Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Green Synthesis of Silver Nanoparticles
2.2. Plant Material
2.3. AgNPs-Assisted In Vitro Culture of Strawberries
2.4. Quantification of Photosynthetic Pigments
2.5. Acclimatization Procedure
2.6. Statistical Analysis
3. Results
3.1. Characterization of Green-Synthesized AgNPs
3.2. Effect of AgNPs on the In Vitro Propagation of Strawberries
3.3. AgNPs-Induced Shoot Rooting
3.4. Chlorophyll Production of Strawberry Leaves in Response to AgNPs
3.5. Acclimatization to Greenhouse Conditions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iqbal, A.; Khan, T.F.; Iqbal, Y. Nanobiotechnology. In Micro and Nano Technologies: Handbook of Nanomaterials; Malik, M.I., Hussain, D., Shah, M.R., Guo, D.-S., Eds.; Elsevier: Amsterdam, The Netherlands, 2024; Volume 2, pp. 685–713. [Google Scholar]
- Sharma, A.; Banyal, A.; Sirjohn, N.; Kulshreshtha, S.; Kumar, P. Nano-biotechnology and its applications in maintaining soil health. In Advancements in Microbial Biotechnology for Soil Health; Bhatia, R.K., Walia, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2024; Volume 50. [Google Scholar]
- Mekuye, B.; Abera, B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Sel. 2023, 4, 486–501. [Google Scholar] [CrossRef]
- Salem, S.S.; Hammad, E.N.; Mohamed, A.A.; El-Dougdoug, W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem 2022, 13, 41. [Google Scholar]
- Vannini, C.; Domingo, G.; Onelli, E.; De Mattia, F.; Bruni, I.; Marsoni, M.; Bracale, M. Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J. Plant Physiol. 2014, 171, 1142–1148. [Google Scholar] [CrossRef] [PubMed]
- Thakur, N.; Yadav, A.N. Nanotechnology in Agriculture: A Review on Precision Farming and Sustainable Crop Production. BioNanoScience 2025, 15, 243. [Google Scholar] [CrossRef]
- Giampieri, F.; Tulipani, S.; Alvarez-Suarez, J.M.; Quiles, J.L.; Mezzetti, B.; Battino, M. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 2012, 28, 9–19. [Google Scholar] [CrossRef]
- Newerli-Guz, J.; Śmiechowska, M.; Drzewiecka, A.; Tylingo, R. Bioactive ingredients with health-promoting properties of strawberry fruit (Fragaria × ananassa Duchesne). Molecules 2023, 28, 2711. [Google Scholar] [CrossRef]
- FAO. Agricultural Data/Agricultural Production/Crops Primary [WWW Document]. FAOSTAT. 2023. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 28 May 2025).
- Liu, C.; Guo, Z.; Park, Y.G.; Wei, H.; Jeong, B.R. PGR and its application method affect number and length of runners produced in ‘Maehyang’ and ‘Sulhyang’ strawberries. Agronomy 2019, 9, 59. [Google Scholar] [CrossRef]
- Naing, A.H.; Kim, S.H.; Chung, M.Y.; Park, S.K.; Kim, C.K. In vitro propagation method for production of morphologically and genetically stable plants of different strawberry cultivars. Plant Methods 2019, 15, 36. [Google Scholar] [CrossRef]
- Cadena-Zamudio, J.D.; Cruz-Cruz, C.A.; Ramírez-Mosqueda, M.A.; Cruz-Gutiérrez, E.J.; Hernández-Domínguez, E. Effect of meta-Topolin on the in vitro Propagation of Strawberry (Fragaria × ananassa Duch). Agro Product. 2024, 17, 237–243. [Google Scholar] [CrossRef]
- Kumar, N.; Reddy, M.P. In vitro plant propagation: A review. J. For. Environ. Sci. 2011, 27, 61–72. [Google Scholar]
- Guha, P.S.; Gupta, S.D.; Saha, N. Nano-gardening: Harnessing Metal Nanoparticles for Enhanced In Vitro Plant Regeneration. BioNanoScience 2024, 14, 3555–3571. [Google Scholar] [CrossRef]
- Beyene, H.D.; Werkneh, A.A.; Bezabh, H.K.; Ambaye, T.G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 2017, 13, 18–23. [Google Scholar] [CrossRef]
- Banjara, R.A.; Kumar, A.; Aneshwari, R.; Satnami, M.L.; Sinha, S.K. A comparative analysis of chemical vs green synthesis of nanoparticles and their various applications. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100988. [Google Scholar] [CrossRef]
- Yousaf, H.; Mehmood, A.; Ahmad, K.S.; Raffi, M. Green synthesis of silver nanoparticles and their applications as an alternative antibacterial and antioxidant agents. Mater. Sci. Eng. C 2020, 112, 110901. [Google Scholar] [CrossRef]
- Khan, S.; Zahoor, M.; Khan, R.S.; Ikram, M.; Islam, N.U. The impact of silver nanoparticles on the growth of plants: The agriculture applications. Heliyon 2023, 9, e16928. [Google Scholar] [CrossRef]
- Huq, M.A. Biogenic silver nanoparticles synthesized by Lysinibacillus xylanilyticus MAHUQ-40 to control antibiotic-resistant human pathogens Vibrio parahaemolyticus and Salmonella Typhimurium. Front. Bioeng. Biotechnol. 2020, 8, 597502. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency (USEPA). Method 3050B: Acid Digestion of Sediments, Sludges, and Soils (Revision 2). U.S. Environmental Protection Agency. 1996. Available online: https://www.epa.gov/sites/default/files/2015-06/documents/epa-3050b.pdf (accessed on 1 May 2024).
- Cuaxinque-Flores, G.; Talavera-Mendoza, O.; Aguirre-Noyola, J.L.; Hernández-Flores, G.; Martínez-Miranda, V.; Rosas-Guerrero, V.; Martínez-Romero, E. Molecular and geochemical basis of microbially induced carbonate precipitation for treating acid mine drainage: The case of a novel Sporosarcina genomospecies from mine tailings. J. Hazard. Mater. 2024, 476, 135005. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach Ges Wiss Gott. 1918, 2, 8–100. [Google Scholar]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Harborne, J.B. Phytochemical Methods: A Guide to Modern Techniques of Plant Analysis, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Arnon, D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef]
- Salgado Pirata, M.; Correia, S.; Canhoto, J. Ex vitro simultaneous acclimatization and rooting of in vitro propagated tamarillo plants (Solanum betaceum Cav.): Effect of the substrate and mineral nutrition. Agronomy 2022, 12, 1082. [Google Scholar] [CrossRef]
- Zhao, L.; Lu, L.; Wang, A.; Zhang, H.; Huang, M.; Wu, H.; Ji, R. Nano-biotechnology in agriculture: Use of nanomaterials to promote plant growth and stress tolerance. J. Agric. Food Chem. 2020, 68, 1935–1947. [Google Scholar] [CrossRef] [PubMed]
- Zaman, W.; Ayaz, A.; Park, S. Nanomaterials in agriculture: A pathway to enhanced plant growth and abiotic stress resistance. Plants 2025, 14, 716. [Google Scholar] [CrossRef] [PubMed]
- Rasool, A.; Sri, S.; Zulfajri, M.; Krismastuti, F.S.H. Nature inspired nanomaterials, advancements in green synthesis for biological sustainability. Inorg. Chem. Commun. 2024, 169, 112954. [Google Scholar] [CrossRef]
- Pastelín-Solano, M.C.; Ramírez-Mosqueda, M.A.; Bogdanchikova, N.; Castro-González, C.G.; Bello-Bello, J.J. Las nanopartículas de plata afectan la micropropagación de vainilla (Vanilla planifolia Jacks. ex Andrews). Agrociencia 2020, 54, 1–13. [Google Scholar]
- Sharma, M.M.M.; Kapoor, D.; Loyal, A.; Kumar, R.; Sharma, P.; Husen, A. Plant Response to Silver Nanoparticles in Terms of Growth, Development, Production, and Protection: An Overview. In Plant Response to Silver Nanoparticles: Plant Growth, Development, Production, and Protection; Springer: Singapore, 2024; pp. 1–22. [Google Scholar]
- Gupta, S.D.; Agarwal, A.; Pradhan, S. Phytostimulatory effect of silver nanoparticles (AgNPs) on rice seedling growth: An insight from antioxidative enzyme activities and gene expression patterns. Ecotoxicol. Environ. Saf. 2018, 161, 624–633. [Google Scholar] [CrossRef]
- Neri, J.C.; Meléndez-Mori, J.B.; Tejada-Alvarado, J.J.; Vilca-Valqui, N.C.; Huaman-Huaman, E.; Oliva, M.; Goñas, M. An optimized protocol for micropropagation and acclimatization of strawberry (Fragaria × ananassa Duch.) variety ‘Aroma’. Agronomy 2022, 12, 968. [Google Scholar] [CrossRef]
- Tung, H.T.; Thuong, T.T.; Cuong, D.M.; Luan, V.Q.; Hien, V.T.; Hieu, T.; Nhut, D.T. Silver nanoparticles improved explant disinfection, in vitro growth, runner formation and limited ethylene accumulation during micropropagation of strawberry (Fragaria × ananassa). Plant Cell Tissue Organ Cult. PCTOC 2021, 145, 393–403. [Google Scholar] [CrossRef]
- Dhukate, M.R.; Kher, M.M.; Vadawale, A.V.; Giri, P. Protocol for micropropagation of strawberry (Fragaria × ananassa) cv. ‘Sweet Charlie’ and ‘Winter Dawn’. Environ. Exp. Biol. 2021, 19, 1–6. [Google Scholar] [CrossRef]
- Malik, W.A.; Mahmood, I.; Razzaq, A.; Afzal, M.; Shah, G.A.; Iqbal, A.; Ye, W. Exploring potential of copper and silver nano particles to establish efficient callogenesis and regeneration system for wheat (Triticum aestivum L.). GM Crops Food 2021, 12, 564–585. [Google Scholar] [CrossRef]
- Baltazar Bernal, O.; Spinoso-Castillo, J.L.; Mancilla-Álvarez, E.; Muñoz-Márquez Trujillo, R.A.; Bello-Bello, J.J. In Vitro Conservation and Regeneration of Potato (Solanum tuberosum L.): Role of Paclobutrazol and Silver Nanoparticles. Horticulturae 2023, 9, 676. [Google Scholar] [CrossRef]
- Tymoszuk, A. Silver nanoparticles effects on in vitro germination, growth, and biochemical activity of tomato, radish, and kale seedlings. Materials 2021, 14, 5340. [Google Scholar] [CrossRef] [PubMed]
- Elsayh, S.A.; Arafa, R.N.; Ali, G.A.; Abdelaal, W.B.; Sidky, R.A.; Ragab, T.I. Impact of silver nanoparticles on multiplication, rooting of shoots and biochemical analyses of date palm Hayani cv. by in vitro. Biocatal. Agric. Biotechnol. 2022, 43, 102400. [Google Scholar] [CrossRef]
- Phong, T.H.; Hieu, T.; Tung, H.T.; Mai, N.T.N.; Khai, H.D.; Cuong, D.M.; Luan, V.M.; Nam, N.B.; Nhut, D.T. Silver nanoparticles enhance the in vitro plant regeneration via thin cell layer culture system in purple passion fruit. Plant Cell Tissue Organ Cult. PCTOC 2023, 155, 403–415. [Google Scholar] [CrossRef]
- Saha, N.; Dutta Gupta, S. Promotion of shoot regeneration of Swertia chirata by biosynthesized silver nanoparticles and their involvement in ethylene interceptions and activation of antioxidant activity. Plant Cell Tissue Organ Cult. PCTOC 2018, 134, 289–300. [Google Scholar] [CrossRef]
- Ali, A.; Mohammad, S.; Khan, M.A.; Raja, N.I.; Arif, M.; Kamil, A.; Mashwani, Z.U.R. Silver nanoparticles elicited in vitro callus cultures for accumulation of biomass and secondary metabolites in Caralluma tuberculata. Artif. Cells Nanomed. Biotechnol. 2019, 47, 715–724. [Google Scholar] [CrossRef]
- Manh Cuong, D.; Cong Du, P.; Tung, H.T.; Ngan, H.T.M.; Luan, V.Q.; Phong, T.H.; Nhut, D.T. Silver nanoparticles as an effective stimulant in micropropagation of Panax vietnamensis—A valuable medicinal plant. Plant Cell Tissue Organ Cult. PCTOC 2021, 146, 577–588. [Google Scholar] [CrossRef]
- Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2013, 7, 323–337. [Google Scholar] [CrossRef]
- Dewez, D.; Goltsev, V.; Kalaji, H.M.; Oukarroum, A. Inhibitory effects of silver nanoparticles on photosystem II performance in Lemna gibba probed by chlorophyll fluorescence. Curr. Plant Biol. 2018, 16, 15–21. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of silver nanoparticles on plants: A focus on the phytotoxicity and underlying mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Shweta Singh, S.; Singh, Y.; Vishwakarma, K.; Chauhan, D.K. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 07. [Google Scholar] [CrossRef] [PubMed]
- Tripathi, S.; Mahra, S.; Sharma, S.; Mathew, S.; Sharma, S. Interaction of Silver Nanoparticles with Plants: A Focus on the Phytotoxicity, Underlying Mechanism, and Alleviation Strategies. Plant Nano Biol. 2024, 9, 100082. [Google Scholar] [CrossRef]
- Huang, D.; Dang, F.; Huang, Y.; Chen, N.; Zhou, D. Uptake, translocation, and transformation of silver nanoparticles in plants. Environ. Sci. Nano 2022, 9, 12–39. [Google Scholar] [CrossRef]
- Haddadi, F.; Abd Aziz, M.; Saleh, G.; Abd Rashid, A.; Kamaladini, H. Micropropagation of strawberry cv. Camarosa: Prolific shoot regeneration from in vitro shoot tips using thidiazuron with N6-benzylamino-purine. HortScience 2010, 45, 453–456. [Google Scholar] [CrossRef]
- Shiwani, K.; Sharma, D.; Kumar, A. Improvement of plant survival and expediting acclimatization process. In Commercial Scale Tissue Culture for Horticulture and Plantation Crops; Springer Nature: Singapore, 2022; pp. 277–291. [Google Scholar] [CrossRef]
- Mohammed, M.; Munir, M.; Ghazzawy, H.S. Design and evaluation of a smart ex vitro acclimatization system for tissue culture plantlets. Agronomy 2022, 13, 78. [Google Scholar] [CrossRef]
AgNPs (mg L−1) | Number of Shoots | Shoot Length (cm) | Number of Leaves |
---|---|---|---|
0 | 1.50 ± 0.23 b | 4.44 ± 0.35 a | 10.34 ± 1.45 a |
100 | 3.08 ± 0.64 a | 5.05 ± 0.20 a | 6.78 ± 0.90 b |
200 | 2.83 ± 0.27 a | 4.10 ± 0.37 a | 5.75 ± 0.27 b |
300 | 2.00 ± 0.24 b | 4.78 ± 0.50 a | 7.63 ± 0.57 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Noyola, J.L.; Ramírez-Mosqueda, M.A.; Cadena-Zamudio, J.D.; Caamal-Velázquez, J.H.; Cruz-Gutiérrez, E.J.; Armenta-Medina, A. Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne). BioTech 2025, 14, 45. https://doi.org/10.3390/biotech14020045
Aguirre-Noyola JL, Ramírez-Mosqueda MA, Cadena-Zamudio JD, Caamal-Velázquez JH, Cruz-Gutiérrez EJ, Armenta-Medina A. Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne). BioTech. 2025; 14(2):45. https://doi.org/10.3390/biotech14020045
Chicago/Turabian StyleAguirre-Noyola, José Luis, Marco A. Ramírez-Mosqueda, Jorge David Cadena-Zamudio, José Humberto Caamal-Velázquez, Esmeralda J. Cruz-Gutiérrez, and Alma Armenta-Medina. 2025. "Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne)" BioTech 14, no. 2: 45. https://doi.org/10.3390/biotech14020045
APA StyleAguirre-Noyola, J. L., Ramírez-Mosqueda, M. A., Cadena-Zamudio, J. D., Caamal-Velázquez, J. H., Cruz-Gutiérrez, E. J., & Armenta-Medina, A. (2025). Green-Synthesized Silver Nanoparticles (AgNPs) Enhance In Vitro Multiplication and Rooting of Strawberries (Fragaria × ananassa Duchesne). BioTech, 14(2), 45. https://doi.org/10.3390/biotech14020045