and ADAMTS-13 antigens in AL amyloidosis. Blood 2016, 128, 405–409. [Google Scholar] [CrossRef] [Green Version]
- Kastritis, E.; Roussou, M.; Michael, M.; Gavriatopoulou, M.; Michalis, E.; Migkou, M.; Delimpasi, S.; Kyrtsonis, M.C.; Gogos, D.; Liapis, K.; et al. High levels of serum angiogenic growth factors in patients with AL amyloidosis: Comparisons with normal individuals and multiple myeloma patients. Br. J. Haematol. 2010, 150, 587–591. [Google Scholar] [CrossRef] [Green Version]
- Muchtar, E.; Dispenzieri, A.; Kumar, S.K.; Buadi, F.K.; Lacy, M.Q.; Zeldenrust, S.; Hayman, S.R.; Leung, N.; Kourelis, T.V.; Gonsalves, W.; et al. Immunoparesis in newly diagnosed AL amyloidosis is a marker for response and survival. Leukemia 2016, 31, 92–99. [Google Scholar] [CrossRef] [PubMed]
- Yogev, D.; Pick, M.; Slyusarevsky, E.; Pogrebijski, G.; Pickin, A.; Gatt, M.E. Serum Hevylite ® assay in the differential diagnosis of patients with high suspicion of AL Amyloidosis. Int. J. Lab. Hematol. 2021, 43, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Bellotti, V.; Chiti, F. Amyloidogenesis in its biological environment: Challenging a fundamental issue in protein misfolding diseases. Curr. Opin. Struct. Biol. 2008, 18, 771–779. [Google Scholar] [CrossRef] [PubMed]
- Kaplan, B.; Golderman, S.; Aizenbud, B.; Esev, K.; Kukuy, O.; Leiba, M.; Livneh, A.; Ben-Zvi, I. Immunoglobulin-free light chain monomer-dimer patterns help to distinguish malignant from premalignant monoclonal gammopathies: A pilot study. Am. J. Hematol. 2014, 89, 882–888. [Google Scholar] [CrossRef]
- Gatt, M.E.; Kaplan, B.; Yogev, D.; Slyusarevsky, E.; Pogrebijski, G.; Golderman, S.; Kukuy, O.; Livneh, A. The use of serum free light chain dimerization patterns assist in the diagnosis of AL amyloidosis. Br. J. Haematol. 2018, 182, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Dispenzieri, A.; Larson, D.R.; Rajkumar, S.V.; Kyle, R.A.; Kumar, S.K.; Kourelis, T.; Arendt, B.; Willrcih, M.; Dasari, S.; Murray, D. N-glycosylation of monoclonal light chains on routine MASS-FIX testing is a risk factor for MGUS progression. Leukemia 2020, 34, 1–5. [Google Scholar] [CrossRef]
- Kourelis, T.; Murray, D.L.; Dasari, S.; Kumar, S.; Barnidge, D.; Madden, B.; Arendt, B.; Milani, P.; Merlini, G.; Ramirez-Alvarado, M.; et al. MASS-FIX may allow identification of patients at risk for light chain amyloidosis before the onset of symptoms. Am. J. Hematol. 2018, 93, E368–E370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mellors, P.W.; Dasari, S.; Kohlhagen, M.C.; Kourelis, T.; Go, R.S.; Muchtar, E.; Gertz, M.A.; Kumar, S.K.; Buadi, F.K.; Willrich, M.A.V.; et al. MASS-FIX for the detection of monoclonal proteins and light chain N-glycosylation in routine clinical practice: A cross-sectional study of 6315 patients. Blood Cancer J. 2021, 11, 1–9. [Google Scholar] [CrossRef]
- Gatt, M.E. Light Chain Amyloidosis 2014. Int. J. Hematol. Disord. 2014, 1, 21–29. [Google Scholar]
- Gatt, M.E.; Hardan, I.; Chubar, E.; Suriu, C.; Tadmor, T.; Shevetz, O.; Patachenco, P.; Dally, N.; Yeganeh, S.; Ballan-Haj, M.; et al. Outcomes of light-chain amyloidosis patients treated with first-line bortezomib: A collaborative retrospective multicenter assessment. Eur. J. Haematol. 2015, 96, 136–143. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Merlini, G. Management of AL amyloidosis in 2020. Haematologica 2020, 2020, 363–371. [Google Scholar] [CrossRef]
- Sitia, R.; Palladini, G.; Merlini, G. Bortezomib in the treatment of AL amyloidosis: Targeted therapy? Haematologica 2007, 92, 1302–1307. [Google Scholar] [CrossRef] [Green Version]
- Witzig, T.; Timm, M.; Larson, D.; Therneau, T.; Greipp, P. Measurement of apoptosis and proliferation of bone marrow plasma cells in patients with plasma cell proliferative disorders. Br. J. Haematol. 1999, 104, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Oliva, L.; Orfanelli, U.; Resnati, M.; Raimondi, A.; Orsi, A.; Milan, E.; Palladini, G.; Milani, P.; Cerruti, F.; Cascio, P.; et al. The amyloidogenic light chain is a stressor that sensitizes plasma cells to proteasome inhibitor toxicity. Blood 2017, 129, 2132–2142. [Google Scholar] [CrossRef]
- Shragai, T.; Gatt, M.; Lavie, N.; Vaxman, I.; Tadmor, T.; Rouvio, O.; Zektser, M.; Horowitz, N.; Magen, H.; Ballan, M.; et al. Daratumumab for relapsed AL amyloidosis—When cumulative real-world data precedes clinical trials: A multisite study and systematic literature review. Eur. J. Haematol. 2021, 106, 184–195. [Google Scholar] [CrossRef]
- Kimmich, C.R.; Terzer, T.; Benner, A.; Dittrich, T.; Veelken, K.; Carpinteiro, A.; Hansen, T.; Goldschmidt, H.; Seckinger, A.; Hose, D.; et al. Daratumumab for systemic AL amyloidosis: Prognostic factors and adverse outcome with nephrotic-range albuminuria. Blood 2020, 135, 1517–1530. [Google Scholar] [CrossRef] [PubMed]
- Kriegsmann, K.; Dittrich, T.; Neuber, B.; Awwad, M.H.S.; Hegenbart, U.; Goldschmidt, H.; Hillengass, J.; Hose, D.; Seckinger, A.; Müller-Tidow, C.; et al. Quantification of number of CD38 sites on bone marrow plasma cells in patients with light chain amyloidosis and smoldering multiple myeloma. Cytom. Part B Clin. Cytom. 2018, 94, 767–776. [Google Scholar] [CrossRef]
- Seckinger, A.; Hillengass, J.; Emde, M.; Beck, S.; Kimmich, C.; Dittrich, T.; Hundemer, M.; Jauch, A.; Hegenbart, U.; Raab, M.-S.; et al. CD38 as Immunotherapeutic Target in Light Chain Amyloidosis and Multiple Myeloma—Association with Molecular Entities, Risk, Survival, and Mechanisms of Upfront Resistance. Front. Immunol. 2018, 9, 1676. [Google Scholar] [CrossRef]
- Milani, P.; Fazio, F.; Basset, M.; Berno, T.; LaRocca, A.; Foli, A.; Riva, M.; Benigna, F.; Oliva, S.; Nuvolone, M.; et al. High rate of profound clonal and renal responses with daratumumab treatment in heavily pre-treated patients with light chain (AL) amyloidosis and high bone marrow plasma cell infiltrate. Am. J. Hematol. 2020, 95, 900–905. [Google Scholar] [CrossRef]
- Palladini, G.; Milani, P.; Malavasi, F.; Merlini, G. Daratumumab in the Treatment of Light-Chain (AL) Amyloidosis. Cells 2021, 10, 545. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Palladini, G.; Minnema, M.C.; Wechalekar, A.D.; Jaccard, A.; Lee, H.C.; Sanchorawala, V.; Gibbs, S.; Mollee, P.; Venner, C.P.; et al. Daratumumab-Based Treatment for Immunoglobulin Light-Chain Amyloidosis. N. Engl. J. Med. 2021, 385, 46–58. [Google Scholar] [CrossRef]
- Bochtler, T.; Hegenbart, U.; Kunz, C.; Benner, A.; Kimmich, C.; Seckinger, A.; Hose, D.; Goldschmidt, H.; Granzow, M.; Dreger, P.; et al. Prognostic impact of cytogenetic aberrations in AL amyloidosis patients after high-dose melphalan: A long-term follow-up study. Blood 2016, 128, 594–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kastritis, E.; Roussou, M.; Gavriatopoulou, M.; Migkou, M.; Kalapanida, D.; Pamboucas, C.; Kaldara, E.; Ntalianis, A.; Psimenou, E.; Toumanidis, S.T.; et al. Long-term outcomes of primary systemic light chain (AL) amyloidosis in patients treated upfront with bortezomib or lenalidomide and the importance of risk adapted strategies. Am. J. Hematol. 2015, 90, E60–E65. [Google Scholar] [CrossRef] [PubMed]
- Gonsalves, W.I.; Buadi, F.K.; Kumar, S.K. Combination therapy incorporating Bcl-2 inhibition with Venetoclax for the treatment of refractory primary plasma cell leukemia with t (11;14). Eur. J. Haematol. 2017, 100, 215–217. [Google Scholar] [CrossRef]
- Kumar, S.; Kaufman, J.L.; Gasparetto, C.; Mikhael, J.; Vij, R.; Pegourie, B.; Benboubker, L.; Facon, T.; Amiot, M.; Moreau, P.; et al. Efficacy of venetoclax as targeted therapy for relapsed/refractory t(11;14) multiple myeloma. Blood 2017, 130, 2401–2409. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Vij, R.; Kaufman, J.L.; Mikhael, J.; Facon, T.; Pegourie, B.; Benboubker, L.; Gasparetto, C.; Amiot, M.; Moreau, P.; et al. Venetoclax Monotherapy for Relapsed/Refractory Multiple Myeloma: Safety and Efficacy Results from a Phase I Study. Blood 2016, 128, 488. [Google Scholar] [CrossRef]
- Moreau, P.; Harrison, M.S.; Cavo, M.; De La Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.T.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Updated Analysis of Bellini, a Phase 3 Study of Venetoclax or Placebo in Combination with Bortezomib and Dexamethasone in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2019, 134, 1888. [Google Scholar] [CrossRef]
- Kaufman, J.L.; Gasparetto, C.; Schjesvold, F.H.; Moreau, P.; Touzeau, C.; Facon, T.; Boise, L.H.; Alzate, S.; Macartney, T.; Pesko, J.; et al. Phase I/II Study Evaluating the Safety and Efficacy of Venetoclax in Combination with Dexamethasone As Targeted Therapy for Patients with t(11;14) Relapsed/Refractory Multiple Myeloma. Blood 2019, 134, 926. [Google Scholar] [CrossRef]
- Le Bras, F.; Dupuis, J.; Lemonnier, F.; Oghina, S.; Bodez, D.; Ladaique, A.; Maarek, A.; Roulin, L.; Ferichou, A.B.; Frenkel, V.; et al. Venetoclax induces sustained complete responses in refractory/relapsed patients with cardiac AL amyloidosis. J. Clin. Oncol. 2019, 37, e19538. [Google Scholar] [CrossRef]
- Leung, N.; Thomé, S.D.; Dispenzieri, A. Venetoclax induced a complete response in a patient with immunoglobulin light chain amyloidosis plateaued on cyclophosphamide, bortezomib and dexamethasone. Haematologica 2018, 103, e135–e137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sidiqi, M.H.; Al Saleh, A.S.; Leung, N.; Aljama, M.; Jevremovic, A.; Gonsalves, W.; Buadi, F.; Kourelis, T.; Warsame, R.; Muchtar, E.; et al. Venetoclax for The Treatment of Translocation AL Amyloidosis. Clin. Lymphoma Myeloma Leuk. 2019, 19, e332. [Google Scholar] [CrossRef]
- Premkumar, V.J.; Lentzsch, S.; Pan, S.; Bhutani, D.; Richter, J.; Jagannath, S.; Liedtke, M.; Jaccard, A.; Wechalekar, A.D.; Comenzo, R.; et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021, 11, 1–10. [Google Scholar] [CrossRef]
- D’Souza, A.; Hari, P.; Pasquini, M.; Jacobsen, K.; Flynn, K.E. Baseline patient-reported outcomes in light-chain amyloidosis patients enrolled on an interventional clinical trial. Amyloid 2019, 26, 87–88. [Google Scholar] [CrossRef] [PubMed]
- Sanchorawala, V.; McCausland, K.L.; White, M.K.; Bayliss, M.S.; Guthrie, S.D.; Lo, S.; Skinner, M. A longitudinal evaluation of health-related quality of life in patients with AL amyloidosis: Associations with health outcomes over time. Br. J. Haematol. 2017, 179, 461–470. [Google Scholar] [CrossRef]
- Warsame, R.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Leung, N.; Dingli, D.; Lust, J.A.; Lin, Y.; et al. Hematology patient reported symptom screen to assess quality of life for AL amyloidosis. Am. J. Hematol. 2017, 92, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Jimenez-Zepeda, V.H.; Lee, H.; McCulloch, S.; Tay, J.; Duggan, P.; Neri, P.; Bahlis, N. Treatment response measurements and survival outcomes in a cohort of newly diagnosed AL amyloidosis. Amyloid 2021, 28, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Shen, K.-N.; Miao, H.-L.; Zhang, C.-L.; Feng, J.; Zhang, L.; Cao, X.-X.; Zhou, D.-B.; Wei, S.; Li, J. Posttreatment dFLC less than 10 mg/L predicts superior organ response and longer time to next treatment in newly diagnosed light-chain amyloidosis patients treated with bortezomib. Leuk. Lymphoma 2021, 62, 874–882. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Campana, C.; Klersy, C.; Balduini, A.; Vadacca, G.; Perfetti, V.; Perlini, S.; Obici, L.; Ascari, E.; D’Eril, G.M.; et al. Serum N-Terminal Pro–Brain Natriuretic Peptide is a Sensitive Marker of Myocardial Dysfunction in AL Amyloidosis. Circulation 2003, 107, 2440–2445. [Google Scholar] [CrossRef]
- Palladini, G.; Lavatelli, F.; Russo, P.; Perlini, S.; Perfetti, V.; Bosoni, T.; Obici, L.; Bradwell, A.; D’Eril, G.M.; Fogari, R.; et al. Circulating amyloidogenic free light chains and serum N-terminal natriuretic peptide type B decrease simultaneously in association with improvement of survival in AL. Blood 2006, 107, 3854–3858. [Google Scholar] [CrossRef] [PubMed]
- Kastritis, E.; Kostopoulos, I.V.; Theodorakakou, F.; Fotiou, D.; Gavriatopoulou, M.; Migkou, M.; Tselegkidi, M.I.; Roussou, M.; Papathoma, A.; Eleutherakis-Papaioakovou, E.; et al. Next generation flow cytometry for MRD detection in patients with AL amyloidosis. Amyloid 2021, 28, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Palladini, G.; Paiva, B.; Wechalekar, A.; Massa, M.; Milani, P.; Lasa, M.; Ravichandran, S.; Krsnik, I.; Basset, M.; Burgos, L.; et al. Minimal residual disease negativity by next-generation flow cytometry is associated with improved organ response in AL amyloidosis. Blood Cancer J. 2021, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Merlini, G.; Bellotti, V. Molecular mechanisms of amyloidosis. N. Engl. J. Med. 2003, 349, 583–596. [Google Scholar] [CrossRef] [Green Version]
- Merlini, G.; Westermark, P. The systemic amyloidoses: Clearer understanding of the molecular mechanisms offers hope for more effective therapies. J. Intern. Med. 2004, 255, 159–178. [Google Scholar] [CrossRef]
- Phipps, J.E.; Kestler, D.P.; Foster, J.S.; Kennel, S.J.; Donnell, R.L.; Weiss, D.T.; Solomon, A.; Wall, J. Inhibition of pathologic immunoglobulin-free light chain production by small interfering RNA molecules. Exp. Hematol. 2010, 38, 1006–1013. [Google Scholar] [CrossRef] [Green Version]
- Kourelis, T.V.; Kumar, S.K.; Gertz, M.A.; Lacy, M.Q.; Buadi, F.K.; Hayman, S.R.; Zeldenrust, S.; Leung, N.; Kyle, R.A.; Russell, S.; et al. Coexistent Multiple Myeloma or Increased Bone Marrow Plasma Cells Define Equally High-Risk Populations in Patients with Immunoglobulin Light Chain Amyloidosis. J. Clin. Oncol. 2013, 31, 4319–4324. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Dispenzieri, A.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Colby, C.; Laumann, K.; Zeldenrust, S.R.; Leung, N.; Dingli, D.; et al. Revised Prognostic Staging System for Light Chain Amyloidosis Incorporating Cardiac Biomarkers and Serum Free Light Chain Measurements. J. Clin. Oncol. 2012, 30, 989–995. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.; Lamont, J.L.; Chan, J.; Concannon, T.W.; Comenzo, R.; Ratichek, S.J.; Avendano, E.E. Serum Free Light Chain Analysis for the Diagnosis, Management, and Prognosis of Plasma Cell Dyscrasias: Future Research Needs: Identification of Future Research Needs from Comparative Effectiveness Review No. 73; AHRQ Future Research Needs Papers; Agency for Healthcare Research and Quality: Rockville, MD, USA, 2012. [Google Scholar]
- Kumar, S.; Dispenzieri, A.; Katzmann, J.A.; Larson, D.R.; Colby, C.L.; Lacy, M.Q.; Hayman, S.R.; Buadi, F.K.; Leung, N.; Zeldenrust, S.R.; et al. Serum immunoglobulin free light-chain measurement in primary amyloidosis: Prognostic value and correlations with clinical features. Blood 2010, 116, 5126–5129. [Google Scholar] [CrossRef]
- Snozek, C.L.H.; Katzmann, A.J.; Kyle, A.R.; Dispenzieri, A.; Larson, D.R.; Therneau, T.M.; Melton, L.J.; Kumar, S.; Greipp, P.R.; Clark, R.J.; et al. Prognostic value of the serum free light chain ratio in newly diagnosed myeloma: Proposed incorporation into the international staging system. Leukemia 2008, 22, 1933–1937. [Google Scholar] [CrossRef] [Green Version]
- Jenner, E. Serum free light chains in clinical laboratory diagnostics. Clin. Chim. Acta 2014, 427, 15–20. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blancas-Mejia, L.M.; Misra, P.; Dick, C.J.; Cooper, S.A.; Redhage, K.R.; Bergman, M.R.; Jordan, T.L.; Maar, K.; Ramirez-Alvarado, M. Immunoglobulin light chain amyloid aggregation. Chem. Commun. 2018, 54, 10664–10674. [Google Scholar] [CrossRef] [PubMed]
- Jordan, T.L.; Maar, K.; Redhage, K.R.; Misra, P.; Blancas-Mejia, L.M.; Dick, C.J.; Wall, J.; Williams, A.; Dietz, A.B.; van Wijnen, A.J.; et al. Light chain amyloidosis induced inflammatory changes in cardiomyocytes and adipose-derived mesenchymal stromal cells. Leukemia 2020, 34, 1383–1393. [Google Scholar] [CrossRef]
- Weber, B.; Hora, M.; Kazman, P.; Pradhan, T.; Rührnößl, F.; Reif, B.; Buchner, J. Domain Interactions Determine the Amyloidogenicity of Antibody Light Chain Mutants. J. Mol. Biol. 2020, 432, 6187–6199. [Google Scholar] [CrossRef] [PubMed]
- Sidana, S.; Tandon, N.; Gertz, M.A.; Dispenzieri, A.; Ramirez-Alvarado, M.; Murray, D.L.; Kourelis, T.V.; Buadi, F.K.; Kapoor, P.; Gonsalves, W.; et al. Clinical features, laboratory characteristics and outcomes of patients with renal versus cardiac light chain amyloidosis. Br. J. Haematol. 2019, 185, 701–707. [Google Scholar] [CrossRef] [PubMed]
- Oberti, L.; Maritan, M.; Rognoni, P.; Barbiroli, A.; Lavatelli, F.; Russo, R.; Palladini, G.; Bolognesi, M.; Merlini, G.; Ricagno, S. The concurrency of several biophysical traits links immunoglobulin light chains with toxicity in AL amyloidosis. Amyloid 2019, 26, 107–108. [Google Scholar] [CrossRef]
- Comenzo, R.L.; Zhang, Y.; Martinez, C.; Osman, K.; Herrera, G.A. The tropism of organ involvement in primary systemic amyloidosis: Contributions of Ig V(L) germ line gene use and clonal plasma cell burden. Blood 2001, 98, 714–720. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.C.; Rubinstein, S.; Soto, C.; Bombardi, R.G.; Day, S.B.; Myers, L.; Zaytsev, A.; Majedi, M.; Cornell, R.F.; Crowe, J.; et al. Diverse patterns of antibody variable gene repertoire disruption in patients with amyloid light chain (AL) amyloidosis. PLoS ONE 2020, 15, e0235713. [Google Scholar] [CrossRef] [PubMed]
- Garofalo, M.; Piccoli, L.; Romeo, M.; Barzago, M.M.; Ravasio, S.; Foglierini, M.; Matkovic, M.; Sgrignani, J.; De Gasparo, R.; Prunotto, M.; et al. Machine learning analyses of antibody somatic mutations predict immunoglobulin light chain toxicity. Nat. Commun. 2021, 12, 1–10. [Google Scholar] [CrossRef]
- Abraham, R.S.; Geyer, S.M.; Price-Troska, T.L.; Allmer, C.; Kyle, R.A.; Gertz, M.A.; Fonseca, R. Immunoglobulin light chain variable (V) region genes influence clinical presentation and outcome in light chain–associated amyloidosis (AL). Blood 2003, 101, 3801–3807. [Google Scholar] [CrossRef]
- Baden, E.M.; Sikkink, L.; Ramirez-Alvarado, M. Light Chain Amyloidosis—Current Findings and Future Prospects. Curr. Protein Pept. Sci. 2009, 10, 500–508. [Google Scholar] [CrossRef] [Green Version]
- Perfetti, V.; Casarini, S.; Palladini, G.; Vignarelli, M.C.; Klersy, C.; Diegoli, M.; Ascari, E.; Merlini, G. Analysis of Vλ-Jλ expression in plasma cells from primary (AL) amyloidosis and normal bone marrow identifies 3r(λIII) as a new amyloid-associated germline gene segment. Blood 2002, 100, 948–953. [Google Scholar] [CrossRef] [PubMed]
- Arendt, B.K.; Ramirez-Alvarado, M.; Sikkink, L.A.; Keats, J.J.; Ahmann, G.J.; Dispenzieri, A.; Fonseca, R.; Ketterling, R.P.; Knudson, R.A.; Mulvihill, E.M.; et al. Biologic and genetic characterization of the novel amyloidogenic lambda light chain–secreting human cell lines, ALMC-1 and ALMC-2. Blood 2008, 112, 1931–1941. [Google Scholar] [CrossRef] [Green Version]
- Lavatelli, F.; Perlman, D.H.; Spencer, B.; Prokaeva, T.; McComb, M.E.; Théberge, R.; Connors, L.; Bellotti, V.; Seldin, D.C.; Merlini, G.; et al. Amyloidogenic and Associated Proteins in Systemic Amyloidosis Proteome of Adipose Tissue. Mol. Cell. Proteom. 2008, 7, 1570–1583. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kourelis, T.V.; Dasari, S.S.; Dispenzieri, A.; Maleszewski, J.J.; Redfield, M.M.; Fayyaz, A.U.; Grogan, M.; Ramirez-Alvarado, M.; Ezzeddine, O.F.A.; McPhail, E.D. A Proteomic Atlas of Cardiac Amyloid Plaques. JACC Cardio Oncol. 2020, 2, 632–643. [Google Scholar] [CrossRef] [PubMed]
- Lavatelli, F.; Imperiini, E.; Orrù, S.; Rognoni, P.; Sarnataro, D.; Palladini, G.; Malpasso, G.; Soriano, M.E.; Di Fonzo, A.; Valentini, V.; et al. Novel mitochondrial protein interactors of immunoglobulin light chains causing heart amyloidosis. FASEB J. 2015, 29, 4614–4628. [Google Scholar] [CrossRef]
- Imperlini, E.; Gnecchi, M.; Rognoni, P.; Sabidó, E.; Ciuffreda, M.C.; Palladini, G.; Espadas, G.; Mancuso, F.; Bozzola, M.; Malpasso, G.; et al. Proteotoxicity in cardiac amyloidosis: Amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci. Rep. 2017, 7, 15661. [Google Scholar] [CrossRef] [PubMed]
- Diomede, L.; Rognoni, P.; Lavatelli, F.; Romeo, M.; Di Fonzo, A.; Foray, C.; Fiordaliso, F.; Palladini, G.; Valentini, V.; Perfetti, V.; et al. Investigating heart-specific toxicity of amyloidogenic immunoglobulin light chains: A lesson fromC. elegans. Worm 2014, 3, e965590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mishra, S.; Joshi, S.; Ward, J.E.; Buys, E.P.; Mishra, D.; Morgado, I.; Fisch, S.; Lavatelli, F.; Merlini, G.; Dorbala, S.; et al. Zebrafish model of amyloid light chain cardiotoxicity: Regeneration versus degeneration. Am. J. Physiol. Circ. Physiol. 2019, 316, H1158–H1166. [Google Scholar] [CrossRef] [PubMed]
- Venner, C.P.; Lane, T.; Foard, D.; Rannigan, L.; Gibbs, S.D.J.; Pinney, J.H.; Whelan, C.J.; Lachmann, H.; Gillmore, J.D.; Hawkins, P.N.; et al. Cyclophosphamide, bortezomib, and dexamethasone therapy in AL amyloidosis is associated with high clonal response rates and prolonged progression-free survival. Blood 2012, 119, 4387–4390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saunders, C.N.; Chattopadhyay, S.; Huhn, S.; Weinhold, N.; Hoffmann, P.; Nöthen, M.M.; Jöckel, K.-H.; Schmidt, B.; Landi, S.; Goldschmidt, H.; et al. Search for AL amyloidosis risk factors using Mendelian randomization. Blood Adv. 2021, 5, 2725–2731. [Google Scholar] [CrossRef]
- Rius, B.; Mesgarzadeh, J.S.; Romine, I.C.; Paxman, R.J.; Kelly, J.W.; Wiseman, R.L. Pharmacologic targeting of plasma cell endoplasmic reticulum proteostasis to reduce amyloidogenic light chain secretion. Blood Adv. 2021, 5, 1037–1049. [Google Scholar] [CrossRef]
- Zhou, P.; Ma, X.; Iyer, L.; Chaulagain, C.; Comenzo, R.L. One siRNA pool targeting the λ constant region stops λ light-chain production and causes terminal endoplasmic reticulum stress. Blood 2014, 123, 3440–3451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, X.; Zhou, P.; Kugelmass, A.; Toskic, D.; Warner, M.; Lee, L.; Fogaren, T.; Godara, A.; Wang, M.; Li, Y.; et al. A novel xenograft mouse model for testing approaches targeting human kappa light-chain diseases. Gene Ther. 2019, 26, 187–197. [Google Scholar] [CrossRef]
AL amyloidosis is a multi-organ involvement disease. The presence of many unexplained different symptoms in a single patient is alarming |
Cardiac hypertrophy without the expected corresponding high voltage by ECG |
Proteinuria and albuminuria with no chronic kidney disease and large- or normal-sized kidneys by ultrasonography |
Proteinuria and albuminuria in the background history of hypertension or diabetes mellitus but the absence of the expected disease’s retinopathy |
Peripheral edema with no causal disease |
Skin ecchymoses and other bleeding tendency with no coagulation or other causal disease |
Peripheral polyneuropathy with no causal disease |
Gastrointestinal complaints, especially accompanied by weight loss with no causal disease |
Bilateral Carpal Tunnel Syndrome |
Any of these features in an MGUS or SMM patient |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gatt, M.E.; Pick, M. Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis. Hemato 2022, 3, 3-16. https://doi.org/10.3390/hemato3010002
Gatt ME, Pick M. Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis. Hemato. 2022; 3(1):3-16. https://doi.org/10.3390/hemato3010002
Chicago/Turabian StyleGatt, Moshe E., and Marjorie Pick. 2022. "Learning from Patients: The Interplay between Clinical and Laboratory Research in AL Amyloidosis" Hemato 3, no. 1: 3-16. https://doi.org/10.3390/hemato3010002