G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation
Abstract
:1. Introduction
2. Materials and Methods
2.1. ESI-MS Binding Studies
2.2. Molecular Docking
2.3. Molecular Dynamics
2.4. Nuclear Magnetic Resonance
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Burge, S.; Parkinson, G.N.; Hazel, P.; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, Topology and Structure. Nucleic Acids Res. 2006, 34, 5402–5415. [Google Scholar] [CrossRef] [PubMed]
- Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The Next Generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef] [PubMed]
- Kosiol, N.; Juranek, S.; Brossart, P.; Heine, A.; Paeschke, K. G-Quadruplexes: A Promising Target for Cancer Therapy. Mol. Cancer 2021, 20, 40. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui-Jain, A.; Grand, C.L.; Bearss, D.J.; Hurley, L.H. Direct Evidence for a G-Quadruplex in a Promoter Region and Its Targeting with a Small Molecule to Repress c-MYC Transcription. Proc. Natl. Acad. Sci. USA 2002, 99, 11593–11598. [Google Scholar] [CrossRef]
- Chaudhuri, R.; Bhattacharya, S.; Dash, J.; Bhattacharya, S. Recent Update on Targeting c-MYC G-Quadruplexes by Small Molecules for Anticancer Therapeutics. J. Med. Chem. 2021, 64, 42–70. [Google Scholar] [CrossRef]
- Ongaro, A.; Ribaudo, G.; Zagotto, G.; Memo, M.; Gianoncelli, A. Synthesis via A3 Coupling Reaction of Anthracene-Propargylamine as a New Scaffold for the Interaction with DNA. ChemistrySelect 2019, 4, 13138–13142. [Google Scholar] [CrossRef]
- Ribaudo, G.; Scalabrin, M.; Pavan, V.; Fabris, D.; Zagotto, G. Constrained Bisantrene Derivatives as G-Quadruplex Binders. Arkivoc 2016, 2016, 145–160. [Google Scholar] [CrossRef]
- Murat, P.; Singh, Y.; Defrancq, E. Methods for Investigating G-Quadruplex DNA/Ligand Interactions. Chem. Soc. Rev. 2011, 40, 5293. [Google Scholar] [CrossRef]
- Ribaudo, G.; Ongaro, A.; Zorzan, M.; Pezzani, R.; Redaelli, M.; Zagotto, G.; Memo, M.; Gianoncelli, A. Investigation of the Molecular Reactivity of Bioactive Oxiranylmethyloxy Anthraquinones. Arch. Der Pharm. 2019, 352, 1900030. [Google Scholar] [CrossRef]
- Jucá, M.M.; Filho, F.M.S.C.; De Almeida, J.C.; Da Mesquita, D.D.; De Barriga, J.R.D.; Dias, K.C.F.; Barbosa, T.M.; Vasconcelos, L.C.; Leal, L.K.A.M.; Ribeiro, J.E.; et al. Flavonoids: Biological Activities and Therapeutic Potential. Nat. Prod. Res. 2020, 34, 692–705. [Google Scholar] [CrossRef] [PubMed]
- Hajimahmoodi, M.; Shams-Ardakani, M.; Saniee, P.; Siavoshi, F.; Mehrabani, M.; Hosseinzadeh, H.; Foroumadi, P.; Safavi, M.; Khanavi, M.; Akbarzadeh, T.; et al. In Vitro Antibacterial Activity of Some Iranian Medicinal Plant Extracts against Helicobacter Pylori. Nat. Prod. Res. 2011, 25, 1059–1066. [Google Scholar] [CrossRef] [PubMed]
- Su, Z.; Wang, P.; Yuan, W.; Grant, G.; Li, S. Phenolics from the Fruits of Maclura pomifera. Nat. Prod. Commun. 2017, 12, 1934578X1701201. [Google Scholar] [CrossRef]
- Ribaudo, G.; Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A. Evidence on Selective Binding to G-Quadruplex DNA of Isoflavones from Maclura pomifera by Mass Spectrometry and Molecular Docking. Nat. Prod. Res. 2019, 35, 2583–2587. [Google Scholar] [CrossRef]
- Ribaudo, G.; Oselladore, E.; Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A. Enhanced G-Quadruplex Selectivity of Flavonoid Glycoside Rutin over Quercetin. Nat. Prod. Res. 2020, 36, 3469–3473. [Google Scholar] [CrossRef] [PubMed]
- Ribaudo, G.; Ongaro, A.; Zagotto, G.; Memo, M.; Gianoncelli, A. Photoactivated Semi-Synthetic Derivative of Osajin Selectively Interacts with G-Quadruplex DNA. Nat. Prod. Res. 2020, 36, 405–410. [Google Scholar] [CrossRef]
- Arola, A.; Vilar, R. Stabilisation of G-Quadruplex DNA by Small Molecules. Curr. Top. Med. Chem. 2008, 8, 1405–1415. [Google Scholar] [CrossRef] [PubMed]
- Zuffo, M.; Guédin, A.; Leriche, E.-D.; Doria, F.; Pirota, V.; Gabelica, V.; Mergny, J.-L.; Freccero, M. More Is Not Always Better: Finding the Right Trade-off between Affinity and Selectivity of a G-Quadruplex Ligand. Nucleic Acids Res. 2018, 46, e115. [Google Scholar] [CrossRef] [PubMed]
- Schrödinger Release 2020-1: Protein Preparation Wizard; Epik, 2016; Impact, 2016; Prime, 2020; Schrödinger, LLC.: New York, NY, USA, 2020.
- Roos, K.; Wu, C.; Damm, W.; Reboul, M.; Stevenson, J.M.; Lu, C.; Dahlgren, M.K.; Mondal, S.; Chen, W.; Wang, L.; et al. OPLS3e: Extending Force Field Coverage for Drug-Like Small Molecules. J. Chem. Theory Comput. 2019, 15, 1863–1874. [Google Scholar] [CrossRef]
- Zgarbová, M.; Šponer, J.; Otyepka, M.; Cheatham, T.E.; Galindo-Murillo, R.; Jurečka, P. Refinement of the Sugar–Phosphate Backbone Torsion Beta for AMBER Force Fields Improves the Description of Z- and B-DNA. J. Chem. Theory Comput. 2015, 11, 5723–5736. [Google Scholar] [CrossRef]
- Pérez, A.; Marchán, I.; Svozil, D.; Sponer, J.; Cheatham, T.E.; Laughton, C.A.; Orozco, M. Refinement of the AMBER Force Field for Nucleic Acids: Improving the Description of α/γ Conformers. Biophys. J. 2007, 92, 3817–3829. [Google Scholar] [CrossRef]
- Wang, J.; Cieplak, P.; Kollman, P.A. How well does a restrained electrostatic potential (RESP) model perform in calculating conformational energies of organic and biological molecules? J. Comput. Chem. 2000, 21, 1049–1074. [Google Scholar] [CrossRef]
- Joung, I.S.; Cheatham, T.E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef]
- Ribaudo, G.; Coghi, P.; Zanforlin, E.; Law, B.Y.K.; Wu, Y.Y.J.; Han, Y.; Qiu, A.C.; Qu, Y.Q.; Zagotto, G.; Wong, V.K.W. Semi-Synthetic Isoflavones as BACE-1 Inhibitors against Alzheimer’s Disease. Bioorg. Chem. 2019, 87, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Siegel, M. Early Discovery Drug Screening Using Mass Spectrometry. Curr. Top. Med. Chem. 2002, 2, 13–33. [Google Scholar] [CrossRef]
- Rosu, F.; De Pauw, E.; Gabelica, V. Electrospray Mass Spectrometry to Study Drug-Nucleic Acids Interactions. Biochimie 2008, 90, 1074–1087. [Google Scholar] [CrossRef]
- Monchaud, D.; Allain, C.; Bertrand, H.; Smargiasso, N.; Rosu, F.; Gabelica, V.; De Cian, A.; Mergny, J.-L.; Teulade-Fichou, M.-P. Ligands Playing Musical Chairs with G-Quadruplex DNA: A Rapid and Simple Displacement Assay for Identifying Selective G-Quadruplex Binders. Biochimie 2008, 90, 1207–1223. [Google Scholar] [CrossRef]
- Ongaro, A.; Desiderati, G.; Oselladore, E.; Auricchio, D.; Memo, M.; Ribaudo, G.; Sissi, C.; Gianoncelli, A. Amino-Acid-Anthraquinone Click Chemistry Conjugates Selectively Target Human Telomeric G-Quadruplexes. ChemMedChem 2022, 17, e202100665. [Google Scholar] [CrossRef] [PubMed]
- Tan, W.; Zhou, J.; Yuan, G. Electrospray Ionization Mass Spectrometry Probing of Binding Affinity of Berbamine, a Flexible Cyclic Alkaloid from Traditional Chinese Medicine, with G-quadruplex DNA. Rapid Commun. Mass Spectrom. 2014, 28, 143–147. [Google Scholar] [CrossRef]
- Cubrilovic, D.; Biela, A.; Sielaff, F.; Steinmetzer, T.; Klebe, G.; Zenobi, R. Quantifying Protein-Ligand Binding Constants Using Electrospray Ionization Mass Spectrometry: A Systematic Binding Affinity Study of a Series of Hydrophobically Modified Trypsin Inhibitors. J. Am. Soc. Mass Spectrom. 2012, 23, 1768–1777. [Google Scholar] [CrossRef]
- Yuan, G.; Zhang, Q.; Zhou, J.; Li, H. Mass Spectrometry of G-quadruplex DNA: Formation, Recognition, Property, Conversion, and Conformation. Mass Spectrom. Rev. 2011, 30, 1121–1142. [Google Scholar] [CrossRef]
- Ribaudo, G.; Ongaro, A.; Oselladore, E.; Memo, M.; Gianoncelli, A. Combining Electrospray Mass Spectrometry (ESI-MS) and Computational Techniques in the Assessment of G-Quadruplex Ligands: A Hybrid Approach to Optimize Hit Discovery. J. Med. Chem. 2021, 64, 13174–13190. [Google Scholar] [CrossRef] [PubMed]
- Mazzitelli, C.L.; Brodbelt, J.S.; Kern, J.T.; Rodriguez, M.; Kerwin, S.M. Evaluation of Binding of Perylene Diimide and Benzannulated Perylene Diimide Ligands to Dna by Electrospray Ionization Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2006, 17, 593–604. [Google Scholar] [CrossRef]
- Machireddy, B.; Sullivan, H.-J.; Wu, C. Binding of BRACO19 to a Telomeric G-Quadruplex DNA Probed by All-Atom Molecular Dynamics Simulations with Explicit Solvent. Molecules 2019, 24, 1010. [Google Scholar] [CrossRef] [PubMed]
- Rosu, F.; Nguyen, C.-H.; De Pauw, E.; Gabelica, V. Ligand Binding Mode to Duplex and Triplex Dna Assessed by Combining Electrospray Tandem Mass Spectrometry and Molecular Modeling. J. Am. Soc. Mass Spectrom. 2007, 18, 1052–1062. [Google Scholar] [CrossRef]
- Torvinen, M.; Kalenius, E.; Sansone, F.; Casnati, A.; Jänis, J. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]Arene. J. Am. Soc. Mass Spectrom. 2012, 23, 359–365. [Google Scholar] [CrossRef] [PubMed]
- Gu, W.; Lin, Z.; Zhao, S.; Wang, G.; Shen, Z.; Liu, W.; Cai, Y.; Wang, K.; Wan, C.C.; Yan, T. Research Progress on G-Quadruplexes in Human Telomeres and Human Telomerase Reverse Transcriptase (hTERT) Promoter. Oxid. Med. Cell. Longev. 2022, 2022, 2905663. [Google Scholar] [CrossRef]
- Xu, N.; Yang, H.; Cui, M.; Song, F.; Liu, Z.; Liu, S. Evaluation of Alkaloids Binding to the Parallel Quadruplex Structure [d(TGGGGT)]4 by Electrospray Ionization Mass Spectrometry: ESI-MS of Alkaloids/G-Quadruplex DNA Complexes. J. Mass Spectrom. 2012, 47, 694–700. [Google Scholar] [CrossRef]
- Pagano, B.; Amato, J.; Iaccarino, N.; Cingolani, C.; Zizza, P.; Biroccio, A.; Novellino, E.; Randazzo, A. Looking for Efficient G-Quadruplex Ligands: Evidence for Selective Stabilizing Properties and Telomere Damage by Drug-Like Molecules. ChemMedChem 2015, 10, 640–649. [Google Scholar] [CrossRef]
- Li, K.; Yatsunyk, L.; Neidle, S. Water Spines and Networks in G-Quadruplex Structures. Nucleic Acids Res. 2021, 49, 519–528. [Google Scholar] [CrossRef]
- Schrödinger Release 2020-1: Glide; Schrödinger, LLC.: New York, NY, USA, 2020.
- Schrödinger Release 2020-1: Desmond Molecular Dynamics System; D. E. Shaw Research: New York, NY, USA; Maestro-Desmond Interoperability Tools, Schrödinger: New York, NY, USA, 2020.
- Martino, L.; Virno, A.; Pagano, B.; Virgilio, A.; Di Micco, S.; Galeone, A.; Giancola, C.; Bifulco, G.; Mayol, L.; Randazzo, A. Structural and Thermodynamic Studies of the Interaction of Distamycin A with the Parallel Quadruplex Structure [d(TGGGGT)]4. J. Am. Chem. Soc. 2007, 129, 16048–16056. [Google Scholar] [CrossRef] [PubMed]
Compound | BA G4 | BA dsDNA | Selectivity Ratio | ECOM50% G4 (eV) | ECOM50% dsDNA (eV) |
---|---|---|---|---|---|
1—osajin * | 67 | 21 | 3.2 | 56.61 | 36.98 |
2—pomiferin * | 94 | 90 | 1.0 | 41.10 | 31.29 |
3—auriculasin * | 97 | 99 | 1.0 | 41.09 | 30.33 |
4—scandenone * | 76 | 38 | 2.0 | 51.97 | 48.96 |
5—isoosajin | 27 | 16 | 1.7 | 44.98 | 33.82 |
6—isopomiferin | 26 | 15 | 1.7 | 40.91 | 50.72 |
7—p-toluensulfonyl-osajin * | 34 | - | - | 54.09 | - |
8—di-p-toluensulfonyl-pomiferin | - | - | - | - | - |
9—di-p-toluensulfonyl-auriculasin | 34 | 21 | 1.6 | 45.27 | 40.26 |
10—p-toluensulfonyl-scandenone | 19 | 8 | 2.4 | 45.27 | 48.32 |
11—p-toluensulfonyl-isoosajin | 18 | 10 | 1.8 | 43.81 | 39.87 |
12—di-p-toluensulfonyl-isopomiferin | 35 | 31 | 1.1 | 51.69 | 61.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribaudo, G.; Anyanwu, M.; Giannangeli, M.; Oselladore, E.; Ongaro, A.; Memo, M.; Gianoncelli, A. G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation. Macromol 2024, 4, 556-565. https://doi.org/10.3390/macromol4030033
Ribaudo G, Anyanwu M, Giannangeli M, Oselladore E, Ongaro A, Memo M, Gianoncelli A. G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation. Macromol. 2024; 4(3):556-565. https://doi.org/10.3390/macromol4030033
Chicago/Turabian StyleRibaudo, Giovanni, Margrate Anyanwu, Matteo Giannangeli, Erika Oselladore, Alberto Ongaro, Maurizio Memo, and Alessandra Gianoncelli. 2024. "G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation" Macromol 4, no. 3: 556-565. https://doi.org/10.3390/macromol4030033
APA StyleRibaudo, G., Anyanwu, M., Giannangeli, M., Oselladore, E., Ongaro, A., Memo, M., & Gianoncelli, A. (2024). G-Quadruplex DNA as a Macromolecular Target for Semi-Synthetic Isoflavones Bearing B-Ring Tosylation. Macromol, 4(3), 556-565. https://doi.org/10.3390/macromol4030033