Cyanidiales-Based Bioremediation of Heavy Metals
Abstract
:1. Introduction
2. Conventional Treatment Technologies for Heavy Metal Removal
3. Algal-Based Heavy Metal Removal
4. Cyanidiales and Their Effectiveness in Heavy Metal Removal
4.1. Efficiency of Cyanidiales for Heavy Metal Removal
4.2. Effects of pH on Heavy Metal Removal by Cyanidiales
4.3. Effects of Initial Metal Concentration on Heavy Metal Removal by Cyanidiales
4.4. Effects of Other Factors on Heavy Metal Removal by Cyanidiales
4.5. Tolerance of Cyanidiales for Heavy Metal Toxicity
4.6. Comparison of Removal Efficiency of Cyanidiales with Other Class of Algae
5. Challenges, Limitations, and Future Perspectives of the Phycoremediation Approach
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spain, O.; Plohn, M.; Funk, C. The cell wall of green microalgae and its role in heavy metal removal. Physiol. Plant 2021, 173, 526–535. [Google Scholar] [CrossRef] [PubMed]
- Ubando, A.T.; Africa, A.D.M.; Maniquiz-Redillas, M.C.; Culaba, A.B.; Chen, W.-H.; Chang, J.-S. Microalgal biosorption of heavy metals: A comprehensive bibliometric review. J. Hazard. Mater. 2021, 402, 123431. [Google Scholar] [CrossRef] [PubMed]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Chakraborty, A.J.; Tareq, A.M.; Emran, T.B.; Nainu, F.; Khusro, A.; Idris, A.M.; Khandaker, M.U.; Osman, H.; Alhumaydhi, F.A. Impact of heavy metals on the environment and human health: Novel therapeutic insights to counter the toxicity. J. King Saud Univ.-Sci. 2022, 34, 101865. [Google Scholar] [CrossRef]
- Flouty, R.; Estephane, G. Bioaccumulation and biosorption of copper and lead by a unicellular algae Chlamydomonas reinhardtii in single and binary metal systems: A comparative study. J. Environ. Manag. 2012, 111, 106–114. [Google Scholar] [CrossRef]
- Cheng, J.; Yin, W.; Chang, Z.; Lundholm, N.; Jiang, Z. Biosorption capacity and kinetics of cadmium(II) on live and dead Chlorella vulgaris. J. Appl. Phycol. 2016, 29, 211–221. [Google Scholar] [CrossRef]
- Yan, C.; Qu, Z.; Wang, J.; Cao, L.; Han, Q. Microalgal bioremediation of heavy metal pollution in water: Recent advances, challenges, and prospects. Chemosphere 2022, 286, 131870. [Google Scholar] [CrossRef]
- Shrestha, R.; Ban, S.; Devkota, S.; Sharma, S.; Joshi, R.; Tiwari, A.P.; Kim, H.Y.; Joshi, M.K. Technological trends in heavy metals removal from industrial wastewater: A review. J. Environ. Chem. Eng. 2021, 9, 105688. [Google Scholar] [CrossRef]
- Leong, Y.K.; Chang, J.-S. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol. 2020, 303, 122886. [Google Scholar] [CrossRef]
- Dwivedi, S. Bioremediation of heavy metal by algae: Current and future perspective. J. Adv. Lab. Res. Biol. 2012, 3, 195–199. [Google Scholar]
- Abdi, O.; Kazemi, M. A review study of biosorption of heavy metals and comparison between different biosorbents. J. Mater. Environ. Sci. 2015, 6, 1386–1399. [Google Scholar]
- Goswami, R.; Agrawal, K.; Shah, M.; Verma, P. Bioremediation of heavy metals from wastewater: A current perspective on microalgae-based future. Lett. Appl. Microbiol. 2022, 75, 701–717. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Mehta, S.; Gaur, J. Use of algae for removing heavy metal ions from wastewater: Progress and prospects. Crit. Rev. Biotechnol. 2005, 25, 113–152. [Google Scholar] [CrossRef] [PubMed]
- Danouche, M.; El Ghachtouli, N.; El Arroussi, H. Phycoremediation mechanisms of heavy metals using living green microalgae: Physicochemical and molecular approaches for enhancing selectivity and removal capacity. Heliyon 2021, 7, e07609. [Google Scholar] [CrossRef] [PubMed]
- Sirakov, M.; Palmieri, M.; Iovinella, M.; Davis, S.J.; Petriccione, M.; di Cicco, M.R.; De Stefano, M.; Ciniglia, C. Cyanidiophyceae (Rhodophyta) Tolerance to Precious Metals: Metabolic Response to Palladium and Gold. Plants 2021, 10, 2367. [Google Scholar] [CrossRef]
- Cho, Y.-L.; Lee, Y.-C.; Hsu, L.-C.; Wang, C.-C.; Chen, P.-C.; Liu, S.-L.; Teah, H.-Y.; Liu, Y.-T.; Tzou, Y.-M. Molecular mechanisms for Pb removal by Cyanidiales: A potential biomaterial applied in thermo-acidic conditions. Chem. Eng. J. 2020, 401, 125828. [Google Scholar] [CrossRef]
- Náhlík, V.; Zachleder, V.; Čížková, M.; Bišová, K.; Singh, A.; Mezricky, D.; Řezanka, T.; Vítová, M. Growth under different trophic regimes and synchronization of the red microalga Galdieria sulphuraria. Biomolecules 2021, 11, 939. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Cao, Y.; Shao, P.; Chen, Y.; Zhou, X.; Yang, L.; Shi, H.; Yu, K.; Luo, X.; Luo, X. A critical review of the recovery of rare earth elements from wastewater by algae for resources recycling technologies. Resour. Conserv. Recycl. 2021, 169, 105519. [Google Scholar] [CrossRef]
- Dev, S.; Sachan, A.; Dehghani, F.; Ghosh, T.; Briggs, B.R.; Aggarwal, S. Mechanisms of biological recovery of rare-earth elements from industrial and electronic wastes: A review. Chem. Eng. J. 2020, 397, 124596. [Google Scholar] [CrossRef]
- Priyadarshini, E.; Priyadarshini, S.S.; Pradhan, N. Heavy metal resistance in algae and its application for metal nanoparticle synthesis. Appl. Microbiol. Biotechnol. 2019, 103, 3297–3316. [Google Scholar] [CrossRef] [PubMed]
- Azimi, A.; Azari, A.; Rezakazemi, M.; Ansarpour, M. Removal of heavy metals from industrial wastewaters: A review. ChemBioEng Rev. 2017, 4, 37–59. [Google Scholar] [CrossRef]
- Özverdi, A.; Erdem, M. Cu2+, Cd2+ and Pb2+ adsorption from aqueous solutions by pyrite and synthetic iron sulphide. J. Hazard. Mater. 2006, 137, 626–632. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Luo, Z.; Hills, C.; Xue, G.; Tyrer, M. Precipitation of heavy metals from wastewater using simulated flue gas: Sequent additions of fly ash, lime and carbon dioxide. Water Res. 2009, 43, 2605–2614. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.; Lo, W.-H.; Babel, S. Physico–chemical treatment techniques for wastewater laden with heavy metals. Chem. Eng. J. 2006, 118, 83–98. [Google Scholar] [CrossRef]
- Al Aji, B.; Yavuz, Y.; Koparal, A.S. Electrocoagulation of heavy metals containing model wastewater using monopolar iron electrodes. Sep. Purif. Technol. 2012, 86, 248–254. [Google Scholar] [CrossRef]
- Zhou, G.; Liu, C.; Tang, Y.; Luo, S.; Zeng, Z.; Liu, Y.; Xu, R.; Chu, L. Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chem. Eng. J. 2015, 280, 275–282. [Google Scholar] [CrossRef]
- Agrafioti, E.; Kalderis, D.; Diamadopoulos, E. Arsenic and chromium removal from water using biochars derived from rice husk, organic solid wastes and sewage sludge. J. Environ. Manag. 2014, 133, 309–314. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Stylianou, M.A.; Gkantzou, D.; Loizidou, M.D. Removal of Pb (II) from aqueous solutions by using clinoptilolite and bentonite as adsorbents. Desalination 2007, 210, 248–256. [Google Scholar] [CrossRef]
- Charerntanyarak, L. Heavy metals removal by chemical coagulation and precipitation. Water Sci. Technol. 1999, 39, 135–138. [Google Scholar] [CrossRef]
- Guo, Z.-R.; Zhang, G.; Fang, J.; Dou, X. Enhanced chromium recovery from tanning wastewater. J. Clean. Prod. 2006, 14, 75–79. [Google Scholar] [CrossRef]
- Mansoorian, H.J.; Mahvi, A.H.; Jafari, A.J. Removal of lead and zinc from battery industry wastewater using electrocoagulation process: Influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep. Purif. Technol. 2014, 135, 165–175. [Google Scholar] [CrossRef]
- Ölmez, T. The optimization of Cr (VI) reduction and removal by electrocoagulation using response surface methodology. J. Hazard. Mater. 2009, 162, 1371–1378. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, A.; Fatta, D.; Parperis, K.; Mentzis, A.; Haralambous, K.-J.; Loizidou, M. Nickel uptake from a wastewater stream produced in a metal finishing industry by combination of ion-exchange and precipitation methods. Sep. Purif. Technol. 2004, 39, 181–188. [Google Scholar] [CrossRef]
- Athanasiadis, K.; Helmreich, B. Influence of chemical conditioning on the ion exchange capacity and on kinetic of zinc uptake by clinoptilolite. Water Res. 2005, 39, 1527–1532. [Google Scholar] [CrossRef] [PubMed]
- Mohsen-Nia, M.; Montazeri, P.; Modarress, H. Removal of Cu2+ and Ni2+ from wastewater with a chelating agent and reverse osmosis processes. Desalination 2007, 217, 276–281. [Google Scholar] [CrossRef]
- Basaran, G.; Kavak, D.; Dizge, N.; Asci, Y.; Solener, M.; Ozbey, B. Comparative study of the removal of nickel (II) and chromium (VI) heavy metals from metal plating wastewater by two nanofiltration membranes. Desalination Water Treat. 2016, 57, 21870–21880. [Google Scholar] [CrossRef]
- Zhu, W.-P.; Sun, S.-P.; Gao, J.; Fu, F.-J.; Chung, T.-S. Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. J. Membr. Sci. 2014, 456, 117–127. [Google Scholar] [CrossRef]
- Chugh, M.; Kumar, L.; Shah, M.P.; Bharadvaja, N. Algal Bioremediation of heavy metals: An insight into removal mechanisms, recovery of by-products, challenges, and future opportunities. Energy Nexus 2022, 7, 100129. [Google Scholar] [CrossRef]
- Jalali, F.; Fakhar, J.; Zolfaghari, A. Investigation on biosorption of V (III), Ti (IV), and U (VI) ions from a contaminated effluent by a newly isolated strain of Galdieria sulphuraria. Sep. Sci. Technol. 2019, 54, 2222–2239. [Google Scholar] [CrossRef]
- Plöhn, M.; Escudero-Oñate, C.; Funk, C. Biosorption of Cd(II) by Nordic microalgae: Tolerance, kinetics and equilibrium studies. Algal Res. 2021, 59, 102471. [Google Scholar] [CrossRef]
- Regaldo, L.M.; Gervasio, S.G.; Troiani, H.E.; Gagneten, A.M. Bioaccumulation and Toxicity of Copper and Lead in Chlorella vulgaris. J. Algal Biomass Util. 2013, 4, 59–66. [Google Scholar]
- Yang, J.; Cao, J.; Xing, G.; Yuan, H. Lipid production combined with biosorption and bioaccumulation of cadmium, copper, manganese and zinc by oleaginous microalgae Chlorella minutissima UTEX2341. Bioresour. Technol. 2015, 175, 537–544. [Google Scholar] [CrossRef] [PubMed]
- Abinandan, S.; Subashchandrabose, S.R.; Panneerselvan, L.; Venkateswarlu, K.; Megharaj, M. Potential of acid-tolerant microalgae, Desmodesmus sp. MAS1 and Heterochlorella sp. MAS3, in heavy metal removal and biodiesel production at acidic pH. Bioresour. Technol. 2019, 278, 9–16. [Google Scholar] [CrossRef]
- Shamshad, I.; Khan, S.; Waqas, M.; Asma, M.; Nawab, J.; Gul, N.; Raiz, A.; Li, G. Heavy metal uptake capacity of fresh water algae (Oedogonium westti) from aqueous solution: A mesocosm research. Int. J. Phytoremediat. 2016, 18, 393–398. [Google Scholar] [CrossRef]
- Saavedra, R.; Muñoz, R.; Taboada, M.E.; Vega, M.; Bolado, S. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol. 2018, 263, 49–57. [Google Scholar] [CrossRef]
- Henriques, B.; Teixeira, A.; Figueira, P.; Reis, A.T.; Almeida, J.; Vale, C.; Pereira, E. Simultaneous removal of trace elements from contaminated waters by living Ulva lactuca. Sci. Total Environ. 2019, 652, 880–888. [Google Scholar] [CrossRef]
- Cho, Y.-L.; Tzou, Y.-M.; Wang, C.-C.; Lee, Y.-C.; Hsu, L.-C.; Liu, S.-L.; Assakinah, A.; Chen, Y.-H.; Than, N.A.T.; Liu, Y.-T. Removal and concurrent reduction of Cr (VI) by thermoacidophilic Cyanidiales: A novel extreme biomaterial enlightened for acidic and neutral conditions. J. Hazard. Mater. 2023, 445, 130334. [Google Scholar] [CrossRef]
- Van Etten, J.; Cho, C.H.; Yoon, H.S.; Bhattacharya, D. Extremophilic red algae as models for understanding adaptation to hostile environments and the evolution of eukaryotic life on the early earth. Semin. Cell Dev. Biol. 2023, 134, 4–13. [Google Scholar] [CrossRef]
- Pancha, I.; Takaya, K.; Tanaka, K.; Imamura, S. The unicellular red alga Cyanidioschyzon merolae, an excellent model organism for elucidating fundamental molecular mechanisms and their applications in biofuel production. Plants 2021, 10, 1218. [Google Scholar] [CrossRef] [PubMed]
- Maamoun, I.; Bensaida, K.; Eljamal, R.; Falyouna, O.; Sugihara, Y.; Eljamal, O. Innovative Biotechnological Applications of Galdieria Sulphuraria-Red Microalgae (GS-RMA) in Water Treatment Systems. In Proceedings of the International Exchange and Innovation Conference on Engineering & Sciences (IEICES), Fukuoka, Japan, 22–23 October 2020. [Google Scholar]
- Ciniglia, C.; Yoon, H.S.; Pollio, A.; Pinto, G.; Bhattacharya, D. Hidden biodiversity of the extremophilic Cyanidiales red algae. Mol. Ecol. 2004, 13, 1827–1838. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.-Y.; Yamamoto, R.; Iwamoto, K.; Minoda, A. Cellular accumulation of cesium in the unicellular red alga Galdieria sulphuraria under mixotrophic conditions. J. Appl. Phycol. 2018, 30, 3057–3061. [Google Scholar] [CrossRef]
- Albertano, P.; Ciniglia, C.; Pinto, G.; Pollio, A. The taxonomic position of Cyanidium, Cyanidioschyzon and Galdieria: An update. Hydrobiologia 2000, 433, 137–143. [Google Scholar] [CrossRef]
- Seger, M.; Mammadova, F.; Villegas-Valencia, M.; Bastos de Freitas, B.; Chang, C.; Isachsen, I.; Hemstreet, H.; Abualsaud, F.; Boring, M.; Lammers, P.J. Engineered ketocarotenoid biosynthesis in the polyextremophilic red microalga Cyanidioschyzon merolae 10D. bioRxiv 2023. bioRxiv:2023.02.27.530181. [Google Scholar]
- Varshney, P.; Mikulic, P.; Vonshak, A.; Beardall, J.; Wangikar, P.P. Extremophilic micro-algae and their potential contribution in biotechnology. Bioresour. Technol. 2015, 184, 363–372. [Google Scholar] [CrossRef]
- Adams, E.; Maeda, K.; Kato, T.; Tokoro, C. Mechanism of gold and palladium adsorption on thermoacidophilic red alga Galdieria sulphuraria. Algal Res. 2021, 60, 102549. [Google Scholar] [CrossRef]
- Pan, S.; Dixon, K.L.; Nawaz, T.; Rahman, A.; Selvaratnam, T. Evaluation of Galdieria sulphuraria for nitrogen removal and biomass production from raw landfill leachate. Algal Res. 2021, 54, 102183. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Henkanatte-Gedera, S.; Muppaneni, T.; Nirmalakhandan, N.; Deng, S.; Lammers, P. Maximizing recovery of energy and nutrients from urban wastewaters. Energy 2016, 104, 16–23. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pan, S.; Rahman, A.; Tan, M.; Kharel, H.L.; Agrawal, S.; Nawaz, T. Bioremediation of Raw Landfill Leachate Using Galdieria sulphuraria: An Algal-Based System for Landfill Leachate Treatment. Water 2022, 14, 2389. [Google Scholar] [CrossRef]
- Selvaratnam, T.; Pegallapati, A.; Montelya, F.; Rodriguez, G.; Nirmalakhandan, N.; Van Voorhies, W.; Lammers, P. Evaluation of a thermo-tolerant acidophilic alga, Galdieria sulphuraria, for nutrient removal from urban wastewaters. Bioresour. Technol. 2014, 156, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Selvaratnam, T.; Pegallapati, A.; Reddy, H.; Kanapathipillai, N.; Nirmalakhandan, N.; Deng, S.; Lammers, P. Algal biofuels from urban wastewaters: Maximizing biomass yield using nutrients recycled from hydrothermal processing of biomass. Bioresour. Technol. 2015, 182, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Minoda, A.; Sawada, H.; Suzuki, S.; Miyashita, S.-I.; Inagaki, K.; Yamamoto, T.; Tsuzuki, M. Recovery of rare earth elements from the sulfothermophilic red alga Galdieria sulphuraria using aqueous acid. Appl. Microbiol. Biotechnol. 2015, 99, 1513–1519. [Google Scholar] [CrossRef] [PubMed]
- Ostroumov, S.; Shestakova, T.; Tropin, I. Biosorption of copper by biomass of extremophilic algae. Russ. J. Gen. Chem. 2015, 85, 2961–2964. [Google Scholar] [CrossRef]
- Ju, X.; Igarashi, K.; Miyashita, S.-I.; Mitsuhashi, H.; Inagaki, K.; Fujii, S.-I.; Sawada, H.; Kuwabara, T.; Minoda, A. Effective and selective recovery of gold and palladium ions from metal wastewater using a sulfothermophilic red alga, Galdieria sulphuraria. Bioresour. Technol. 2016, 211, 759–764. [Google Scholar] [CrossRef]
- Ostroumov, S.; Tropin, I.; Kiryushin, A. Removal of cadmium and other toxic metals from water: Thermophiles and new biotechnologies. Russ. J. Gen. Chem. 2018, 88, 2962–2966. [Google Scholar] [CrossRef]
- Iovinella, M.; Lombardo, F.; Ciniglia, C.; Palmieri, M.; Di Cicco, M.R.; Trifuoggi, M.; Race, M.; Manfredi, C.; Lubritto, C.; Fabbricino, M. Bioremoval of Yttrium (III), Cerium (III), Europium (III), and Terbium (III) from Single and Quaternary Aqueous Solutions Using the Extremophile Galdieria sulphuraria (Galdieriaceae, Rhodophyta). Plants 2022, 11, 1376. [Google Scholar] [CrossRef]
- Čížková, M.; Mezricky, P.; Mezricky, D.; Rucki, M.; Zachleder, V.; Vítová, M. Bioaccumulation of rare earth elements from waste luminophores in the red algae, Galdieria phlegrea. Waste Biomass Valorization 2021, 12, 3137–3146. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.R. Bio-sorption of toxic metals from industrial wastewater by algae strains Spirulina platensis and Chlorella vulgaris: Application of isotherm, kinetic models and process optimization. Sci. Total Environ. 2021, 755, 142654. [Google Scholar] [CrossRef]
- Danouche, M.; El Ghachtouli, N.; El Baouchi, A.; El Arroussi, H. Heavy metals phycoremediation using tolerant green microalgae: Enzymatic and non-enzymatic antioxidant systems for the management of oxidative stress. J. Environ. Chem. Eng. 2020, 8, 104460. [Google Scholar] [CrossRef]
- Nawaz, T.; Rahman, A.; Pan, S.; Dixon, K.; Petri, B.; Selvaratnam, T. A review of landfill leachate treatment by microalgae: Current status and future directions. Processes 2020, 8, 384. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency. Sixth Five-Year Review Report for Iron Mountain Mine Superfund Site (Report No. SEMS-RM DOCID # 1000010569). 2018. Available online: https://semspub.epa.gov/work/09/100010569.pdf (accessed on 2 February 2023).
Heavy Metals | Effects on Human | References |
---|---|---|
As | Chronic poisoning, cancer in different organs (lung, skin, kidney, and bladder), arsenical dermatitis, cardiovascular disease, diabetes, infant morbidity, hepatic damage, and hyperkeratosis. | [7,9] |
Cd | Hyperglycemia, high blood pressure, peripheral neuropathy, osteoporosis, Parkinson’s and Alzheimer’s disease, damage to reproductive organs, kidney, liver and lungs, gastrointestinal disorder, amyotrophic lateral sclerosis, hypertension, renal dysfunction, bone degeneration. | [7,9,10,11] |
Cu | Major cell damage, interruption in the food chain, growth and developmental abnormalities, carcinogenesis, neuromuscular control defects, mental retardation, anemia, gastrointestinal diseases. | [10,12] |
Cr | Skin inflammation, liver damage, ulcers, chronic bronchitis, epigastric pain, tissue neurosis, internal hemorrhage, emphysema, DNA impairment. | [7,9] |
Hg | Damage to the heart, brain and other organs, mental retardation, reproductive disturbance, Parkinson’s disease, Alzheimer disease, autism. | [7,9,11] |
Ni | Gastrointestinal distress, pulmonary fibrosis, skin dermatitis, lung and kidney problems. | [3] |
Pb | Impaired voluntary muscle function, mental retardation, encephalopathy, anemia, dementia, kidney malfunction and physical impairments, epilepsy, organ failure, coma, and even death. | [7,9,11] |
Zn | Dizziness, nausea, major cell damage, interruption in the food chain, growth abnormalities, carcinogenesis, neuromuscular control defects, mental retardation. | [10,12] |
Treatment Type | Targeted Metals | Initial Metal Concentration (mg L−1) | Removal Efficiency (%) | References |
---|---|---|---|---|
Adsorption | Cd (II) | 3.22 | 83.38 | [28] |
Pb (II) | 4.17 | 99.90 | ||
Cd (II) | 100.00 | 68.50 | [24] | |
Cu (II) | 99.10 | |||
Pb (II) | 99.80 | |||
As (V) | 1000.00 | 53.00 | [29] | |
Cr (VI) | 100.00 | 89.00 | ||
Pb (II) | 1036.00 | 100.00 | [30] | |
Chemical Precipitation | Mn (II) | 1085.00 | 99.30 | [31] |
Cd (II) | 150.00 | 99.70 | ||
Zn (II) | 450.00 | 99.80 | ||
Cu (II) | 100.00 | 99.37–99.69 | [25] | |
Cr (III) | ||||
Pb (II) | ||||
Zn (II) | ||||
Cr (III) | 5363.00 | >99.00 | [32] | |
Electrochemical Treatment | Pb (II) | 9.00 | 96.70 | [33] |
Zn (II) | 3.20 | 95.20 | ||
Cr (IV) | 1470.00 | 100.00 | [34] | |
Cu (II) | 250.00 | >96.00 | [27] | |
Ni (II) | ||||
Zn (II) | ||||
Ion Exchange | Ni (II) | 39.22 | 74.80 | [35] |
Pb (II) | 1036.00 | 55.00 | [30] | |
Zn (II) | 327.00 | 100.00 | [36] | |
Membrane Filtration | Cu (II) | 500.00 | 99.50 | [37] |
Ni (II) | ||||
Cr (IV) | 60.00 | 96.50 | [38] | |
Ni (II) | 133.00 | 99.20 | ||
Cd (II) | 200.00 | 95.00 | [39] | |
Pb (II) | 93.00 |
Algal Strain | Targeted Metals | Initial Metal Concentration (mg L−1) | pH | Sorption Capacity (mg g−1) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
Chlamydomonas reinhardtii | Cu (II) | 0.03 | 6.0 | 0.056 | 28.00 | [5] |
Pb (II) | 0.10 | 0.057 | 8.00 | |||
Chlorella vulgaris | Cd (II) | 100.00 | NA | 16.34 | 95.20 | [6] |
Chlorella vulgaris | Cd (II) | 2.50 | 7.2 | 49.00 | 72.00 | [42] |
Chlorella vulgaris | Cu (II) | 0.45–1.65 | 6.2 | NA | 92.53 | [43] |
Pb (II) | 1.95–4.83 | 98.70 | ||||
Coelastrella sp. | Cd (II) | 2.50 | 7.2 | 65.00 | 82.00 | [42] |
Chlorella minutissima UTEX 2341 | Cd (II) | 67.48 | 6.0 | 35.36 | 74.34 | [44] |
Cu (II) | 63.55 | 4.0 | 3.28 | 83.60 | ||
Mn (II) | 329.64 | 6.0 | 21.19 | 83.68 | ||
Zn (II) | 392.28 | 6.0 | 33.71 | 62.05 | ||
Desmodesmus sp. MAS1 | Cu (II) | 0.50 | 3.5 | 40.00 | [45] | |
Fe (III) | 10.00 | 80.00 | ||||
Mn (II) | 10.00 | 40.00 | ||||
Zn (II) | 10.00 | 70.00 | ||||
Oedogonium westti | Cd (II) | 0.50–2.00 | 5.0 | 0.974 | 95.00 | [46] |
Cr (III) | 0.50–2.00 | 0.620 | 93.00 | |||
Ni (II) | 0.50–2.00 | 0.418 | 89.00 | |||
Pb (II) | 0.10–0.80 | 0.261 | 96.00 | |||
Scenedesmus almeriensis | As (II) | 12.00 | 9.5 | 5.50 | 40.70 | [47] |
B (III) | 60.00 | 5.5 | 16.00 | 38.60 | ||
Ulva lactuca | As (II) | 1.00 | 7.8 | 0.30 | 48 | [48] |
Cd (II) | 0.20 | 0.07 | 56 | |||
Cr (III) | 2.00 | 0.53 | 72 | |||
Cu (II) | 1.00 | 0.37 | 86 | |||
Hg (II) | 0.05 | 0.03 | 98 | |||
Mn (II) | 2.00 | 1.06 | 74 | |||
Ni (II) | 2.00 | 0.73 | 77 | |||
Pb (II) | 1.00 | 0.44 | 87 |
Algal Strain | Targeted Metals | Initial Metal Concentration (mg L−1) | pH | Sorption Capacity (mg g−1) | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
Galdieria sulphuraria | Nd (III) | 0.50–25.00 | 0.5–5.0 | 35.00–100.00 | [64] | |
Dy (III) | ||||||
La (III) | ||||||
Cu (II) | ||||||
Galdieria sulphuraria | Cu (II) | 1.90 | 2.4 | 100.00 | [65] | |
Pb (II) | 0.10 | 0.00 | ||||
Galdieria sulphuraria | Au (III) | 0.50–25.00 | 0.5–2.5 | 10.00–100.00 | [66] | |
Pd (II) | ||||||
Pt (IV) | ||||||
Galdieria sulphuraria | Cs | 0.30 | 2.5 | 52.00 | [54] | |
Galdieria sulphuraria IPPAS P-513 | Cd (II) | 5.00 | 2.7 | 24.00 | [67] | |
Pb (II) | 84.00 | |||||
Ni (II) | 19.00 | |||||
Cu (II) | 95.00 | |||||
Galdieria sulphuraria SBU-SH1 KY651246 | Ti (IV) | 10.00–30.00 | 2.5 | 397.29 | [41] | |
V (III) | 371.86 | |||||
U (VI) | 333.23 | |||||
Galdieria sulphuraria SAG 107.79 | Ce (III) | 24.90 | 2.5–5.5 | 0.35–4.61 | [68] | |
Eu (III) | 27.00 | 0.37–6.53 | ||||
Tb (III) | 28.30 | 0.39–5.74 | ||||
Y (III) | 15.70 | 0.22–2.78 | ||||
Galdieria sulphuraria (ACUF 427) | Ce (III) | 24.90 | 2.5–5.5 | 2.94–5.97 | [68] | |
Eu (III) | 27.00 | 3.56–6.52 | ||||
Tb (III) | 28.30 | 3.54–6.44 | ||||
Y (III) | 15.70 | 2.00–2.52 | ||||
Galdieria phlegrea | Ce (III) | 3.80 | 4.0 | 0.23 | [69] | |
Eu (III) | 17.31 | 0.90 | ||||
La (III) | 4.80 | 0.57 | ||||
Y (III) | 272.88 | 11.14 | ||||
Galdieria maxima | Pb (II) | 500.00 | 5.0 | 38.20 | [17] | |
Galdieria partita | Cr (VI) | 500.00 | 2.0–7.0 | 93.70–103.90 | [49] | |
Cyanidium caldarium | Pb (II) | 500.00 | 5.0 | 298.80 | [17] | |
Cyanidium caldarium | Cr (VI) | 500.00 | 2.0–7.0 | 87.70–151.70 | [49] | |
Cyanidioschyzon merolae | Pb | 500.00 | 5.0 | 214.00 | [17] | |
Cyanidioschyzon merolae | Cr (VI) | 500.00 | 2.0–7.0 | 73.00–168.10 | [49] |
Algal Strain | Targeted Metals | pH | Sorption Capacity (mg g−1) | Removal Efficiency (%) | References |
---|---|---|---|---|---|
Galdieria sulphuraria | Nd (III) | 2.5 | 100.00 | [64] | |
Dy (III) | 100.00 | ||||
La (III) | 98.00 | ||||
Cu (II) | 95.00 | ||||
Nd (III) | 5.0 | 50.00 | |||
Dy (III) | 35.00 | ||||
La (III) | 55.00 | ||||
Cu (II) | 100.00 | ||||
Galdieria sulphuraria | Au (III) | 2.5 | 100.00 | [66] | |
Pd (II) | 95.00 | ||||
Pt (IV) | 95.00 | ||||
Au (III) | 0.5 | 95.00 | |||
Pd (II) | 85.00 | ||||
Pt (IV) | 10.00 | ||||
Galdieria sulphuraria SAG 107.79 | Ce (III) | 5.5 | 4.61 | [68] | |
Eu (III) | 6.53 | ||||
Tb (III) | 5.74 | ||||
Y (III) | 2.78 | ||||
Ce (III) | 2.5 | 0.35 | |||
Eu (III) | 0.37 | ||||
Tb (III) | 0.39 | ||||
Y (III) | 0.22 | ||||
Galdieria sulphuraria (ACUF 427) | Ce (III) | 5.5 | 5.97 | [68] | |
Eu (III) | 6.52 | ||||
Tb (III) | 5.44 | ||||
Y (III) | 2.24 | ||||
Ce (III) | 2.5 | 2.94 | |||
Eu (III) | 3.56 | ||||
Tb (III) | 3.54 | ||||
Y (III) | 2.00 | ||||
Galdieria partita | Cr (VI) | 2.0 | 103.90 | [49] | |
7.0 | 93.70 | ||||
Cyanidium caldarium | Cr (VI) | 2.0 | 151.70 | [49] | |
7.0 | 87.70 | ||||
Cyanidioschyzon merolae | Cr (VI) | 2.0 | 168.10 | [49] | |
7.0 | 73.00 |
Algal Strain | Targeted Metal | Initial Metal Concentration (mg L−1) | Removal Efficiency (%) | References |
---|---|---|---|---|
Galdieria sulphuraria | Nd (III) | 0.50 | 100.00 | [64] |
Dy (III) | 100.00 | |||
La (III) | 98.00 | |||
Cu (II) | 95.00 | |||
Nd (III) | 25.00 | 50.00 | ||
Dy (III) | 50.00 | |||
La (III) | 45.00 | |||
Cu (II) | 60.00 | |||
Galdieria sulphuraria | Au (III) | 0.50 | 100.00 | [66] |
Pd (II) | 95.00 | |||
Pt (IV) | 95.00 | |||
Au (III) | 25.00 | 100.00 | ||
Pd (II) | 95.00 | |||
Pt (III) | 70.00 |
Targeted Metals | Algal Strain | Class | Initial Metal Concentration (mg L−1) | pH | Removal Efficiency (%) | References |
---|---|---|---|---|---|---|
Cu (II) | Galdieria sulphuraria | Cyanidiophyceae | 0.50 | 2.5 | 95.00 | [64] |
5.00 | 2.7 | 95.00 | [67] | |||
Chlorella vulgaris | Trebouxiophyceae | 1.60 | 6.2 | 92.53 | [43] | |
Ulva lactuca | Ulvophyceae | 1.00 | 7.8 | 86.00 | [48] | |
Cd (II) | Galdieria sulphuraria | Cyanidiophyceae | 5.00 | 2.7 | 24.00 | [67] |
Chlorella vulgaris | Trebouxiophyceae | 2.50 | 7.2 | 72.00 | [42] | |
Coelastrella sp. | Chlorophyceae | 2.50 | 7.2 | 82.00 | [42] | |
Pb (II) | Galdieria sulphuraria | Cyanidiophyceae | 0.10 | 2.4 | 0.00 | [65] |
5.00 | 2.7 | 84.00 | [67] | |||
Chlorella vulgaris | Trebouxiophyceae | 4.83 | 6.2 | 98.70 | [43] | |
Ulva lactuca | Ulvophyceae | 1.00 | 7.8 | 87.00 | [48] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kharel, H.L.; Shrestha, I.; Tan, M.; Nikookar, M.; Saraei, N.; Selvaratnam, T. Cyanidiales-Based Bioremediation of Heavy Metals. BioTech 2023, 12, 29. https://doi.org/10.3390/biotech12020029
Kharel HL, Shrestha I, Tan M, Nikookar M, Saraei N, Selvaratnam T. Cyanidiales-Based Bioremediation of Heavy Metals. BioTech. 2023; 12(2):29. https://doi.org/10.3390/biotech12020029
Chicago/Turabian StyleKharel, Hari Lal, Ina Shrestha, Melissa Tan, Mohammad Nikookar, Negar Saraei, and Thinesh Selvaratnam. 2023. "Cyanidiales-Based Bioremediation of Heavy Metals" BioTech 12, no. 2: 29. https://doi.org/10.3390/biotech12020029
APA StyleKharel, H. L., Shrestha, I., Tan, M., Nikookar, M., Saraei, N., & Selvaratnam, T. (2023). Cyanidiales-Based Bioremediation of Heavy Metals. BioTech, 12(2), 29. https://doi.org/10.3390/biotech12020029