Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum
Abstract
1. Introduction
2. Materials and Methods
2.1. Selection of Microorganisms and Inoculum Preparation
Species | Abbreviation | Origin | Isolation/Culturing Media | Primers/Genbank Accession Number |
---|---|---|---|---|
Tulasnella tubericola | TT | Isolated from T. melanosporum mycorrhiza [29] | PDA/PDB | ITS1-ITS4/KX929166 |
Trichoderma harzianum (T50) | TH | Isolated from soil inside a T. melanosporum brûlé [30] | TSM (Trichoderma Selective Medium)/PDA | ITS1F-ITS4/KX343087 |
Bradyrhizobium japonicum (DSM 30131) | BJ | Purchased from the Spanish Type Culture Collection, isolated from Glycine hispida nodules in Japan | -/TSB-YE | -/NCBI reference sequence: NR_119191 |
Variovorax sp. | Vsp | Isolated from unripe T. melanosporum gleba (August 2017) | PCA/TSB-YE | 8F-1492R/PV297981 |
Variovorax paradoxus | VP | Isolated from ripe T. melanosporum gleba (December 2017) | PCA/TSB-YE | 8F-1492R/PV297985 |
Ensifer adhaerens (strain 1) | EA1 | Isolated from unripe T. melanosporum gleba (August 2017) | PCA/TSB-YE | 8F-1492R/PV297983 |
Ensifer adhaerens (strain 2) | EA2 | Isolated from ripe T. melanosporum gleba (February 2018) | PCA/TSB-YE | 8F-1492R/PV297989 |
Agrobacterium tumefaciens (strain 1) | AT1 | Isolated from unripe T. melanosporum gleba (August 2017) | PCA/TSB-YE | 8F-1492R/PV297982 |
Agrobacterium tumefaciens (strain 2) | AT2 | Isolated from ripe T. melanosporum gleba (January 2018) | PCA/TSB-YE | 8F-1492R/PV297986 |
Kocuria rhizophila (strain 1) | KR1 | Isolated from unripe T. melanosporum gleba (July 2017) | PCA/TSB-YE | 8F-1492R/PV297980 |
Kocuria rhizophila (strain 2) | KR2 | Isolated from ripe T. melanosporum gleba (January 2018) | PCA/TSB-YE | 8F-1492R/PV297988 |
Pseudomonas sp. (strain 1) | Psp1 | Isolated from unripe T. melanosporum gleba (September 2017) | PCA/TSB-YE | 8F-1492R/PV297984 |
Pseudomonas sp. (strain 2) | Psp2 | Isolated from ripe T. melanosporum gleba (January 2018) | PCA/TSB-YE | 8F-1492R/PV297987 |
2.2. Experimental Design
2.3. Seedling Measurement and Assessment of T. melanosporum Colonization
2.4. Data Analysis
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Garcia-Barreda, S.; Forcadell, R.; Sánchez, S.; Martín-Santafé, M.; Marco, P.; Camarero, J.J.; Reyna, S. Black Truffle Harvesting in Spanish Forests: Trends, Current Policies and Practices, and Implications on Its Sustainability. Environ. Manag. 2018, 61, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Zambonelli, A.; Iotti, M.; Hall, I.; Zambonelli, A.; Iotti, M.; Hall, I. Current Status of Truffle Cultivation: Recent Results and Future Perspectives. Mycol. Ital. 2015, 44, 31–40. [Google Scholar] [CrossRef]
- Hall, I.R.; Zambonelli, A. The Cultivation of Mycorrhizal Mushrooms—Still the next Frontier! In Proceedings of the Mushroom Science XVIII; Zhang, J., Wang, H., Chen, M., Eds.; Agricultural Press: Beijing, China, 2012; pp. 16–27. [Google Scholar]
- Sourzat, P. Principe de Précaution en Trufficulture; Station d’Expérimentation sur la Truffe: Le Montat, France, 2008. [Google Scholar]
- Antony-Babu, S.; Deveau, A.; Van Nostrand, J.D.; Zhou, J.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Black Truffle-Associated Bacterial Communities during the Development and Maturation of Tuber Melanosporum Ascocarps and Putative Functional Roles. Environ. Microbiol. 2014, 16, 2831–2847. [Google Scholar] [CrossRef] [PubMed]
- Barbieri, E.; Ceccaroli, P.; Agostini, D.; Donati Zeppa, S.; Gioacchini, A.M.; Stocchi, V. Truffle-Associated Bacteria: Extrapolation Diversity to Function. In True Truffle (Tuber spp.) in the World; Zambonelli, A., Iotti, M., Murat, C., Eds.; Springer: Cham, Switzerland, 2016; Volume 47, pp. 301–317. [Google Scholar]
- Bonfante, P.; Anca, I.-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef]
- Sabella, E.; Nutricati, E.; Aprile, A.; Miceli, A.; Sorce, C.; Lorenzi, R.; De Bellis, L. Arthrinium Phaeospermum Isolated from Tuber Borchii Ascomata: The First Evidence for a “Mycorrhization Helper Fungus”? Mycol. Prog. 2015, 14, 59. [Google Scholar] [CrossRef]
- Ahluwalia, O.; Singh, P.C.; Bhatia, R. A Review on Drought Stress in Plants: Implications, Mitigation and the Role of Plant Growth Promoting Rhizobacteria. Resour. Environ. Sustain. 2021, 5, 100032. [Google Scholar] [CrossRef]
- Benucci, G.M.N.; Bonito, G.M. The Truffle Microbiome: Species and Geography Effects on Bacteria Associated with Fruiting Bodies of Hypogeous Pezizales. Microb. Ecol. 2016, 72, 4–8. [Google Scholar] [CrossRef]
- Chen, J.; Li, J.-M.; Tang, Y.-J.; Xing, Y.-M.; Qiao, P.; Li, Y.; Liu, P.-G.; Guo, S.-X. Chinese Black Truffle-Associated Bacterial Communities of Tuber Indicum From Different Geographical Regions With Nitrogen Fixing Bioactivity. Front. Microbiol. 2019, 10, 2515. [Google Scholar] [CrossRef]
- Navarro-Ródenas, A.; Berná, L.M.; Lozano-Carrillo, C.; Andrino, A.; Morte, A. Beneficial Native Bacteria Improve Survival and Mycorrhization of Desert Truffle Mycorrhizal Plants in Nursery Conditions. Mycorrhiza 2016, 26, 769–779. [Google Scholar] [CrossRef]
- Bai, Y.; Zhou, X.; Smith, D.L. Enhanced Soybean Plant Growth Resulting from Coinoculation of Bacillus Strains with Bradyrhizobium japonicum. Crop Sci. 2003, 43, 1774–1781. [Google Scholar] [CrossRef]
- Leggett, M.; Diaz-Zorita, M.; Koivunen, M.; Bowman, R.; Pesek, R.; Stevenson, C.; Leister, T. Soybean Response to Inoculation with Bradyrhizobium Japonicum in the United States and Argentina. Agron. J. 2017, 109, 1031–1038. [Google Scholar] [CrossRef]
- Mamoun, M.; Olivier, J.M. Dynamique Des Populations Fongiques et Bactériennes de La Rhizosphère Des Noisetiers Truffiers. II. Chélation Du Fer et Répartition Taxonomique Chez Les Pseudomonas Fluorescents. Agronomie 1989, 9, 345–351. [Google Scholar] [CrossRef]
- Bolton, H.; Fredickson, J.; Elliott, L. Microbial Ecology of the Rhizosphere. In Soil Microbial Ecology; Metting, F.B.J., Ed.; Marcel Dekker: New York, NY, USA, 1993; pp. 27–63. [Google Scholar]
- Barbieri, E.; Guidi, C.; Bertaux, J.; Frey-Klett, P.; Garbaye, J.; Ceccaroli, P.; Saltarelli, R.; Zambonelli, A.; Stocchi, V. Occurrence and Diversity of Bacterial Communities in Tuber. Magnatum during Truffle Maturation. Environ. Microbiol. 2007, 9, 2234–2246. [Google Scholar] [CrossRef] [PubMed]
- Deveau, A.; Antony-Babu, S.; Le Tacon, F.; Robin, C.; Frey-Klett, P.; Uroz, S. Temporal Changes of Bacterial Communities in the Tuber Melanosporum Ectomycorrhizosphere during Ascocarp Development. Mycorrhiza 2016, 26, 389–399. [Google Scholar] [CrossRef]
- Dominguez-Nuñez, J.A.; Martin, A.; Anriquez, A.; Albanesi, A. The Combined Effects of Pseudomonas Fluorescens and Tuber Melanosporum on the Quality of Pinus Halepensis Seedlings. Mycorrhiza 2012, 22, 429–436. [Google Scholar] [CrossRef]
- Mamoun, M.; Olivier, J.M. Effect of Soil Pseudomonads on Colonization of Hazel Roots by the Ecto-Mycorrhizal Species Tuber Melanosporum and Its Competitors. Plant Soil. 1992, 139, 265–273. [Google Scholar] [CrossRef]
- Dominguez-Nuñez, J.A.; Medina, M.; Berrocal-Lobo, M.; Anriquez, A.; Albanesi, A. The Combined Effects of Pseudomonas Fluorescens CECT 844 and the Black Truffle Co-Inoculation on Pinus Nigra Seedlings. IForest 2015, 8, 624–630. [Google Scholar] [CrossRef]
- Piñuela, Y.; Alday, J.G.; Oliach, D.; Bolaño, F.; Colinas, C.; Bonet, J.A. Use of Inoculator Bacteria to Promote Tuber Melanosporum Root Colonization and Growth on Quercus Faginea Saplings. Forests 2020, 11, 792. [Google Scholar] [CrossRef]
- Giorgi, V.; Amicucci, A.; Landi, L.; Castelli, I.; Romanazzi, G.; Peroni, C.; Ranocchi, B.; Zambonelli, A.; Neri, D. Effect of Bacteria Inoculation on Colonization of Roots by Tuber Melanosporum and Growth of Quercus Ilex Seedlings. Plants 2024, 13, 224. [Google Scholar] [CrossRef]
- Reyna, S.; Garcia-Barreda, S. Black Truffle Cultivation: A Global Reality. For. Syst. 2014, 23, 317–328. [Google Scholar] [CrossRef]
- Marco, P.; Ángeles Sanz, M.; Tejedor-Calvo, E.; Garcia-Barreda, S.; Caboni, P.; Reyna, S.; Sánchez, S. Volatilome Changes during Black Truffle (Tuber Melanosporum) Ontogeny. Food Res. Int. 2024, 194, 114938. [Google Scholar] [CrossRef] [PubMed]
- Griekspoor, A.; Groothuis, T. 4Peaks; Version 1.8; Nucleobytes: Nijmegen, The Netherlands, 2006. [Google Scholar]
- Benson, D.A. GenBank. Nucleic Acids Res. 2005, 33, D34–D38. [Google Scholar] [CrossRef] [PubMed]
- Buzón-Durán, L.; Langa-Lomba, N.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Pérez-Lebeña, E.; Martín-Ramos, P. On the Applicability of Chitosan Oligomers-Amino Acid Conjugate Complexes as Eco-Friendly Fungicides against Grapevine Trunk Pathogens. Agronomy 2021, 11, 324. [Google Scholar] [CrossRef]
- Solís, K.; Barriuso, J.J.; Garcés-Claver, A.; González, V. Tulasnella Tubericola (Tulasnellaceae, Cantharellales, Basidiomycota): A New Rhizoctonia-like Fungus Associated with Mycorrhizal Evergreen Oak Plants Artificially Inoculated with Black Truffle (Tuber Melanosporum) in Spain. Phytotaxa 2017, 317, 175–187. [Google Scholar] [CrossRef]
- Sanchez, S. Ectomicorrizas En El Cultivo de Trufa Negra: Ecología, Diversidad y Gestión. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2012; 276p. [Google Scholar]
- Riousset, L.; Riousset, G.; Chevalier, G.; Bardet, M.-C. Truffes d’Europe et de Chine; Institut National de la Recherche Agronomique: Paris, France, 2001; ISBN 978-2-7380-0932-6.
- Palazón, C.; Barriuso, J.J. Viveros y Producción de Planta Micorrizada. In Truficultura. Fundamentos y técnicas; Reyna, S., Ed.; Mundi-Prensa: Madrid, Spain, 2007; pp. 207–234. [Google Scholar]
- Garcia-Barreda, S.; Molina-Grau, S.; Reyna, S. Fertilisation of Quercus Seedlings Inoculated with Tuber Melanosporum: Effects on Growth and Mycorrhization of Two Host Species and Two Inoculation Methods. IForest 2017, 10, 267–272. [Google Scholar] [CrossRef]
- Tsakaldimi, M.; Ganatsas, P.; Jacobs, D.F. Prediction of Planted Seedling Survival of Five Mediterranean Species Based on Initial Seedling Morphology. New For. 2013, 44, 327–339. [Google Scholar] [CrossRef]
- Andrés-Alpuente, A.; Sánchez, S.; Martín, M.; Aguirre, Á.J.; Barriuso, J.J. Comparative Analysis of Different Methods for Evaluating Quality of Quercus Ilex Seedlings Inoculated with Tuber Melanosporum. Mycorrhiza 2014, 24, 29–37. [Google Scholar] [CrossRef]
- Rauscher, T.; Agerer, R.; Chevalier, G. Ektomykorrhizen von Tuber Melanosporum, Tuber Mesentericum und Tuber Rufum (Tuberales) an Corylus Avellana. Nova Hedwigia 1995, 61, 281–322. [Google Scholar] [CrossRef]
- Agerer, R. Colour Atlas of Ectomycorrhizae, 1st–12th ed.; Einhorn: Berlin, Germany, 2002; ISBN 3-921703-77-8. [Google Scholar]
- Makowski, D.; Ben-Shachar, M.; Patil, I.; Lüdecke, D. Methods and Algorithms for Correlation Analysis in R. J. Open Source Softw. 2020, 5, 2306. [Google Scholar] [CrossRef]
- Pinheiro, J.; Bates, D. nlme: Linear and Nonlinear Mixed Effects Models, R Package Version 3; R Core Team: Vienna, Austria, 2022; pp. 1–157. [Google Scholar]
- R Core Team. A Language and Environment for Statistical Computing, Version 4.4.1.; R Core Team: Vienna, Austria, 2024. [Google Scholar]
- Danielson, R.M. Ectomycorrhiza Formation by the Operculate Discomycete Sphaerosporella Brunnea (Pezizales). Mycologia 1984, 76, 454–461. [Google Scholar] [CrossRef]
- Islam, S.; Akhtar, M.M.; Jahangir, M.A.; Pasquapina, C.; Firoz, A. The Agrobacterium Tumefaciens Is a Potential Tool for Antitumor Study. In Microbiology Applications; Rath, C., Ed.; Har Krishan Bhalla & Sons: New Delhi, India, 2013; pp. 135–151. ISBN 978-81-905771-3-7. [Google Scholar]
- Zupan, J.; Muth, T.R.; Draper, O.; Zambryski, P. The Transfer of DNA from Agrobacterium Tumefaciens into Plants: A Feast of Fundamental Insights. Plant J. 2000, 23, 11–28. [Google Scholar] [CrossRef] [PubMed]
- Beyer, P.; Al-Babili, S.; Ye, X.; Lucca, P.; Schaub, P.; Welsch, R.; Potrykus, I. Golden Rice: Introducing the β-Carotene Biosynthesis Pathway into Rice Endosperm by Genetic Engineering to Defeat Vitamin A Deficiency. J. Nutr. 2002, 132, 506S–510S. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, T.; Zhang, Z.; Yuan, X.; Chen, Q.; Zheng, J.; Chen, S.; Ma, F.; Li, C. Overexpression of the Tyrosine Decarboxylase Gene MdTyDC Confers Salt Tolerance in Apple. Environ. Exp. Bot. 2020, 180, 104244. [Google Scholar] [CrossRef]
- Young, J.; Kuykendall, L.; Martínez-Romero, E.; Kerr, A.; Sawada, H. A Revision of Rhizobium Frank 1889, with an Emended Description of the Genus, and the Inclusion of All Species of Agrobacterium Conn 1942 and Allorhizobium Undicola de Lajudie et al. 1998 as New Combinations: Rhizobium Radiobacter, R. Rhizogenes, R. Rubi, R. Undicola and R. Vitis. Int. J. Syst. Evol. Microbiol. 2001, 51, 89–103. [Google Scholar] [CrossRef]
- Vejan, P.; Abdullah, R.; Khadiran, T.; Ismail, S.; Nasrulhaq Boyce, A. Role of Plant Growth Promoting Rhizobacteria in Agricultural Sustainability—A Review. Molecules 2016, 21, 573. [Google Scholar] [CrossRef]
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From Saprophytes to Endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The Mycorrhiza Helper Bacteria Revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Vargas Ribera, P.R.; Kim, N.; Venbrux, M.; Álvarez-Pérez, S.; Rediers, H. Evaluation of Sequence-Based Tools to Gather More Insight into the Positioning of Rhizogenic Agrobacteria within the Agrobacterium Tumefaciens Species Complex. PLoS ONE 2024, 19, e0302954. [Google Scholar] [CrossRef]
- Chaudhary, T.; Gera, R.; Shukla, P. Deciphering the Potential of Rhizobium Pusense MB-17a, a Plant Growth-Promoting Root Endophyte, and Functional Annotation of the Genes Involved in the Metabolic Pathway. Front. Bioeng. Biotechnol. 2021, 8, 617034. [Google Scholar] [CrossRef]
- Rincón, A.; De Felipe, M.R.; Fernández-Pascual, M. Inoculation of Pinus Halepensis Mill. with Selected Ectomycorrhizal Fungi Improves Seedling Establishment 2 Years after Planting in a Degraded Gypsum Soil. Mycorrhiza 2007, 18, 23–32. [Google Scholar] [CrossRef]
- Rincón, A.; Valladares, F.; Gimeno, T.; Pueyo, J. Water Stress Reponses of Two Mediterranean Tree Species Influenced by Native Soil Microorganisms and Inoculation with a Plant Growth Promoting Rhizobacterium. Tree Physiol. 2008, 28, 1693–1701. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis; Academic Press: New York, NY, USA, 1997; ISBN 9780126528404. [Google Scholar]
- Solís, K. Efectos de Rhizoctonia spp. Binucleada y Trichoderma Harzianum Rifai Sobre La Micorriza de Tuber Melanosporum Vittad. Ph.D. Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2017. [Google Scholar]
- Sivasithamparam, K.; Ghisalberti, E. Secondary Metabolism in Trichoderma and Gliocladium. In Trichoderma and Gliocladium; Kubicek, C.P., Harman, G.E., Eds.; Taylor & Francis: London, UK, 1998; Volume 1, pp. 139–191. [Google Scholar]
- Harman, G.E.; Howell, C.R.; Viterbo, A.; Chet, I.; Lorito, M. Trichoderma Species—Opportunistic, Avirulent Plant Symbionts. Nat. Rev. Microbiol. 2004, 2, 43–56. [Google Scholar] [CrossRef]
- Werner, A.; Zadworny, M.; Idzikowska, K. Interaction between Laccaria Laccata and Trichoderma Virens in Co-Culture and in the Rhizosphere of Pinus Sylvestris Grown in Vitro. Mycorrhiza 2002, 12, 139–145. [Google Scholar] [CrossRef]
- Tercero, Z. Evaluación Del Efecto de Dos Tipos o Formas de Control Sobre Los Principales Causantes de La Enfermedad de Petri En La Vid. Bachelor’s Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2008. [Google Scholar]
- Gómez-Molina, E. Biologia y Control de Sphaerosporella Brunnea (Alb. & Schwein.) Svrček & Kubička y Rhizoctonia DC. En Viveros de Produccion de Planta Micorrizada. Bachelor’s Thesis, Universidad de Zaragoza, Zaragoza, Spain, 2009; 80p. [Google Scholar]
- Frey-Klett, P.; Churin, J.; Pierrat, J.; Garbaye, J. Dose Effect in the Dual Inoculation of an Ectomycorrhizal Fungus and a Mycorrhiza Helper Bacterium in Two Forest Nurseries. Soil. Biol. Biochem. 1999, 31, 1555–1562. [Google Scholar] [CrossRef]
- Rincón, A.; Ruiz-Díez, B.; García-Fraile, S.; García, J.A.L.; Fernández-Pascual, M.; Pueyo, J.J.; De Felipe, M.R. Colonisation of Pinus Halepensis Roots by Pseudomonas Fluorescens and Interaction with the Ectomycorrhizal Fungus Suillus Granulatus. FEMS Microbiol. Ecol. 2005, 51, 303–311. [Google Scholar] [CrossRef]
- Ángeles-Argáiz, R.E.; Flores-García, A.; Ulloa, M.; Garibay-Orijel, R. Commercial Sphagnum Peat Moss Is a Vector for Exotic Ectomycorrhizal Mushrooms. Biol. Invasions 2016, 18, 89–101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Molina, E.; Marco, P.; Garcia-Barreda, S.; González, V.; Sánchez, S. Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum. BioTech 2025, 14, 69. https://doi.org/10.3390/biotech14030069
Gómez-Molina E, Marco P, Garcia-Barreda S, González V, Sánchez S. Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum. BioTech. 2025; 14(3):69. https://doi.org/10.3390/biotech14030069
Chicago/Turabian StyleGómez-Molina, Eva, Pedro Marco, Sergi Garcia-Barreda, Vicente González, and Sergio Sánchez. 2025. "Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum" BioTech 14, no. 3: 69. https://doi.org/10.3390/biotech14030069
APA StyleGómez-Molina, E., Marco, P., Garcia-Barreda, S., González, V., & Sánchez, S. (2025). Effect of Selected Truffle-Associated Bacteria and Fungi on the Mycorrhization of Quercus ilex Seedlings with Tuber melanosporum. BioTech, 14(3), 69. https://doi.org/10.3390/biotech14030069