Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut–Lung Axis: Future Possibilities for SARS-CoV-2 Protection
Abstract
:1. Introduction
2. Literature Search Method
3. Application of Reverse Vaccinology in Bacterial Mucosal Vaccine Vector Designs
4. Microbiome and Mucosal Immunity
4.1. Overview of the Mucosal Immune System
4.1.1. GALT
4.1.2. Inductive Sites and Immune Cell Response to Pathogens
4.1.3. Activation of Immune Response by PAMPs and DAMPs
4.1.4. Vita-PAMPs
4.2. NALT and BALT
5. Bacterial Mucosal Vaccines in the Literature
5.1. Bacterial Vector Selection and Genetic Engineering for Surface Display of Antigens
5.2. The Gut–Lung Axis: Where Is the Place of Mucosal Vaccine Vectors?
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abu-Raddad, L.J.; Chemaitelly, H.; Butt, A.A.; National Study Group for COVID-19 Vaccination. Effectiveness of the BNT162b2 COVID-19 Vaccine against the B.1.1.7 and B.1.351 Variants. N. Engl. J. Med. 2021, 385, 187–189. [Google Scholar] [CrossRef] [PubMed]
- Shinde, V.; Bhikha, S.; Hoosain, Z.; Archary, M.; Bhorat, Q.; Fairlie, L.; Lalloo, U.; Masilela, M.S.; Moodley, D.; Hanley, S.; et al. Efficacy of NVX-CoV2373 COVID-19 Vaccine against the B.1.351 Variant. N. Engl. J. Med. 2021, 384, 1899–1909. [Google Scholar] [CrossRef] [PubMed]
- Different COVID-19 Vaccines (CDC). Available online: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/different-vaccines.html (accessed on 15 September 2021).
- Efinco, O.; Erappuoli, R. Designing Vaccines for the Twenty-First Century Society. Front. Immunol. 2014, 5, 12. [Google Scholar] [CrossRef]
- Van Riel, D.; De Wit, E. Next-generation vaccine platforms for COVID-19. Nat. Mater. 2020, 19, 810–812. [Google Scholar] [CrossRef] [PubMed]
- Fleri, W.; Paul, S.; Dhanda, S.; Mahajan, S.; Xu, X.; Peters, B.; Sette, A. The Immune Epitope Database and Analysis Resource in Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2017, 8, 278. [Google Scholar] [CrossRef] [Green Version]
- Ong, E.; Wong, M.U.; Huffman, A.; He, Y. COVID-19 Coronavirus Vaccine Design Using Reverse Vaccinology and Machine Learning. Front. Immunol. 2020, 11, 1581. [Google Scholar] [CrossRef]
- Rappuoli, R.; De Gregorio, E.; Del Giudice, G.; Phogat, S.; Pecetta, S.; Pizza, M.; Hanon, E. Vaccinology in the post−COVID-19 era. Proc. Natl. Acad. Sci. USA 2021, 118, e2020368118. [Google Scholar] [CrossRef]
- Palatnik-De-Sousa, C.B.; Soares, I.S.; Rosa, D. Editorial: Epitope Discovery and Synthetic Vaccine Design. Front. Immunol. 2018, 9, 826. [Google Scholar] [CrossRef] [Green Version]
- Vitetta, L.; Saltzman, E.T.; Thomsen, M.; Nikov, T.; Hall, S. Adjuvant Probiotics and the Intestinal Microbiome: Enhancing Vaccines and Immunotherapy Outcomes. Vaccines 2017, 5, 50. [Google Scholar] [CrossRef] [Green Version]
- Van Regenmortel, M.H. Immunoinformatics may lead to a reappraisal of the nature of B cell epitopes and of the feasibility of synthetic peptide vaccines. J. Mol. Recognit. 2006, 19, 183–187. [Google Scholar] [CrossRef]
- Morris, L.; Moody, T.A. Chapter 1—Broadly Neutralizing Antibodies. In Human Vaccines; Modjarrad, K., Koff, W.C., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 3–21. ISBN 9780128023020. [Google Scholar] [CrossRef]
- Kao, D.J.; Hodges, R.S. Advantages of a Synthetic Peptide Immunogen Over a Protein Immunogen in the Development of an Anti-Pilus Vaccine forPseudomonas aeruginosa. Chem. Biol. Drug Des. 2009, 74, 33–42. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, N.; Chen, M.; Wang, T. Liposomes used as a vaccine adjuvant-delivery system: From basics to clinical immunization. J. Control. Release Off. J. Control. Release Soc. 2019, 303, 130–150. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Zhao, R.; Li, Y.; Qi, Y.; Wang, Y.; Zhang, Y.; Qin, H.; Qin, Y.; Chen, L.; Li, C.; et al. Bioengineered bacteria-derived outer membrane vesicles as a versatile antigen display platform for tumor vaccination via Plug-and-Display technology. Nat. Commun. 2021, 12, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Fujita, Y.; Taguchi, H. Current status of multiple antigen-presenting peptide vaccine systems: Application of organic and inorganic nanoparticles. Chem. Central J. 2011, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Peyret, H.; Gehin, A.; Thuenemann, E.C.; Blond, D.; El-Turabi, A.; Beales, L.; Clarke, D.; Gilbert, R.J.; Fry, E.E.; Stuart, D.I.; et al. Tandem Fusion of Hepatitis B Core Antigen Allows Assembly of Virus-Like Particles in Bacteria and Plants with Enhanced Capacity to Accommodate Foreign Proteins. PLoS ONE 2015, 10, e0120751. [Google Scholar] [CrossRef]
- Azmi, F.; Ahmad Fuaad, A.A.; Skwarczynski, M.; Toth, I. Recent progress in adjuvant discovery for peptide-based subunit vaccines. Hum. Vaccines Immunother. 2014, 10, 778–796. [Google Scholar] [CrossRef] [Green Version]
- BioRender. 2021. Available online: https://app.biorender.com/biorender-templates (accessed on 15 September 2021).
- Brandtzaeg, P. Mucosal Immunity: Induction, Dissemination, and Effector Functions. Scand. J. Immunol. 2009, 70, 505–515. [Google Scholar] [CrossRef]
- Holmgren, J.; Czerkinsky, C. Mucosal immunity and vaccines. Nat. Med. 2005, 11, S45–S53. [Google Scholar] [CrossRef]
- Ernst, P.B.; Kiyono, H. Mucosal Immunity. In Mandell, Douglas, and Benntt’S Infectious Disease Essentials, 9th ed.; Elsevier: Philadelphia, PA, USA, 2019; Volume 1, Chapter 7; pp. 73–82. [Google Scholar]
- Machado, J.R.; Silva, M.V.; Cavellani, C.L.; Reis, M.A.; Monteiro, M.L.G.R.; Teixeira, V.P.A.; Corrêa, R.R.M. Mucosal Immunity in the Female Genital Tract, HIV/AIDS. BioMed Res. Int. 2014, 2014, 350195. [Google Scholar] [CrossRef] [Green Version]
- Massa, H.M.; Lim, D.J.; Kurono, Y.; Cripps, A.W. Middle Ear and Eustachian Tube Mucosal Immunology. Mucosal Immunol. 2015, 2, 1923–1942. [Google Scholar] [CrossRef]
- Galletti, J.G.; Guzmán, M.; Giordano, M. N Mucosal immune tolerance at the ocular surface in health and disease. Immunology 2017, 150, 397–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mariano, L.L.; Ingersoll, M.A. The immune response to infection in the bladder. Nat. Rev. Urol. 2020, 17, 439–458. [Google Scholar] [CrossRef] [PubMed]
- Silva-Sanchez, A.; Randall, T.D. Anatomical Uniqueness of the Mucosal Immune System (GALT, NALT, iBALT) for the Induction and Regulation of Mucosal Immunity and Tolerance. In Mucosal Vaccines, 2nd ed.; Kiyono, H., Pascual, D.W., Eds.; Academic Press: Cambridge, MA, USA, 2020; Chapter 2; pp. 21–54. [Google Scholar] [CrossRef]
- Tokuhara, D.; Kurashima, Y.; Kamioka, M.; Nakayama, T.; Ernst, P.; Kiyono, H. A comprehensive understanding of the gut mucosal immune system in allergic inflammation. Allergol. Int. 2019, 68, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Ethridge, A.D.; Bazzi, M.H.; Lukacs, N.W.; Huffnagle, G.B. Interkingdom Communication and Regulation of Mucosal Immunity by the Microbiome. J. Infect. Dis. 2021, 223 (Suppl. 3), S236–S240. [Google Scholar] [CrossRef] [PubMed]
- Tanne, A.; Bhardwaj, N. Dendritic Cells: General Overview and Role in Autoimmunity. In Kelley and Firestein’s Textbook of Rheumatology, 10th ed.; Firestein, G.S., Budd, R.C., Gabriel, S.E., McInnes, I.B., O’Dell, J.R., Eds.; Elsevier: Philadelphia, PA, USA, 2017; Chapter 9; pp. 126–144.e6. [Google Scholar] [CrossRef]
- McCarthy, N.E.; Eberl, M. Human γδ T-Cell Control of Mucosal Immunity and Inflammation. Front. Immunol. 2018, 9, 985. [Google Scholar] [CrossRef] [PubMed]
- Pauza, C.D.; Cairo, C. Evolution and function of the TCR Vgamma9 chain repertoire: It’s good to be public. Cell. Immunol. 2015, 296, 22–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cerutti, A. The regulation of IgA class switching. Nat. Rev. Immunol. 2008, 8, 421–434. [Google Scholar] [CrossRef] [PubMed]
- Kurono, Y. The mucosal immune system of the upper respiratory tract and recent progress in mucosal vaccines. Auris Nasus Larynx 2021, in press. [Google Scholar] [CrossRef]
- Castro-Dopico, T.; Clatworthy, M.R. IgG and Fcγ Receptors in Intestinal Immunity and Inflammation. Front. Immunol. 2019, 10, 805. [Google Scholar] [CrossRef]
- Takeuchi, O.; Akira, S. Pattern Recognition Receptors and Inflammation. Cell 2010, 140, 805–820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pouwels, S.D.; Heijink, I.H.; Hacken, N.H.T.; Vandenabeele, P.; Krysko, D.V.; Nawijn, M.; Van Oosterhout, A.J. DAMPs activating innate and adaptive immune responses in COPD. Mucosal Immunol. 2014, 7, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Sander, L.E.; Davis, M.; Boekschoten, M.; Amsen, D.; Dascher, C.C.; Ryffel, B.; Swanson, J.; Muller, M.; Blander, J.M. Detection of prokaryotic mRNA signifies microbial viability and promotes immunity. Nature 2011, 474, 385–389. [Google Scholar] [CrossRef] [PubMed]
- Mourao-Sa, D.; Roy, S.; Blander, J.M. Vita-PAMPs: Signatures of Microbial Viability. In Crossroads between Innate and Adaptive Immunity IV; Katsikis, P., Schoenberger, S., Pulendran, B., Eds.; Advances in Experimental Medicine and Biology, volume 785; Springer: New York, NY, USA, 2013. [Google Scholar]
- Kabelitz, D.; Marischen, L.; Oberg, H.-H.; Holtmeier, W.; Wesch, D. Epithelial Defence by γδ T Cells. Int. Arch. Allergy Immunol. 2005, 137, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, S.; Wagner, C.; Müller, W.; Brenner-Weiss, G.; Hug, F.; Prior, B.; Obst, U.; Hänsch, G.M. Induction of Neutrophil Chemotaxis by the Quorum-Sensing Molecule N -(3-Oxododecanoyl)- l -Homoserine Lactone. Infect. Immun. 2006, 74, 5687–5692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.B.; Xia, Y.-R.; Romanoski, C.E.; Sangderk, L.; Meng, Y.H.; Shi, Y.-S.; Bourquard, N.; Gong, K.W.; Port, Z.; Grijalva, V.; et al. Paraoxonase-2 Modulates Stress Response of Endothelial Cells to Oxidized Phospholipids and a Bacterial Quorum–Sensing Molecule. Arter. Thromb. Vasc. Biol. 2011, 31, 2624–2633. [Google Scholar] [CrossRef] [Green Version]
- Holban, A.-M.; Bleotu, C.; Chifiriuc, M.C.; Bezirtzoglou, E.; Lazar, V. Role ofPseudomonas aeruginosaquorum sensing (QS) molecules on the viability and cytokine profile of human mesenchymal stem cells. Virulence 2014, 5, 303–310. [Google Scholar] [CrossRef]
- Zhang, J.; Gong, F.; Li, L.; Zhao, M.; Song, J. Pseudomonas aeruginosa quorum-sensing molecule N-(3-oxododecanoyl) homoserine lactone attenuates lipopolysaccharide-induced inflammation by activating the unfolded protein response. Biomed. Rep. 2014, 2, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Guo, T.; Yoshida, K.; Ikegame, M.; Okamura, H. Quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone: An all-rounder in mammalian cell modification. J. Oral Biosci. 2020, 62, 16–29. [Google Scholar] [CrossRef]
- Burdette, D.L.; Monroe, K.M.; Sotelo-Troha, K.; Iwig, J.S.; Eckert, B.; Hyodo, M.; Hayakawa, Y.; Vance, R.E. STING is a direct innate immune sensor of cyclic di-GMP. Nature 2011, 478, 515–518. [Google Scholar] [CrossRef]
- Devaux, L.; Kaminski, P.A.; Trieu-Cuot, P.; Firon, A. Cyclic di-AMP in host–pathogen interactions. Curr. Opin. Microbiol. 2018, 41, 21–28. [Google Scholar] [CrossRef]
- Škrnjug, I.; Rueckert, C.; Libanova, R.; Lienenklaus, S.; Weiss, S.; Guzmán, C. The Mucosal Adjuvant Cyclic di-AMP Exerts Immune Stimulatory Effects on Dendritic Cells and Macrophages. PLoS ONE 2014, 9, e95728. [Google Scholar] [CrossRef] [PubMed]
- Yin, W.; Cai, X.; Ma, H.; Zhu, L.; Zhang, Y.; Chou, S.-H.; Galperin, M.Y.; He, J. A decade of research on the second messenger c-di-AMP. FEMS Microbiol. Rev. 2020, 44, 701–724. [Google Scholar] [CrossRef] [PubMed]
- Aoshi, T. Modes of Action for Mucosal Vaccine Adjuvants. Viral Immunol. 2017, 30, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Lee, J.-O. Recognition of lipopolysaccharide pattern by TLR4 complexes. Exp. Mol. Med. 2013, 45, e66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belcher, J.D.; Zhang, P.; Nguyen, J.; Kiser, Z.M.; Nath, K.A.; Hu, J.; Trent, J.O.; Vercellotti, G.M. Identification of a Heme Activation Site on the MD-2/TLR4 Complex. Front. Immunol. 2020, 11, 1370. [Google Scholar] [CrossRef] [PubMed]
- Rumbo, M.; Nempont, C.; Kraehenbuhl, J.-P.; Sirard, J.-C. Mucosal interplay among commensal and pathogenic bacteria: Lessons from flagellin and Toll-like receptor 5. FEBS Lett. 2006, 580, 2976–2984. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Torchinsky, M.B.; Gobert, M.; Xiong, H.; Xu, M.; Linehan, J.L.; Alonzo, F.; Ng, C.; Chen, A.; Lin, X.; et al. Focused specificity of intestinal TH17 cells towards commensal bacterial antigens. Nature 2014, 510, 152–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Han, Y.; Zeng, S.; Shen, H. In respond to commensal bacteria: γδT cells play a pleiotropic role in tumor immunity. Cell Biosci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Coquant, G.; Grill, J.-P.; Seksik, P. Impact of N-Acyl-Homoserine Lactones, Quorum Sensing Molecules, on Gut Immunity. Front. Immunol. 2020, 11, 1827. [Google Scholar] [CrossRef]
- LaSarre, B.; Federle, M.J. Exploiting Quorum Sensing To Confuse Bacterial Pathogens. Microbiol. Mol. Biol. Rev. MMBR 2013, 77, 73–111. [Google Scholar] [CrossRef] [Green Version]
- Lukáš, F.; Gorenc, G.; Kopečný, J. Detection of possible AI-2-mediated quorum sensing system in commensal intestinal bacteria. Folia Microbiol. 2008, 53, 221–224. [Google Scholar] [CrossRef] [PubMed]
- Rémy, B.; Mion, S.; Plener, L.; Elias, M.; Chabrière, E.; Daudé, D. Interference in Bacterial Quorum Sensing: A Biopharmaceutical Perspective. Front. Pharmacol. 2018, 9, 203. [Google Scholar] [CrossRef] [PubMed]
- Rudlaff, R.M.; Waters, C.M. What is the role of cyclic di-GMP signaling within the human gut microbiome? Microbiome Sci. Med. 2014, 1, 39–44. [Google Scholar] [CrossRef] [Green Version]
- Povolotsky, T.L.; Hengge, R. Genome-Based Comparison of Cyclic Di-GMP Signaling in Pathogenic and Commensal Escherichia coli Strains. J. Bacteriol. 2015, 198, 111–126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rørvik, G.H.; Naemi, A.; Edvardsen, P.K.T.; Simm, R. The c-di-AMP signaling system influences stress tolerance and biofilm formation of Streptococcus mitis. MicrobiologyOpen 2021, 10, e1203. [Google Scholar] [CrossRef]
- Li, F.; Cimdins, A.; Rohde, M.; Jänsch, L.; Kaever, V.; Nimtz, M.; Römling, U. DncV Synthesizes Cyclic GMP-AMP and Regulates Biofilm Formation and Motility in Escherichia coli ECOR31. mBio 2019, 10, e02492-18. [Google Scholar] [CrossRef] [Green Version]
- Maes, M.; Twisk, F.N.; Kubera, M.; Ringel, K.; Leunis, J.-C.; Geffard, M. Increased IgA responses to the LPS of commensal bacteria is associated with inflammation and activation of cell-mediated immunity in chronic fatigue syndrome. J. Affect. Disord. 2012, 136, 909–917. [Google Scholar] [CrossRef]
- Steimle, A.; Autenrieth, I.B.; Frick, J.-S. Structure and function: Lipid a modifications in commensals and pathogens. Int. J. Med. Microbiol. 2016, 306, 290–301. [Google Scholar] [CrossRef] [Green Version]
- Cullender, T.C.; Chassaing, B.; Janzon, A.; Kumar, K.; Muller, C.E.; Werner, J.J.; Angenent, L.; Bell, M.E.; Hay, A.; Peterson, D.A.; et al. Innate and Adaptive Immunity Interact to Quench Microbiome Flagellar Motility in the Gut. Cell Host Microbe 2013, 14, 571–581. [Google Scholar] [CrossRef] [Green Version]
- Gallo, O.; Locatello, L.G.; Mazzoni, A.; Novelli, L.; Annunziato, F. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 2021, 14, 305–316. [Google Scholar] [CrossRef]
- Russell, M.W.; Moldoveanu, Z.; Ogra, P.L.; Mestecky, J. Mucosal Immunity in COVID-19: A Neglected but Critical Aspect of SARS-CoV-2 Infection. Front. Immunol. 2020, 11, 611337. [Google Scholar] [CrossRef] [PubMed]
- Fröberg, J.; Diavatopoulos, D.A. Mucosal immunity to severe acute respiratory syndrome coronavirus 2 infection. Curr. Opin. Infect. Dis. 2021, 34, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Weitnauer, M.; Mijosek, V.; Dalpke, A.H. Control of local immunity by airway epithelial cells. Mucosal Immunol. 2015, 9, 287–298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, R.; Mackay, A.J.; Patel, A.R.; Garcha, D.S.; Kowlessar, B.S.; E Brill, S.; E Donnelly, L.; Barnes, P.J.; Donaldson, G.C.; A Wedzicha, J. Inflammatory thresholds and the species-specific effects of colonising bacteria in stable chronic obstructive pulmonary disease. Respir. Res. 2014, 15, 114. [Google Scholar] [CrossRef]
- Karaolis, D.K.R.; Means, T.K.; Yang, D.; Takahashi, M.; Yoshimura, T.; Muraille, E.; Philpott, D.; Schroeder, J.T.; Hyodo, M.; Hayakawa, Y.; et al. Bacterial c-di-GMP is an immunostimulatory molecule. J. Immunol. 2007, 178, 2171–2181. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.G.; Cassidy-Hanley, D. Recombinant subunit vaccines: Potentials and constraints. Dev. Biol. 2005, 121, 153–163. [Google Scholar]
- Hajam, I.A.; Dar, P.A.; Won, G.; Lee, J.H. Bacterial ghosts as adjuvants: Mechanisms and potential. Vet. Res. 2017, 48, 37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, S.Y.; Choi, J.H.; Xu, Z. Microbial cell-surface display. Trends Biotechnol. 2003, 21, 45–52. [Google Scholar] [CrossRef]
- Juárez-Rodríguez, M.D.; Yang, J.; Kader, R.; Alamuri, P.; Curtiss, R.; Clark-Curtiss, J.E. Live Attenuated Salmonella Vaccines Displaying Regulated Delayed Lysis and Delayed Antigen Synthesis To Confer Protection against Mycobacterium tuberculosis. Infect. Immun. 2011, 80, 815–831. [Google Scholar] [CrossRef] [Green Version]
- Bumann, D.; Behre, C.; Behre, K.; Herz, S.; Gewecke, B.; Gessner, J.E.; von Specht, B.U.; Baumann, U. Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: A clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 2010, 28, 707–713. [Google Scholar] [CrossRef]
- Frey, S.E.; Lottenbach, K.R.; Hill, H.; Blevins, T.P.; Yu, Y.; Zhang, Y.; Brenneman, K.E.; Kelly-Aehle, S.M.; McDonald, C.; Jansen, A.; et al. A Phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella Typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013, 31, 4874–4880. [Google Scholar] [CrossRef] [PubMed]
- Piao, H.H.; Seong, J.; Song, M.K.; Kim, Y.U.; Shin, D.-J.; E Choy, H.; Hong, Y. The Bacterial Surface Expression of SARS Viral Epitope using Salmonella typhi Cytolysin A. J. Bacteriol. Virol. 2009, 39, 103–112. [Google Scholar] [CrossRef] [Green Version]
- Jia, Q.; Dillon, B.J.; Masleša-Galić, S.; Horwitz, M.A. Listeria-Vectored Vaccine Expressing the Mycobacterium tuberculosis 30-Kilodalton Major Secretory Protein via the Constitutively Active prfA * Regulon Boosts Mycobacterium bovis BCG Efficacy against Tuberculosis. Infect. Immun. 2017, 85, e00245-17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, Y.; Kim, J.A.; Kim, C.-H.; Choi, S.-K.; Pan, J.-G. Bacillus subtilis spore vaccines displaying protective antigen induce functional antibodies and protective potency. BMC Vet. Res. 2020, 16, 259. [Google Scholar] [CrossRef] [PubMed]
- Sibley, L.; Reljic, R.; Radford, D.S.; Huang, J.-M.; Hong, H.A.; Cranenburgh, R.M.; Cutting, S.M. Recombinant Bacillus subtilis spores expressing MPT64 evaluated as a vaccine against tuberculosis in the murine model. FEMS Microbiol. Lett. 2014, 358, 170–179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, K.; Thomas, T.; Garnica, O.; Dhandayuthapani, S. Recombinant Bacillus subtilis spores for the delivery of Mycobacterium tuberculosis Ag85B-CFP10 secretory antigens. Tuberculosis 2016, 101, S18–S27. [Google Scholar] [CrossRef]
- Pei, H.; Liu, J.; Cheng, Y.; Sun, C.; Wang, C.; Lu, Y.; Ding, J.; Zhou, J.; Xiang, H. Expression of SARS-coronavirus nucleocapsid protein in Escherichia coli and Lactococcus lactis for serodiagnosis and mucosal vaccination. Appl. Microbiol. Biotechnol. 2005, 68, 220–227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oliveira, M.L.S.; Arêas, A.P.M.; Campos, I.B.; Monedero, V.; Perez-Martínez, G.; Miyaji, E.N.; Leite, L.C.C.; Aires, K.A.; Ho, P.L. Induction of systemic and mucosal immune response and decrease in Streptococcus pneumoniae colonization by nasal inoculation of mice with recombinant lactic acid bacteria expressing pneumococcal surface antigen A. Microbes Infect. 2006, 8, 1016–1024. [Google Scholar] [CrossRef]
- Chowdhury, M.Y.E.; Li, R.; Kim, J.-H.; Park, M.-E.; Kim, T.-H.; Pathinayake, P.; Weeratunga, P.; Song, M.K.; Son, H.-Y.; Hong, S.-P.; et al. Mucosal Vaccination with Recombinant Lactobacillus casei-Displayed CTA1-Conjugated Consensus Matrix Protein-2 (sM2) Induces Broad Protection against Divergent Influenza Subtypes in BALB/c Mice. PLoS ONE 2014, 9, e94051. [Google Scholar] [CrossRef]
- Li, R.; Chowdhury, M.Y.; Kim, J.-H.; Kim, T.-H.; Pathinayake, P.; Koo, W.-S.; Park, M.-E.; Yoon, J.-E.; Roh, J.-B.; Hong, S.-P.; et al. Mucosally administered Lactobacillus surface-displayed influenza antigens (sM2 and HA2) with cholera toxin subunit A1 (CTA1) Induce broadly protective immune responses against divergent influenza subtypes. Veter- Microbiol. 2015, 179, 250–263. [Google Scholar] [CrossRef]
- Lee, J.-S.; Poo, H.; Han, D.P.; Hong, S.-P.; Kim, K.; Cho, M.W.; Kim, E.; Sung, M.-H.; Kim, C.-J. Mucosal Immunization with Surface-Displayed Severe Acute Respiratory Syndrome Coronavirus Spike Protein on Lactobacillus casei Induces Neutralizing Antibodies in Mice. J. Virol. 2006, 80, 4079–4087. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuczkowska, K.; Kleiveland, C.R.; Minic, R.; Moen, L.F.; Øverland, L.; Tjåland, R.; Carlsen, H.; Lea, T.; Mathiesen, G.; Eijsink, V.G.H. Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Appl. Environ. Microbiol. 2017, 83, e02782-16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Fu, T.; Hao, J.; Li, L.; Tian, M.; Jin, N.; Ren, L.; Li, C. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int. J. Biol. Macromol. 2020, 160, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Wang, M.; Hao, J.; Han, J.; Fu, T.; Bai, J.; Tian, M.; Jin, N.; Zhu, G.; Li, C. Mucosal IgA response elicited by intranasal immunization of Lactobacillus plantarum expressing surface-displayed RBD protein of SARS-CoV-2. Int. J. Biol. Macromol. 2021, 190, 409–416. [Google Scholar] [CrossRef]
- Jia, Q.; Bielefeldt-Ohmann, H.; Maison, R.M.; Masleša-Galić, S.; Cooper, S.K.; Bowen, R.A.; Horwitz, M.A. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. npj Vaccines 2021, 6, 47. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-J.; Jeong, H.; Seo, H.; Lee, M.-H.; Shin, H.M.; Kim, B.-J. Recombinant Mycobacterium paragordonae Expressing SARS-CoV-2 Receptor-Binding Domain as a Vaccine Candidate Against SARS-CoV-2 Infections. Front. Immunol. 2021, 12. [Google Scholar] [CrossRef] [PubMed]
- Jensen, V.B.; Harty, J.; Jones, B.D. Interactions of the Invasive Pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M Cells and Murine Peyer’s Patches. Infect. Immun. 1998, 66, 3758–3766. [Google Scholar] [CrossRef] [Green Version]
- Mudgal, R.; Nehul, S.; Tomar, S. Prospects for mucosal vaccine: Shutting the door on SARS-CoV-2. Hum. Vaccines Immunother. 2020, 16, 2921–2931. [Google Scholar] [CrossRef]
- Lewis, G.K. Live-attenuatedSalmonellaas a prototype vaccine vector for passenger immunogens in humans: Are we there yet? Expert Rev. Vaccines 2007, 6, 431–440. [Google Scholar] [CrossRef]
- Roland, K.L.; Brenneman, K.E. Salmonellaas a vaccine delivery vehicle. Expert Rev. Vaccines 2013, 12, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Shahabi, V.; Maciag, P.C.; Rivera, S.; Wallecha, A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng. Bugs 2010, 1, 235–239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pownall, W.R.; Imhof, D.; Trigo, N.F.; Ganal-Vonarburg, S.C.; Plattet, P.; Monney, C.; Forterre, F.; Hemphill, A.; Oevermann, A. Safety of a Novel Listeria monocytogenes-Based Vaccine Vector Expressing NcSAG1 (Neospora caninum Surface Antigen 1). Front. Cell. Infect. Microbiol. 2021, 11, 675219. [Google Scholar] [CrossRef] [PubMed]
- Lv, P.; Song, Y.; Liu, C.; Yu, L.; Shang, Y.; Tang, H.; Sun, S.; Wang, F. Application of Bacillus subtilis as a live vaccine vector: A review. J. Vet. Med. Sci. 2020, 82, 1693–1699. [Google Scholar] [CrossRef]
- Medina, M.S.; Vintiñi, E.O.; Villena, J.; Raya, R.R.; Alvarez, S.G. Lactococcus lactisas an adjuvant and delivery vehicle of antigens against pneumococcal respiratory infections. Bioeng. Bugs 2010, 1, 313–325. [Google Scholar] [CrossRef] [Green Version]
- Michon, C.; Langella, P.; Eijsink, V.G.H.; Mathiesen, G.; Chatel, J.-M. Display of recombinant proteins at the surface of lactic acid bacteria: Strategies and applications. Microb. Cell Factories 2016, 15, 70. [Google Scholar] [CrossRef] [PubMed]
- Maidens, C.; Childs, C.; Przemska, A.; Bin Dayel, I.; Yaqoob, P. Modulation of vaccine response by concomitant probiotic administration. Br. J. Clin. Pharmacol. 2013, 75, 663–670. [Google Scholar] [CrossRef] [Green Version]
- LeCureux, J.S.; Dean, G.A. Lactobacillus Mucosal Vaccine Vectors: Immune Responses against Bacterial and Viral Antigens. mSphere 2018, 3, e00061-18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landete, J.M. A review of food-grade vectors in lactic acid bacteria: From the laboratory to their application. Crit. Rev. Biotechnol. 2017, 37, 296–308. [Google Scholar] [CrossRef] [PubMed]
- Vilander, A.C.; Dean, G.A. Dean Adjuvant Strategies for Lactic Acid Bacterial Mucosal Vaccines. Vaccines 2019, 7, 150. [Google Scholar] [CrossRef] [Green Version]
- Chae, J.P.; Pajarillo, E.A.; Hwang, I.-C.; Kang, D.-K. Construction of a Bile-responsive Expression System in Lactobacillus plantarum. Korean J. Food Sci. Anim. Resour. 2019, 39, 13–22. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Martín, P.; Flórez, A.B.; Margolles, A.; del Solar, G.; Mayo, B. Improved Cloning Vectors for Bifidobacteria, Based on the Bifidobacterium catenulatum pBC1 Replicon. Appl. Environ. Microbiol. 2008, 74, 4656–4665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Man, W.H.; De Steenhuijsen Piters, W.A.A.; Bogaert, D. The microbiota of the respiratory tract: Gatekeeper to respiratory health. Nat. Rev. Microbiol. 2017, 15, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Kumpitsch, C.; Koskinen, K.; Schöpf, V.; Moissl-Eichinger, C. The microbiome of the upper respiratory tract in health and disease. BMC Biol. 2019, 17, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santacroce, L.; Charitos, I.A.; Ballini, A.; Inchingolo, F.; Luperto, P.; De Nitto, E.; Topi, S. The Human Respiratory System and its Microbiome at a Glimpse. Biology 2020, 9, 318. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.L.; Sequeira, R.P.; Clarke, T.B. The microbiota protects against respiratory infection via GM-CSF signaling. Nat. Commun. 2017, 8, 1512. [Google Scholar] [CrossRef]
- Marchisio, P.G.; Santagati, M.; Scillato, M.; Baggi, E.; Fattizzo, M.; Rosazza, C.; Stefani, S.; Esposito, S.; Principi, N. Streptococcus salivarius 24SMB administered by nasal spray for the prevention of acute otitis media in otitis-prone children. Eur. J. Clin. Microbiol. Infect. Dis. 2015, 34, 2377–2383. [Google Scholar] [CrossRef] [PubMed]
- Shekhar, S.; Khan, R.; Schenck, K.; Petersen, F.C. Intranasal Immunization with the Commensal Streptococcus mitis Confers Protective Immunity against Pneumococcal Lung Infection. Appl. Environ. Microbiol. 2019, 85. [Google Scholar] [CrossRef] [Green Version]
- Lee, N.-K.; Paik, H.-D. Prophylactic effects of probiotics on respiratory viruses including COVID-19: A review. Food Sci. Biotechnol. 2021, 30, 773–781. [Google Scholar] [CrossRef]
- Telenti, A.; Arvin, A.; Corey, L.; Corti, D.; Diamond, M.S.; García-Sastre, A.; Garry, R.F.; Holmes, E.C.; Pang, P.S.; Virgin, H.W. After the pandemic: Perspectives on the future trajectory of COVID-19. Nature 2021, 596, 495–504. [Google Scholar] [CrossRef]
- Nathan, A.; Rossin, E.J.; Kaseke, C.; Park, R.J.; Khatri, A.; Koundakjian, D.; Urbach, J.M.; Singh, N.K.; Bashirova, A.; Tano-Menka, R.; et al. Structure-guided T cell vaccine design for SARS-CoV-2 variants and sarbecoviruses. Cell 2021, 184, 4401–4413.e10. [Google Scholar] [CrossRef]
Molecule Fragment | Type Source | Immune Activation | Bacterial Vector Candidate | Cascade | Reference |
---|---|---|---|---|---|
Pyrophosphates | Bacterial isoprenoid synthesis | γδ T cells | Bifidobacteriaceae, Bacillaceae, and E. coli improve γδ T cells [57] | DC maturation; Neutrofil recruitment; Increase in tumour necrosis factor-α and interferon-γ | [31,40,57] |
Acyl-homoserine lactones (AHL)-based QS | Quorum-sensing (QC) molecules | TLR4 | Gram-negatives such as Hafnia alvei, Edwardsiella tarda, and Ralstonia sp.; E. coli, Enterobacter, and Klebsiella [58] | Recruitment of polymorphonuclear neutrophils; Production of interleukins that are dependent on the type of QS protein | [41,42,43,44,58] |
Oligopeptide (AIP)-based QC | Quorum-sensing (QC) molecules | TLR4 | Gram-positives such as Staphylococcus aureus, Enterococcus faecalis, Streptococcus pneumoniae, Bacillus thuringiensis, and Lactobacillus spp. [59] | Recruitment of polymorphonuclear neutrophils; Production of interleukins that are dependent on the type of QS protein | [41,42,43,44,59] |
4, 5- dihydroxy-2, 3-pentanedione (DPD, AI-2)-based QS | Quorum-sensing (QC) molecules | TLR4 | Bacteroides vulgatus, Clostridium proteoclasticum, E. coli, Eubacterium rectale, Lachnospira multipara, Pseudobutyrivibrio ruminis, Roseburia intestinalis, Ruminococcus albus and Ruminococcus flavefaciens, Lactococcus lactis [60] | Recruitment of polymorphonuclear neutrophils; Production of interleukins that are dependent on the type of QS protein | [41,42,43,44,60] |
Quinolone-based QS | Quorum-sensing (QC) molecules | TLR4 | Pseudomonas aeruginosa and related bacteria [61] | Recruitment of polymorphonuclear neutrophils; Production of interleukins that are dependent on the type of QS protein | [41,42,43,46,61] |
cyclic-di-GMP | Cyclic dinucleotides | STING, DDX41 | Faecalibacterium prausnitzii, Eubacterium rectale, Mitsuokella multacida, and commensal E. coli [62,63] | STING-TBK1-IRF3 pathway; DDX41; RECON; type I interferons and cytokines | [47,54,62,63] |
cyclic-di-AMP | Cyclic dinucleotides | STING, DDX41, RECON | Biofilm-forming such as Streptococcus sp. and commensal Escherichia coli [64] | STING-TBK1-IRF3 pathway; DDX41; RECON; NF-kB, type I interferons, and cytokines | [54,55,64,65] |
Lipopolysaccharide (LPS) | Component of cell wall | TLR4 | Commensal Gram-negatives such as E. coli, Hafnia alvei, P. aeruginosa, Morganella morganii, Pseudomonas putida, Citrobacter koseri, and Klebsiella pneumoniae [66,67] | Induce nuclear factor-κB (NF-κB); tumour necrosis factor-α (TNF-α); interleukin (IL)–12 | [51,66,67] |
Flagellin residues 89–96 | Bacterial flagellin | TLR5 | Commensal Firmicutes such as Roseburia (R. inulivorans, R. intestinalis), Eubacterium sp., and Clostridium (Clostridium scindens, C. ramosum, C. bolteae, C. bartletti), and commensal Proteobacteria such as Providencia stuartii, Citrobacter amalonaticus, and S. Typhimurium [68] | MyD88-dependent; Activates NFkB and MAPK pathways | [53,68] |
General | Bacterial Species Vector | Expressed Antigen/Immunogen | Reference |
---|---|---|---|
Salmonella spp. | Salmonella enterica serovar Typhimurium (live-attenuated) | Mycobacterium tuberculosis early secreted antigenic target 6-kDa (ESAT-6) protein and culture filtrate protein 10 (CFP-10) antigens | [76] |
Salmonella enterica serovar Typhi (live-attenuated) | Pseudomonas aeruginosa highly conserved outer membrane proteins OprF and OprI | [77] | |
Salmonella enterica serovar Typhi (live-attenuated) | Streptococcus pneumoniae surface protein antigen PspA | [78] | |
Salmonella enterica serovar Typhimurium (live-attenuated) | Cytolysin A (ClyA)-Spike protein of SARS-CoV1 (S1E) | [79] | |
Listeria spp. | Listeria monocytogenes (live-attenuated) | Mycobacterium tuberculosis 30 kDa major secretory protein (r30/antigen 85B (Ag85B)) | [80] |
Bacillus spp. | Bacillus subtilis | Bacillus anthracis protective antigen | [81] |
Bacillus subtilis | Mycobacterium tuberculosis, Antigen MPT64 | [82] | |
Bacillus subtilis | Mycobacterium tuberculosis, Secretory antigens Ag85B and CFP10 | [83] | |
Lactococcus lactis | Lactococcus lactis | SARS-CoV N protein | [84] |
Lactobacillus spp. | Lactobacillus | Streptococcus pneumoniae, PsaA | [85] |
Lactobacillus casei | CTA1-conjugated Influenza sM2 protein | [86] | |
Lactobacillus casei | CTA1-conjugated Influenza sM2 and HA1 | [87] | |
Lactobacillus casei | PgsA-Spike (S) protein segments SA (residues 2 to 114) and SB (residues 264 to 596) of SARS-CoV | [88] | |
Lactobacillus plantarum | Mycobacterium tuberculosis, Fusion antigen AgE6 | [89] | |
Lactobacillus plantarum | SARS-CoV-2 Spike protein (whole protein) | [90] | |
Lactobacillus plantarum | Receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein | [91] | |
Novel vector host | Francisella tularensis subsp. holarctica (single live multi-deletional attenuated) | SARS-CoV-2 Spike, envelope, membrane, and nucleocapsid proteins | [92] |
Mycobacterium paragordonae | Receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein | [93] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira, M.; Oh, J.K.; Kang, D.-K.; Engstrand, L.; Valeriano, V.D. Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut–Lung Axis: Future Possibilities for SARS-CoV-2 Protection. BioTech 2022, 11, 3. https://doi.org/10.3390/biotech11010003
Pereira M, Oh JK, Kang D-K, Engstrand L, Valeriano VD. Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut–Lung Axis: Future Possibilities for SARS-CoV-2 Protection. BioTech. 2022; 11(1):3. https://doi.org/10.3390/biotech11010003
Chicago/Turabian StylePereira, Marcela, Ju Kyoung Oh, Dae-Kyung Kang, Lars Engstrand, and Valerie Diane Valeriano. 2022. "Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut–Lung Axis: Future Possibilities for SARS-CoV-2 Protection" BioTech 11, no. 1: 3. https://doi.org/10.3390/biotech11010003
APA StylePereira, M., Oh, J. K., Kang, D. -K., Engstrand, L., & Valeriano, V. D. (2022). Hacking Commensal Bacteria to Consolidate the Adaptive Mucosal Immune Response in the Gut–Lung Axis: Future Possibilities for SARS-CoV-2 Protection. BioTech, 11(1), 3. https://doi.org/10.3390/biotech11010003