Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. Dehydration Stress
2.3. Physiological Measurements
2.4. Analysis of Dehydration Responsive Memory Genes Using Quantitative Real-Time PCR
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Syouf, M.; Abu-Irmaileh, B.E.; Valkoun, J.; Bdour, S. Introgression from Durum Wheat Landraces in Wild Emmer Wheat (Triticum dicoccoides (Körn. ex Asch. et Graebner) Schweinf). Genet. Resour. Crop Evol. 2006, 53, 1165–1172. [Google Scholar] [CrossRef]
- Duwayri, M.; Migdadi, H.; Sadder, M.; Kafawin, O.; Ajlouni, M.; Amri, A.; Nachit, M. Use of SSR markers for characterizing cultivated durum wheat and its naturally occurring hybrids with wild wheat. Jordan J. Agric. Sci. 2007, 3, 398–410. [Google Scholar]
- Al-Tabbal, J.A.; Duwayri, M.A. Phenotypic variation within a Jordanian landrace of durum wheat “Safra Ma’an” (Triticum turgidum L. var. durum). J. Agric. Sci. Technol. 2013, B3, 717. [Google Scholar]
- Moaveni, P. Effect of water deficit stress on some physiological traits of wheat (Triticum aestivum). Agric. Sci. Res. J. 2011, 1, 64–68. [Google Scholar]
- Jaradat, A.A. Comparative assessment of einkorn and emmer wheat phenomes: III. Phenology. Genet. Resour. Crop Evol. 2019, 66, 1727–1760. [Google Scholar] [CrossRef]
- Wang, B.; Feng, P.; Chen, C.; Liu, D.L.; Waters, C.; Yu, Q. Designing wheat ideotypes to cope with future changing climate in South-Eastern Australia. Agric. Syst. 2019, 170, 9–18. [Google Scholar] [CrossRef]
- Duwayri, M. Comparison of wheat cultivars grown in the field under different levels of moisture. Cereal Res. Commun. 1984, 12, 27–34. [Google Scholar]
- Dura, S.; Duwayri, M.; Nachit, M.; Al-Sheyab, F. Detection of molecular markers associated with yield and yield components in durum wheat (Triticum turgidum L. var. durum) under saline conditions. Crop Pasture Sci. 2014, 64, 957–964. [Google Scholar] [CrossRef]
- Kabbaj, H.; Sall, A.T.; Al-Abdallat, A.; Geleta, M.; Amri, A.; Filali-Maltouf, A.; Belkadi, B.; Ortiz, R.; Bassi, F.M. Genetic diversity within a global panel of durum wheat (Triticum durum) landraces and modern germplasm reveals the history of alleles exchange. Front. Plant Sci. 2017, 8, 1277. [Google Scholar] [CrossRef]
- Rai, A.; Mishra, U.; Singh, M.; Kumar, R.; Dubey, R.S.; Singh, N.K.; Jain, N.; Pandey, H.P. Expression Data in Response to Abiotic Stresses in Tomato at Flowering Stage; Gene Expression Omnibus, Series: GSE22304; Cornell University: Ithaca, NY, USA, 2010. [Google Scholar]
- Hazen, S.P.; Wu, Y.; Kreps, J.A. Gene expression profiling of plant responses to abiotic stress. Funct. Integr. Genom. 2003, 3, 105–111. [Google Scholar] [CrossRef]
- Lupini, A.; Preiti, G.; Badagliacca, G.; Abenavoli, M.R.; Sunseri, F.; Monti, M.; Bacchi, M. Nitrogen Use Efficiency in durum wheat under different nitrogen and water regimes in the Mediterranean Basin. Front. Plant Sci. 2021, 11, 607226. [Google Scholar] [CrossRef] [PubMed]
- Sadder, M.T.; Alsadon, A.; Wahb-Allah, M. Transcriptomic analysis of tomato lines reveals putative stress-specific biomarkers. Turk. J. Agric. For. 2014, 38, 700–715. [Google Scholar] [CrossRef]
- Chen, Y.; Li, C.; Yi, J.; Yang, Y.; Lei, C.; Gong, M. Transcriptome Response to Drought, Rehydration and Re-Dehydration in Potato. Int. J. Mol. Sci. 2020, 21, 159. [Google Scholar] [CrossRef]
- Avramova, Z. Transcriptional ‘memory’of a stress: Transient chromatin and memory (epigenetic) marks at stress-response genes. Plant J. 2015, 83, 149–159. [Google Scholar] [CrossRef] [PubMed]
- Lämke, J.; Bäurle, I. Epigenetic and chromatin-based mechanisms in environmental stress adaptation and stress memory in plants. Genome Biol. 2017, 18, 124. [Google Scholar] [CrossRef]
- Ding, Y.; Fromm, M.; Avramova, Z. Multiple exposures to drought ‘train’ transcriptional responses in Arabidopsis. Nat. Commun. 2012, 3, 740. [Google Scholar] [CrossRef]
- Ding, Y.; Liu, N.; Virlouvet, L.; Riethoven, J.; Fromm, M.; Avramova, Z. Four distinct types of dehydration stress memory genes in Arabidopsis thaliana. BMC Plant Biol. 2013, 13, 229. [Google Scholar] [CrossRef]
- Ding, Y.; Virlouvet, L.; Liu, N.; Riethoven, J.; Fromm, M.; Avramova, Z. Dehydration stress memory genes of Zea mays; comparison with Arabidopsis thaliana. BMC Plant Biol. 2014, 14, 141. [Google Scholar] [CrossRef]
- Li, P.; Yang, H.; Wang, L.; Liu, H.; Huo, H.; Zhang, C.; Liu, A.; Zhu, A.; Hu, J.; Lin, Y.; et al. Physiological and transcriptome analyses reveal short-term responses and formation of memory under drought stress in rice. Front. Genet. 2019, 10, 55. [Google Scholar] [CrossRef]
- Jaradat, A.; Duwayri, M. Effect of different moisture deficits on durum wheat seed germination and seedling growth. Cereal Res. Commun. 1981, 9, 55–62. [Google Scholar]
- Tadesse, W.; Nachit, M.; Abdalla, O.; Rajaram, S.; Bonjean, A. Wheat breeding at ICARDA: Achievements and prospects in the CWANA region. In The World Wheat Book: A History of Wheat Breeding; Bonjean, A.P., Angus, W.J., van Ginkel, M., Eds.; Lavoisier: Paris, France, 2016; Volume 3. [Google Scholar]
- Nachit, M.M. Durum breeding research to improve dryland productivity in the Mediterranean Region. In Proceedings of the The SEWANA Durum Research Network, ICARDA, Aleppo, Syria, 20–23 March 1995; pp. 1–15. [Google Scholar]
- Smart, R.E.; Bingham, G.E. Rapid Estimates of Relative Water Content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef] [PubMed]
- Chomczynski, P.; Sacchi, N. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 1987, 162, 156–159. [Google Scholar] [CrossRef]
- Sadder, M.T.; Al-Doss, A.A. Characterization of dehydrin AhDHN from Mediterranean saltbush (Atriplex halimus). Turk. J. Biol. 2014, 38, 469–477. [Google Scholar] [CrossRef]
- Bruce, T.J.; Matthes, M.C.; Napier, J.A.; Pickett, J.A. Stressful “memories” of plants: Evidence and possible mechanisms. Plant Sci. 2007, 173, 603–608. [Google Scholar] [CrossRef]
- Wang, X.; Vignjevic, M.; Liu, F.; Jacobsen, S.; Jiang, D.; Wollenweber, B. Drought priming at vegetative growth stages improves tolerance to drought and heat stresses occurring during grain filling in spring wheat. Plant Growth Regul. 2015, 75, 677–687. [Google Scholar] [CrossRef]
- Giusti, L.; Mica, E.; Bertolini, E.; Leonardis, A.M.; De Faccioli, P.; Cattivelli, L.; Crosatti, C. microRNAs differentially modulated in response to heat and drought stress in durum wheat cultivars with contrasting water use efficiency. Funct. Integr. Genom. 2017, 17, 293–309. [Google Scholar] [CrossRef]
- Liu, H.; Able, A.J.; Able, J.A. Priming crops for the future: Rewiring stress memory. Trends Plant Sci. 2022, 27, 699–716. [Google Scholar] [CrossRef]
- Virlouvet, L.; Avenson, T.J.; Du, Q.; Zhang, C.; Liu, N.; Fromm, M.; Avramova, A.; Russo, S.E. Dehydration stress memory: Gene networks linked to physiological responses during repeated stresses of Zea mays. Front. Plant Sci. 2018, 9, 1058. [Google Scholar] [CrossRef]
- Dura, S.A.; Duwayri, M.A.; Nachit, M.M. Detection of molecular markers associated with yield and yield components in durum wheat (Triticum turgidum L. var. durum Desf.) under drought conditions. Afr. J. Agric. Res. 2013, 8, 2113–2117. [Google Scholar]
- Barutcular, C.; Toptas, I.; Turkten, H.; Yildirim, M.; Mujde, K.O.C. SPAD greenness to estimate genotypic variation in flag leaf chlorophyll in spring wheat under Mediterranean conditions. Turk. J. Field Crop. 2015, 20, 1–8. [Google Scholar] [CrossRef]
- Xiong, D.; Chen, J.; Yu, T.; Gao, W.; Ling, X.; Li, Y.; Peng, S.; Huang, J. SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop leaf characteristics. Sci. Rep. 2015, 5, 13389. [Google Scholar] [CrossRef] [PubMed]
- Sani, E.; Herzyk, P.; Perrella, G.; Colot, V.; Amtmann, A. Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol. 2013, 14, R59. [Google Scholar] [CrossRef] [PubMed]
- Chwialkowska, K.; Nowakowska, U.; Mroziewicz, A.; Szarejko, I.; Kwasniewski, M. Water-deficiency conditions differently modulate the methylome of roots and leaves in barley (Hordeum vulgare L.). J. Exp. Bot. 2016, 67, 1109–1121. [Google Scholar] [CrossRef]
- Liu, N.; Fromm, M.; Avramova, Z. H3K27me3 and H3K4me3 chromatin environment at super-induced dehydration stress memory genes of Arabidopsis thaliana. Mol. Plant 2014, 7, 502–513. [Google Scholar] [CrossRef] [PubMed]
- Holoch, D.; Wassef, M.; Lövkvist, C.; Zielinski, D.; Aflaki, S.; Lombard, B.; Héry, T.; Loew, D.; Howard, M.; Margueron, R. A cis-acting mechanism mediates transcriptional memory at Polycomb target genes in mammals. Nat. Genet. 2021, 53, 1686–1697. [Google Scholar] [CrossRef]
- Cilliers, M. The Response of C1 and C13 Cysteine Proteases in Soybean Nodules to Drought. Ph.D. Thesis, University of Pretoria, Pretoria, South Africa, 2017. [Google Scholar]
- Thibaud-Nissen, F.; Wu, H.; Richmond, T.; Redman, J.C.; Johnson, C.; Green, R.; Arias, J.; Town, C.D. Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J. 2006, 47, 152–162. [Google Scholar] [CrossRef]
- González-Pérez, S.; Gutiérrez, J.; García-García, F.; Osuna, D.; Dopazo, J.; Lorenzo, Ó.; Revuelta, J.L.; Arellano, J.B. Early transcriptional defense responses in Arabidopsis cell suspension culture under high-light conditions. Plant Physiol. 2011, 156, 1439–1456. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Tang, Y.; Zhou, C.; Zhang, L.; Lv, J. A wheat WRKY transcription factor TaWRKY46 enhances tolerance to osmotic stress in transgenic Arabidopsis plants. Int. J. Mol. Sci. 2020, 21, 1321. [Google Scholar] [CrossRef]
- Roy, N.; Choi, J.Y.; Lim, M.J.; Lee, S.I.; Choi, H.J.; Kim, N.S. Genetic and epigenetic diversity among dent, waxy, and sweet corns. Genes Genom. 2015, 37, 865–874. [Google Scholar] [CrossRef]
- Pandey, G.; Sharma, N.; Pankaj Sahu, P.; Prasad, M. Chromatin-based epigenetic regulation of plant abiotic stress response. Curr. Genom. 2016, 17, 490–498. [Google Scholar] [CrossRef]
- Srikant, T.; Drost, H.G. How stress facilitates phenotypic innovation through epigenetic diversity. Front. Plant Sci. 2021, 11, 606800. [Google Scholar] [CrossRef]
- Olas, J.J.; Apelt, F.; Annunziata, M.G.; John, S.; Richard, S.I.; Gupta, S.; Kragler, F.; Balazadeh, S.; Mueller-Roeber, B. Primary carbohydrate metabolism genes participate in heat-stress memory at the shoot apical meristem of Arabidopsis thaliana. Mol. Plant 2021, 14, 1508–1524. [Google Scholar] [CrossRef] [PubMed]
- Vyse, K.; Schaarschmidt, S.; Erban, A.; Kopka, J.; Zuther, E. Specific CBF transcription factors and cold-responsive genes fine-tune the early triggering response after acquisition of cold priming and memory. Physiol. Plant. 2022, 174, e13740. [Google Scholar] [CrossRef] [PubMed]
- Senapati, N.; Semenov, M.A. Assessing yield gap in high productive countries by designing wheat ideotypes. Sci. Rep. 2019, 9, 5516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Durum Locus Number | Gene Description | Forward and Reveres Primers 5′-3′ |
---|---|---|
TRITD4Bv1G010710 | Lipoxygenase 2 | F-CTTCCATCGTCTACAAGAACTGG |
R-CCCGTCCACCGCGTACGGGTAGTC | ||
TRITD3Bv1G183490 | Protein kinase C-like zinc finger | F-GCGGAGCAAGTTCGCCTCCCAGACG |
R-GCCAGCCTCGCGGTGAACTTGACGC | ||
TRITD5Bv1G217630 | Basic helix-loop-helix (bHLH) DNA-binding | F-GTGCTGGTGCTGTTGCACAGCTGG |
R-CGATGTCCTCGTCCATCAGCTTCGC | ||
TRITD7Bv1G120550 | Transmembrane amino acid transporter | F-ATGTGGCTCATCATCTGCAAGCCC |
R-ATCTATGAGTAGAACTTGTATGTC | ||
TRITD1Av1G156270 | Late embryogenesis abundant (LEA) | F-CGTCCGAGACGGCCCAGGCCG |
R-GCTGTCTCCCCCCATCCCCAGC | ||
TRITD6Bv1G045800 | MYB transcription factor | F-AAGAGACCATGTTCAGAAGATAAC |
R-TCAGCATCTTCTTATCACACTGTTAC | ||
TRITD3Av1G236010 | Scarecrow-like protein (SCL1) | F-TCCAAGGGAAAGTCCAGATAGAATG |
R-GAATCCAGCCATCGTCATTCTCGCC | ||
TRITD5Bv1G218230 | Like/winged-helix DNA-binding family | F-GGAGACCAAGGCCAAGGCGGCCAAG |
R-GACGAACTTGGCGATGGCGTACGGG | ||
TRITD7Bv1G194910 | NAC transcription factor | F-CTAAGGGGAAGAAGACTGAGTGGG |
R-TCCCTGTGGGTAGCTTGGCAACGG | ||
TRITD3Bv1G171000 | WRKY transcription factor | F-GCGCAAGTACGGCCAGAAGCCCATC |
R-GTGATCGTAGGAGTAGGTGACGAGC | ||
TRITD1Bv1G215920 | Major facilitator superfamily | F-CGACGCTCGCCAACTGGCTGACTTC |
R-CCAAACTCATCTGTTGCACTTCCAC | ||
TRITD5Av1G178480 | AP2 transcription factor | F-CACGCAGTGTAAAGTTGTCGATAG |
R-GGAGCAGAGCAGTCCCAAAC | ||
TRITD5Av1G093080 | Actin | F-CCGAACGGGAAATTGTAAGG |
R-TCTCTGCCCCAATGGTGATC |
Durum Locus | Durum Response | Maize Locus | Maize Response * | Rice Locus | Rice Response ** |
---|---|---|---|---|---|
TRITD4Bv1G010710 | +/+, =/+, +/− | GRMZM2G102760 | +/+ | Os03g49380 | +/− |
TRITD3Bv1G183490 | +/+, −/+, +/− | GRMZM2G106344 | +/+ | Os01g58194 | +/+ |
TRITD5Bv1G217630 | =/+, −/= | GRMZM2G004356 | −/− | Os06g09370 | +/+ |
TRITD7Bv1G120550 | +/+, −/= | GRMZM2G429322 | +/− | Os08g03350 | +/− |
TRITD1Av1G156270 | =/+, +/− | GRMZM2G412436 | +/− | Os02g15250 | =/+ |
TRITD6Bv1G045800 | =/+, −/= | GRMZM2G010920 | −/+ | OS03G25550 | +/− |
TRITD3Av1G236010 | −/+, +/− | GRMZM2G153333 | +/= | Os07g36170 | −/+ |
TRITD5Bv1G218230 | +/+, −/+, −/− | GRMZM2G401308 | −/= | Os07g08710 | −/+ |
TRITD7Bv1G194910 | =/+, −/+, −/− | GRMZM2G063522 | =/+ | OS03G42630 | +/− |
TRITD3Bv1G171000 | =/+, −/+, −/− | GRMZM2G013391 | =/+ | OS10G42850 | =/+ |
TRITD1Bv1G215920 | =/+, −/+ | GRMZM2G028570 | =/− | Os03g24870 | +/− |
TRITD5Av1G178480 | =/+, +/−, −/− | GRMZM2G434203 | =/− | Os04g46400 | =/− |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadder, M.T.; Musallam, A.; Allouzi, M.; Duwayri, M.A. Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BioTech 2022, 11, 43. https://doi.org/10.3390/biotech11030043
Sadder MT, Musallam A, Allouzi M, Duwayri MA. Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BioTech. 2022; 11(3):43. https://doi.org/10.3390/biotech11030043
Chicago/Turabian StyleSadder, Monther T., Anas Musallam, Majd Allouzi, and Mahmud A. Duwayri. 2022. "Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.)" BioTech 11, no. 3: 43. https://doi.org/10.3390/biotech11030043
APA StyleSadder, M. T., Musallam, A., Allouzi, M., & Duwayri, M. A. (2022). Dehydration Stress Memory Genes in Triticum turgidum L. ssp. durum (Desf.). BioTech, 11(3), 43. https://doi.org/10.3390/biotech11030043