Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strain
2.2. Experimental Design
2.3. Drying Equipments
2.4. Culture Conditions
2.5. Biomass Drying, C-PE Extraction, and Quantification
2.6. Evaluation of Moisture Ratio and Drying Rate
3. Results
3.1. Effect of Multiple Parameters on the Drying in the Extraction Quantity of C-PE
3.2. Effect of Multiple Parameters on the Drying in the Purity of C-PE
3.3. Evaluation of Moisture Ratio and Drying Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Carmona, R.; Murillo, M.C.; Lafarga, T.; Bermejo, R. Assessment of the Potential of Microalgae-Derived Phycoerythrin as a Natural Colorant in Beverages. J. Appl. Phycol. 2022, 34, 3025–3034. [Google Scholar] [CrossRef]
- Hamouda, R.A.; El-Naggar, N.E.-A. Chapter 14—Cyanobacteria-Based Microbial Cell Factories for Production of Industrial Products. In Microbial Cell Factories Engineering for Production of Biomolecules; Singh, V., Ed.; Academic Press: New York, NY, USA, 2021; pp. 277–302. [Google Scholar] [CrossRef]
- Barajas-Solano, A.F. Optimization of Phycobiliprotein Solubilization from a Thermotolerant Oscillatoria sp. Processes 2022, 10, 836. [Google Scholar] [CrossRef]
- Mehariya, S.; Fratini, F.; Lavecchia, R.; Zuorro, A. Green Extraction of Value-Added Compounds Form Microalgae: A Short Review on Natural Deep Eutectic Solvents (NaDES) and Related Pre-Treatments. J. Environ. Chem. Eng. 2021, 9, 105989. [Google Scholar] [CrossRef]
- Chittapun, S.; Jonjaroen, V.; Khumrangsee, K.; Charoenrat, T. C-Phycocyanin Extraction from Two Freshwater Cyanobacteria by Freeze-Thaw and Pulsed Electric Field Techniques to Improve Extraction Efficiency and Purity. Algal Res. 2020, 46, 101789. [Google Scholar] [CrossRef]
- Sommer, M.C.; Balazinski, M.; Rataj, R.; Wenske, S.; Kolb, J.F.; Zocher, K. Assessment of Phycocyanin Extraction from Cyanidium caldarium by Spark Discharges, Compared to Freeze-thaw Cycles, Sonication and Pulsed Electric Fields. Microorganisms 2021, 9, 1452. [Google Scholar] [CrossRef] [PubMed]
- Ji, L.; Liu, Y.; Luo, J.; Fan, J. Freeze-Thaw-Assisted Aqueous Two-Phase System as a Green and Low-Cost Option for Analytical Grade B-Phycoerythrin Production from Unicellular Microalgae Porphyridium purpureum. Algal Res. 2022, 67, 102831. [Google Scholar] [CrossRef]
- Ardiles, P.; Cerezal-Mezquita, P.; Salinas-Fuentes, F.; Órdenes, D.; Renato, G.; Ruiz-Domínguez, M.C. Biochemical Composition and Phycoerythrin Extraction from Red Microalgae: A Comparative Study Using Green Extraction Technologies. Processes 2020, 8, 1628. [Google Scholar] [CrossRef]
- Zuorro, A.; Malavasi, V.; Cao, G.; Lavecchia, R. Use of Cell Wall Degrading Enzymes to Improve the Recovery of Lipids from Chlorella sorokiniana. Chem. Eng. J. 2019, 377, 120325. [Google Scholar] [CrossRef]
- Lee, C.-W.; Bae, G.Y.; Bae, S.-H.; Suh, H.J.; Jo, K. Increased Thermal Stability of Phycocyanin Extracted from Spirulina platensis by Cysteine Addition during Enzyme Extraction. Food Sci. Technol. 2022, 42, e15021. [Google Scholar] [CrossRef]
- Seghiri, R.; Legrand, J.; Hsissou, R.; Essamri, A. Comparative Study of the Impact of Conventional and Unconventional Drying Processes on Phycobiliproteins from Arthrospira platensis. Algal Res. 2021, 53, 102165. [Google Scholar] [CrossRef]
- Rezvani, Z.; Mortezapour, H.; Ameri, M.; Akhavan, H.-R.; Arslan, S. Drying of Spirulina with a Continuous Infrared-Assisted Refractance WindowTM Dryer Equipped with a Photovoltaic-Thermal Solar Collector. Heat Mass Transfer. 2022, 58, 1739–1755. [Google Scholar] [CrossRef]
- Silva, J.P.S.; Veloso, C.R.R.; de Souza Barrozo, M.A.; Vieira, L.G.M. Indirect Solar Drying of Spirulina platensis and the Effect of Operating Conditions on Product Quality. Algal Res. 2021, 60, 102521. [Google Scholar] [CrossRef]
- Demarco, M.; de Moraes, J.O.; Ferrari, M.C.; Neves, F.d.F.; Laurindo, J.B.; Tribuzi, G. Production of Spirulina (Arthrospira platensis) Powder by Innovative and Traditional Drying Techniques. J. Food Process. Eng. 2022, 45, e13919. [Google Scholar] [CrossRef]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Tzovenis, I.; Chronis, M.; Krokida, M. Comparative Analysis of Different Drying Techniques Based on the Qualitative Characteristics of Spirulina platensis Biomass. J. Aquat. Food Prod. Technol. 2021, 30, 498–516. [Google Scholar] [CrossRef]
- Ayekpam, C.; Hamsavi, G.K.; Raghavarao, K.S.M.S. Efficient Extraction of Food Grade Natural Blue Colorant from Dry Biomass of Spirulina Platensis Using Eco-Friendly Methods. Food Bioprod. Process. 2021, 129, 84–93. [Google Scholar] [CrossRef]
- Li, C.; Wu, H.; Xiang, W.; Wu, H.; Wang, N.; Wu, J.; Li, T. Comparison of Production and Fluorescence Characteristics of Phycoerythrin from Three Strains of Porphyridium. Foods 2022, 11, 2069. [Google Scholar] [CrossRef]
- Huschek, G.; Rawel, H.M.; Schweikert, T.; Henkel-Oberländer, J.; Sagu, S.T. Characterization and Optimization of Microwave-Assisted Extraction of B-Phycoerythrin from Porphyridium purpureum Using Response Surface Methodology and Doehlert Design. Bioresour. Technol. Rep. 2022, 19, 101212. [Google Scholar] [CrossRef]
- Zhang, A.H.; Feng, B.; Zhang, H.; Jiang, J.; Zhang, D.; Du, Y.; Cheng, Z.; Huang, J. Efficient Cultivation of Porphyridium purpureum Integrated with Swine Wastewater Treatment to Produce Phycoerythrin and Polysaccharide. J. Appl. Phycol. 2022, 34, 2315–2326. [Google Scholar] [CrossRef]
- Yin, H.-C.; Sui, J.-K.; Han, T.-L.; Liu, T.-Z.; Wang, H. Integration Bioprocess of B-Phycoerythrin and Exopolysaccharides Production from Photosynthetic Microalga Porphyridium cruentum. Front. Mar. Sci. 2022, 8, 836370. [Google Scholar] [CrossRef]
- Guiza-Franco, L.; Orozco-Rojas, L.G.; Sanchez-Galvis, M.; Garcia-Martinez, J.B.; Barajas-Ferreira, C.; Zuorro, A.; Barajas-Solano, A.F. Production of Chlorella vulgaris Biomass on UV-Treated Wastewater as an Alternative for Environmental Sustainability on High-Mountain Fisheries. Chem. Eng. Trans. 2018, 64, 517–522. [Google Scholar] [CrossRef]
- Zuorro, A.; García-Martínez, J.B.; Barajas-Solano, A.F. The Application of Catalytic Processes on the Production of Algae-Based Biofuels: A Review. Catalysts 2021, 11, 22. [Google Scholar] [CrossRef]
- Zuorro, A.; Leal-Jerez, A.G.; Morales-Rivas, L.K.; Mogollón-Londoño, S.O.; Sanchez-Galvis, E.M.; García-Martínez, J.B.; Barajas-Solano, A.F. Enhancement of Phycobiliprotein Accumulation in Thermotolerant Oscillatoria sp. through Media Optimization. ACS Omega 2021, 6, 10527–10536. [Google Scholar] [CrossRef]
- Bennett, A.; Bogorad, L. Complementary Chromatic Adaptation in a Filamentous Blue-Green Alga. J. Cell Biol. 1973, 58, 419–435. [Google Scholar] [CrossRef] [PubMed]
- Patil, G.; Chethana, S.; Sridevi, A.S.; Raghavarao, K.S.M.S. Method to Obtain C-Phycocyanin of High Purity. J. Chromatogr. A 2006, 1127, 76–81. [Google Scholar] [CrossRef]
- Antelo, F.; Anschau, A.; Costa, J.; Kalil, S. Extraction and Purification of C-Phycocyanin from Spirulina platensis in Conventional and Integrated Aqueous Two-Phase Systems. J. Braz. Chem. Soc. 2010, 21, 921–926. [Google Scholar] [CrossRef]
- Agbede, O.O.; Oke, E.O.; Akinfenwa, S.I.; Wahab, K.T.; Ogundipe, S.; Aworanti, O.A.; Arinkoola, A.O.; Agarry, S.E.; Ogunleye, O.O.; Osuolale, F.N.; et al. Thin Layer Drying of Green Microalgae (Chlorella sp.) Paste Biomass: Drying Characteristics, Energy Requirement and Mathematical Modeling. Bioresour. Technol. Rep. 2020, 11, 100467. [Google Scholar] [CrossRef]
- Liberti, D.; Imbimbo, P.; Giustino, E.; D’Elia, L.; Ferraro, G.; Casillo, A.; Illiano, A.; Pinto, G.; di Meo, M.C.; Alvarez-Rivera, G.; et al. Inside out Porphyridium cruentum: Beyond the Conventional Biorefinery Concept. ACS Sustain. Chem. Eng. 2023, 11, 381–389. [Google Scholar] [CrossRef]
- Montoya, E.J.O.; Dorion, S.; Atehortua-Garcés, L.; Rivoal, J. Phycobilin Heterologous Production from the Rhodophyta Porphyridium Cruentum. J. Biotechnol. 2021, 341, 30–42. [Google Scholar] [CrossRef] [PubMed]
- Bueno, M.; Gallego, R.; Chourio, A.M.; Ibáñez, E.; Herrero, M.; Saldaña, M.D.A. Green Ultra-High Pressure Extraction of Bioactive Compounds from Haematococcus pluvialis and Porphyridium cruentum Microalgae. Innov. Food Sci. Emerg. Technol. 2020, 66, 102532. [Google Scholar] [CrossRef]
- Castro-Varela, P.A.; Celis-Plá, P.S.M.; Abdala-Díaz, R.; Figueroa, F.L. Photobiological Effects on Biochemical Composition in Porphyridium cruentum (Rhodophyta) with a Biotechnological Application. Photochem. Photobiol. 2021, 97, 1032–1042. [Google Scholar] [CrossRef]
- Huang, Z.; Zhong, C.; Dai, J.; Li, S.; Zheng, M.; He, Y.; Wang, M.; Chen, B. Simultaneous Enhancement on Renewable Bioactive Compounds from Porphyridium cruentum via a Novel Two-Stage Cultivation. Algal Res. 2021, 55, 102270. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Wang, W.; Chen, Z.; Li, C.; Wu, H.; Wu, H.; Xiang, W. A Novel Three-Step Extraction Strategy for High-Value Products from Red Algae Porphyridium purpureum. Foods 2021, 10, 2164. [Google Scholar] [CrossRef]
- Borovkov, A.B.; Gudvilovich, I.N.; Maltseva, I.A.; Rylkova, O.A.; Maltsev, Y.I. Growth and B-Phycoerythrin Production of Red Microalga Porphyridium purpureum (Porphyridiales, Rhodophyta) under Different Carbon Supply. Microorganisms 2022, 10, 2124. [Google Scholar] [CrossRef]
- Mishra, S.K.; Shrivastav, A.; Mishra, S. Preparation of Highly Purified C-Phycoerythrin from Marine Cyanobacterium Pseudanabaena sp. Protein Expr. Purif. 2011, 80, 234–238. [Google Scholar] [CrossRef]
- Tan, H.T.; Yusoff, F.M.; Khaw, Y.S.; Nazarudin, M.F.; Noor Mazli, N.A.I.; Ahmad, S.A.; Shaharuddin, N.A.; Toda, T. Characterisation and Selection of Freshwater Cyanobacteria for Phycobiliprotein Contents. Aquac. Int. 2022, 31, 447–477. [Google Scholar] [CrossRef]
- Keithellakpam, O.S.; Nath, T.O.; Oinam, A.S.; Thingujam, I.; Oinam, G.; Dutt, S.G. Effect of External PH on Cyanobacterial Phycobiliproteins Production and Ammonium Excretion. J. Appl. Biol. Biotechnol. 2015, 3, 38–42. [Google Scholar]
- McGregor, G.B.; Sendall, B.C. Potamosiphon australiensis gen. nov., sp nov. (Oscillatoriales), a New Filamentous Cyanobacterium from Subtropical North-Eastern Australia. Phytotaxa 2019, 387, 77–93. [Google Scholar] [CrossRef]
- Fratelli, C.; Burck, M.; Amarante, M.C.A.; Braga, A.R.C. Antioxidant Potential of Nature’s “Something Blue”: Something New in the Marriage of Biological Activity and Extraction Methods Applied to C-Phycocyanin. Trends Food Sci. Technol. 2021, 107, 309–323. [Google Scholar] [CrossRef]
- Ferreira-Santos, P.; Nunes, R.; De Biasio, F.; Spigno, G.; Gorgoglione, D.; Teixeira, J.A.; Rocha, C.M.R. Influence of Thermal and Electrical Effects of Ohmic Heating on C-Phycocyanin Properties and Biocompounds Recovery from Spirulina platensis. LWT 2020, 128, 109491. [Google Scholar] [CrossRef]
- Sintra, T.E.; Bagagem, S.S.; Ghazizadeh Ahsaie, F.; Fernandes, A.; Martins, M.; Macário, I.P.E.; Pereira, J.L.; Gonçalves, F.J.M.; Pazuki, G.; Coutinho, J.A.P.; et al. Sequential Recovery of C-Phycocyanin and Chlorophylls from Anabaena cylindrica. Sep. Purif. Technol. 2021, 255, 117538. [Google Scholar] [CrossRef]
- İlter, I.; Akyıl, S.; Demirel, Z.; Koç, M.; Conk-Dalay, M.; Kaymak-Ertekin, F. Optimization of Phycocyanin Extraction from Spirulina platensis Using Different Techniques. J. Food Compos. Anal. 2018, 70, 78–88. [Google Scholar] [CrossRef]
- Tavanandi, H.A.; Mittal, R.; Chandrasekhar, J.; Raghavarao, K.S.M.S. Simple and Efficient Method for Extraction of C-Phycocyanin from Dry Biomass of Arthospira platensis. Algal Res. 2018, 31, 239–251. [Google Scholar] [CrossRef]
Variables | Type | Coded Name | Low Level (−1) | Center (0) | High Level (+1) |
---|---|---|---|---|---|
Drying temperature (°C) | Numeric | A | 40 | 55 | 70 |
Drying time (h) | B | 12 | 18 | 24 | |
Drying method | Categoric | C | Dehydrator | Oven | fresh |
Block | Run | Drying Temperature (°C) | Drying Time (h) | Drying Method |
---|---|---|---|---|
Block 1 | 1 | 40 | 12 | Dehydrator |
2 | 70 | 12 | Oven | |
3 | 70 | 24 | Dehydrator | |
4 | 70 | 24 | Dehydrator | |
5 | 55 | 12 | Dehydrator | |
6 | 70 | 12 | Oven | |
7 | 40 | 24 | Oven | |
8 | 40 | 24 | Oven | |
Block 2 | 9 | 59.03 | 24 | Fresh |
10 | 40 | 12 | Oven | |
11 | 59.03 | 24 | Fresh | |
12 | 55 | 24 | Oven | |
13 | 55 | 18 | Dehydrator | |
Block 3 | 14 | 40 | 24 | Fresh |
15 | 70 | 24 | Oven | |
16 | 55 | 18 | Dehydrator | |
17 | 70 | 17.88 | Fresh | |
Block 4 | 18 | 40 | 18 | Oven |
19 | 55 | 12 | Fresh | |
20 | 55 | 12 | Fresh | |
21 | 70 | 18 | Dehydrator | |
22 | 55 | 18 | Oven | |
Block 5 | 23 | 55 | 12 | Oven |
24 | 70 | 12 | Dehydrator | |
25 | 40 | 16.44 | Fresh | |
26 | 40 | 24 | Dehydrator |
C-PE (g/L) | Sum of Squares | Df | Mean Square | F-Value | p-Value | |||
Block | 6.18 | 4 | 1.54 | |||||
Model | 30.02 | 4 | 7.51 | 225.98 | <0.0001 * | |||
A-Temperature | 0.2471 | 1 | 0.2471 | 7.44 | 0.0143 * | |||
B-Time | 0.0112 | 1 | 0.0112 | 0.3378 | 0.5687 ** | |||
C-Drying method | 30.02 | 2 | 15.01 | 451.87 | <0.0001 * | |||
Residual | 0.5647 | 17 | 0.0332 | |||||
Lack of Fit | 0.2003 | 12 | 0.0167 | 0.2290 | 0.9830 ** | |||
Pure Error | 0.3644 | 5 | 0.0729 | |||||
Cor Total | 36.76 | 25 | ||||||
R² | Adj R² | Pred R² | Adq Pr | Std. Dev. | Mean | CV % | ||
0.9815 | 0.9772 | 0.9577 | 28.5427 | 0.1823 | −3.24 | 5.62 |
C-PE purity (Purity index) | Sum of Squares | Df | Mean Square | F-Value | p-Value | |||
Block | 0.0475 | 4 | 0.0119 | |||||
Model | 0.3902 | 3 | 0.1301 | 24.11 | <0.0001 * | |||
A-Temperature | 0.0695 | 1 | 0.0695 | 12.88 | 0.0021 * | |||
C-Drying method | 0.0971 | 18 | 0.0054 | <0.0001 * | ||||
Residual | 0.0722 | 13 | 0.0056 | 1.12 | ||||
Lack of Fit | 0.0249 | 5 | 0.0050 | 0.4881 ** | ||||
Pure Error | 0.5348 | 25 | ||||||
Cor Total | 0.0475 | 4 | 0.0119 | |||||
R² | Adj R² | Pred R² | Adq Pr | Std. Dev. | Mean | CV % | ||
0.8007 | 0.7675 | 0.5783 | 10.9723 | 0.0734 | 0.5787 | 12.69 |
Coded Name | Variable | Units | Value |
---|---|---|---|
A | Drying temperature | °C | 40 |
B | Drying time | h | 12 |
C | Drying method | -- | dehydrator |
Z1 | C-PE | g/L | 0.11 |
Z2 | Purity Index | 0.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vergel-Suarez, A.H.; García-Martínez, J.B.; López-Barrera, G.L.; Barajas-Solano, A.F.; Zuorro, A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech 2023, 12, 30. https://doi.org/10.3390/biotech12020030
Vergel-Suarez AH, García-Martínez JB, López-Barrera GL, Barajas-Solano AF, Zuorro A. Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech. 2023; 12(2):30. https://doi.org/10.3390/biotech12020030
Chicago/Turabian StyleVergel-Suarez, Ariadna H., Janet B. García-Martínez, Germán L. López-Barrera, Andrés F. Barajas-Solano, and Antonio Zuorro. 2023. "Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin" BioTech 12, no. 2: 30. https://doi.org/10.3390/biotech12020030
APA StyleVergel-Suarez, A. H., García-Martínez, J. B., López-Barrera, G. L., Barajas-Solano, A. F., & Zuorro, A. (2023). Impact of Biomass Drying Process on the Extraction Efficiency of C-Phycoerythrin. BioTech, 12(2), 30. https://doi.org/10.3390/biotech12020030