Development and Validation of a Practical Model for Transient Biofilter Performance
Abstract
:1. Introduction
2. Theory and Model Development
2.1. Model Development
2.2. Model Parameters
2.3. Comments on the Model Parameters
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Ottengraf, S.P.P.; Van Den Oever, A.H.C. Kinetics of organic compound removal from waste gases with a biological filter. Biotechnol. Bioeng. 1983, 25, 3089–3102. [Google Scholar] [CrossRef] [Green Version]
- Shareefdeen, Z.; Baltzis, B.C.; Oh, Y.S.; Bartha, R. Biofiltration of methanol vapor. Biotechnol. Bioeng. 1993, 41, 512–524. [Google Scholar] [CrossRef] [PubMed]
- Shareefdeen, Z.; Baltzis, B.C. Biofiltration of toluene vapor under steady state and transient conditions: Theory ad experimental results. Chem. Eng. Sci. 1994, 49, 4347–4360. [Google Scholar] [CrossRef]
- Zarook, S.M.; Shaikh, A.A.; Ansar, Z. Development, experimental validation, and dynamic analysis of a general transient biofilter model. Chem. Eng. Sci. 1994, 52, 759–773. [Google Scholar] [CrossRef]
- Zarook, S.; Shaikh, A.; Ansar, Z.; Baltzis, B. Biofiltration of volatile organic compound (VOC) mixtures under transient conditions. Chem. Eng. Sci. 1997, 52, 4135–4142. [Google Scholar] [CrossRef]
- Baltzis, B.C.; Wojdyla, S.M.; Zarook, S.M. Modeling Biofiltration of VOC Mixtures under Steady-State Conditions. J. Environ. Eng. 1997, 123, 599–605. [Google Scholar] [CrossRef]
- Shareefdeen, Z.; Shaikh, A.A. Analysis and comparison of biofilter models. Chem. Eng. J. 1997, 65, 55–61. [Google Scholar]
- Zarook, S.; Shaikh, A.; Azam, S. Axial dispersion in biofilters. Biochem. Eng. J. 1998, 1, 77–84. [Google Scholar] [CrossRef]
- Elmrini, H.; Bredin, N.; Shareefdeen, Z.; Heitz, M. Biofiltration of xylene emissions: Bioreactor response to variations in the pollutant inlet concentration and gas flow rate. Chem. Eng. J. 2004, 100, 149–158. [Google Scholar] [CrossRef]
- Malakar, S.; Saha, P.D.; Baskaran, D.; Rajamanickam, R. Microbial biofilter for toluene removal: Performance evaluation, transient operation and theoretical prediction of elimination capacity. Sustain. Environ. Res. 2018, 28, 121–127. [Google Scholar] [CrossRef]
- Salih, M.; Shareefdeen, Z.; Khouri, S. A novel approach to the solution of a steady state biofilter model. Environ. Eng. Res. 2019, 25, 779–787. [Google Scholar] [CrossRef]
- Rajamanickam, R.; Baskaran, D.; Kaliyamoorthi, K.; Baskaran, V.; Krishnan, J. Steady State, transient behavior and kinetic modeling of benzene removal in an aerobic biofilter. J. Environ. Chem. Eng. 2020, 8, 103657. [Google Scholar] [CrossRef]
- Jawad, J.; Khalil, M.J.; Sengar, A.K.; Zaidi, S.J. Experimental analysis and modeling of the methane degradation in a three stage biofilter using composted sawdust as packing media. J. Environ. Manag. 2021, 286, 112214. [Google Scholar] [CrossRef] [PubMed]
- Azlah, N.; Shareefdeen, Z.; Elkamel, A. Dispersion of volatile organic compounds (VOCs) emissions from a biofilter at an electronic manufacturing facility. Environ. Prog. Sustain. Energy 2017, 36, 1100–1107. [Google Scholar] [CrossRef]
- Shareefdeen, Z. Industrial Biofilter Case Studies. In From Biofiltration to Featured Options in Gaseous Fluxes Biotreatment: Recent Developments, New Trends, Advances, and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128190647. [Google Scholar] [CrossRef]
- Shareefdeen, Z. High-Performance Biofilters for Air Treatment Applications. In From Biofiltration to Featured Options in Gaseous Fluxes Biotreatment: Recent Developments, New Trends, Advances, and Opportunities; Soreanu, G., Dumont, E., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128190647. [Google Scholar] [CrossRef]
- Ceder, N. The Quick Python Book, 3rd ed.; Manning: Shelter Island, NY, USA, 2018; ISBN 9781617294037. [Google Scholar]
Parameter | Description | Values | Units | Remarks |
---|---|---|---|---|
(A) The parameters in this section are compound-dependent | ||||
H′ | Dimensionless Henry’s constant | 0.23 | -- | Specific to benzene |
µm | Specific growth rate (in Monod expression) | 0.68 | h−1 | “ |
K | Kinetic constant (in Monod expression) | 12.22 | g.m−3 | “ |
Y | Yield coefficient | 0.708 | -- | “ |
Dw | Diffusivity of benzene in water | 1.04 × 10−9 | m2.s−1 | “ |
De | Diffusivity of benzene in biofilm | * | m2.s−1 | * Calculated using the values Dw, Xv, and Equation (2). |
(B) The parameters in this section are related to the biofilm and biofilter | ||||
Xv | Biofilm density | 100 | Kg.m−3 | Specific to biofilm |
As | Biofilm surface area | 40 | m−1 | “ |
ẟ | Biofilm thickness | 5.0 × 10−5 | m | “ |
(C) The parameters in this section are related to the biofilter operation | ||||
Cg0 | Inlet concentration to the biofilter | 0.13 | g.m−3 | Specific to biofilter operation |
H | Height of the biofilter | 1.5 | m | |
∆h | A section of a biofilter (if n = 10) | 0.15 | m | |
ug | Superficial velocity | 0.025 | m.s−1 |
EBRT (s) | Inlet Cgo (g·m−3) | Outlet Cge (g·m−3) Experimental | Outlet Cge (g·m−3) Baltzis et al. [6] | Error (%) Compared to Exp. | Outlet Cge (g·m−3) This Work | Error (%) Compared to Exp. |
---|---|---|---|---|---|---|
Benzene | ||||||
60 | 0.13 | 0.11 | 0.11 | 0 | 0.1 | −9.1 |
78 | 0.21 | 0.16 | 0.16 | 0 | 0.16 | 0 |
84 | 0.17 | 0.13 | 0.13 | 0 | 0.13 | 0 |
90 | 0.19 | 0.15 | 0.14 | −6.2 | 0.14 | −6.2 |
120 | 0.15 | 0.12 | 0.1 | −16.7 | 0.1 | −16.7 |
186 | 0.37 | 0.19 | 0.19 | 0 | 0.19 | 0 |
Toluene | ||||||
60 | 0.21 | 0.17 | 0.16 | −5.9 | 0.16 | −5.9 |
78 | 0.4 | 0.27 | 0.28 | 3.7 | 0.27 | 0 |
84 | 0.38 | 0.24 | 0.26 | 8.3 | 0.25 | 4.2 |
90 | 0.27 | 0.19 | 0.18 | −5.3 | 0.18 | −5.3 |
120 | 0.3 | 0.16 | 0.17 | 6.2 | 0.17 | 6.2 |
186 | 0.23 | 0.1 | 0.09 | −10 | 0.09 | −10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shareefdeen, Z. Development and Validation of a Practical Model for Transient Biofilter Performance. BioTech 2022, 11, 51. https://doi.org/10.3390/biotech11040051
Shareefdeen Z. Development and Validation of a Practical Model for Transient Biofilter Performance. BioTech. 2022; 11(4):51. https://doi.org/10.3390/biotech11040051
Chicago/Turabian StyleShareefdeen, Zarook. 2022. "Development and Validation of a Practical Model for Transient Biofilter Performance" BioTech 11, no. 4: 51. https://doi.org/10.3390/biotech11040051
APA StyleShareefdeen, Z. (2022). Development and Validation of a Practical Model for Transient Biofilter Performance. BioTech, 11(4), 51. https://doi.org/10.3390/biotech11040051