New Trends in Composite Coagulants for Water and Wastewater Treatment
Abstract
:1. Introduction
2. Natural Coagulants
Natural Coagulants with Flocculants Added
3. Inorganic Coagulants
Inorganic Coagulants with Flocculants Added
4. Organic Coagulants
5. Hybrid Coagulants/Flocculants
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naraghi, B.; Baneshi, M.M.; Amiri, R.; Dorost, A.; Biglari, H. Removal of Reactive Black 5 Dye from Aqueous Solutions by Coupled Electrocoagulation and Bio-Adsorbent Process. Electron. Physician 2018, 10, 7086–7094. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.K.; Mitropoulos, A.C.; Kyzas, G.Z. Removal of Anthraquinone Dye from Wastewaters by Hybrid Modified Activated Carbons. Environ. Sci. Pollut. Res. 2023, 30, 73688–73701. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.K.; Tsoutsa, E.K.; Kyzas, G.Z.; Katsoyiannis, I.A. Sustainable Use of Low-Cost Adsorbents Prepared from Waste Fruit Peels for the Removal of Selected Reactive and Basic Dyes Found in Wastewaters. Environ. Sci. Pollut. Res. 2024, 31, 14662–14689. [Google Scholar] [CrossRef]
- Hoong, H.N.J.; Ismail, N. Removal of Dye in Wastewater by Adsorption-Coagulation Combined System with Hibiscus Sabdariffa as the Coagulant. In Proceedings of the MATEC Web of Conferences, 9th International Engineering Research Conference (Eureca 2017), Selango, Malaysia, 6 December 2017; EDP Sciences: Les Ulis, France, 2018; Volume 152. [Google Scholar]
- Liu, L.; Luo, X.B.; Ding, L.; Luo, S.L. Application of Nanotechnology in the Removal of Heavy Metal from Water; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128148389. [Google Scholar]
- Al-Tayawi, A.N.; Sisay, E.J.; Beszédes, S.; Kertész, S. Wastewater Treatment in the Dairy Industry from Classical Treatment to Promising Technologies: An Overview. Processes 2023, 11, 2133. [Google Scholar] [CrossRef]
- Panda, S.K.; Aggarwal, I.; Kumar, H.; Prasad, L.; Kumar, A.; Sharma, A.; Vo, D.V.N.; Van Thuan, D.; Mishra, V. Magnetite Nanoparticles as Sorbents for Dye Removal: A Review. Environ. Chem. Lett. 2021, 19, 2487–2525. [Google Scholar] [CrossRef]
- Zhao, F.; Mu, B.; Zhang, T.; Dong, C.; Zhu, Y.; Zong, L.; Wang, A. Synthesis of Biochar/Clay Mineral Nanocomposites Using Oil Shale Semi-Coke Waste for Removal of Organic Pollutants. Biochar 2023, 5, 7. [Google Scholar] [CrossRef]
- Yuan, J.; Li, S.; Ding, Z.; Li, J.; Yu, A.; Wen, S.; Bai, S. Treatment Technology and Research Progress of Residual Xanthate in Mineral Processing Wastewater. Minerals 2023, 13, 435. [Google Scholar] [CrossRef]
- Wantoputri, N.I.; Notodarmojo, S.; Helmy, Q. Reactive Black-5 Removal by Ozonation as Post Treatment. In Proceedings of the IOP Conference Series: Materials Science and Engineering; Institute of Physics; International Conference on Science and Innovated Engineering (I-COSINE), Aceh, Indonesia, 21–22 October 2018; IOP Science: Bristol, UK, 2019; Volume 536. [Google Scholar]
- Liu, Y.; Chen, Y.; Da, Y.; Xie, F.; Wang, J. Advanced Treatment of Landfill Leachate Using Integrated Coagulation/Photo-Fenton Process through in-Situ Generated Nascent Al3+ and H2O2 by Cl, N Co-Doped Aluminum-Graphite Composite. Appl. Catal. B Environ. 2022, 304, 121003. [Google Scholar] [CrossRef]
- Meng, R.; Liu, L.; Su, X.; Gong, W.; Luo, X.; Gao, H. Facile Preparation of Cellulose Beads with Tunable Graded Pores and High Mechanical Strength. Polymers 2024, 16, 725. [Google Scholar] [CrossRef]
- Hadadi, A.; Imessaoudene, A.; Bollinger, J.C.; Cheikh, S.; Assadi, A.A.; Amrane, A.; Kebir, M.; Mouni, L. Parametrical Study for the Effective Removal of Mordant Black 11 from Synthetic Solutions: Moringa Oleifera Seeds’ Extracts Versus Alum. Water 2022, 14, 4109. [Google Scholar] [CrossRef]
- Daud, Z.; Awang, H.; Latif, A.A.A.; Nasir, N.; Ridzuan, M.B.; Ahmad, Z. Suspended Solid, Color, COD and Oil and Grease Removal from Biodiesel Wastewater by Coagulation and Flocculation Processes. Procedia-Soc. Behav. Sci. 2015, 195, 2407–2411. [Google Scholar] [CrossRef]
- Azamzam, A.A.; Rafatullah, M.; Yahya, E.B.; Ahmad, M.I.; Lalung, J.; Alam, M.; Siddiqui, M.R. Enhancing the Efficiency of Banana Peel Bio-Coagulant in Turbid and River Water Treatment Applications. Water 2022, 14, 2473. [Google Scholar] [CrossRef]
- Tsoutsa, E.K.; Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. An Update on Agricultural Wastes Used as Natural Adsorbents or Coagulants in Single or Combined Systems for the Removal of Dyes from Wastewater. Water. Air. Soil Pollut. 2024, 235, 178. [Google Scholar] [CrossRef]
- Gomes, J.; Domingues, E.; Fernandes, E.; Castro, L.; Martins, R.C.; Quinta-Ferreira, R.M. Coagulation and Biofiltration by Corbicula Fluminea for COD and Toxicity Reduction of Swine Wastewater. J. Water Process Eng. 2021, 42, 102145. [Google Scholar] [CrossRef]
- Youssef, M.; El-Tanany, S.S.; Moatasim, Y.; Moniem, S.M.A.; Hemdan, B.A.; Ammar, N.S.; El-Taweel, G.E.; Ashmawy, A.M.; Badawy, M.I.; Lasheen, M.R.; et al. Assessment of Toxicity and Antimicrobial Performance of Polymeric Inorganic Coagulant and Evaluation for Eutrophication Reduction. Sci. Rep. 2024, 14, 3391. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.E.M.; Moniem, S.M.A.; Hemdan, B.A.; Ammar, N.S.; Ibrahim, H.S. Innovative Polymeric Inorganic Coagulant-Flocculant for Wastewater Purification with Simultaneous Microbial Reduction in Treated Effluent and Sludge. South African J. Chem. Eng. 2022, 42, 127–137. [Google Scholar] [CrossRef]
- Zaharia, C.; Musteret, C.-P.; Afrasinei, M.-A. The Use of Coagulation–Flocculation for Industrial Colored Wastewater Treatment—(I) The Application of Hybrid Materials. Appl. Sci. 2024, 14, 2184. [Google Scholar] [CrossRef]
- Ozdemir, N.C.; Yel, E. Synthesis of a New Flocculant from Waste Polystyrene: Plastic Recycling Industry Wastewater Treatability. Water. Air. Soil Pollut. 2023, 234, 88. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Sun, C.; Yuan, W.; Li, H.; Jiang, W.; Dong, L.; Wang, Y.; Liu, H. Preparation of Inorganic–Organic Composite Coagulant and Its Mechanism in Destroying Emulsified Oil in Oilfield Sewage. Sep. Purif. Technol. 2024, 330, 125446. [Google Scholar] [CrossRef]
- Yan, Y.; Xu, H.; Wang, Z.; Chen, H.; Yang, L.; Sun, Y.; Zhao, C.; Wang, D. Effect of Surface Functional Groups of Polystyrene Micro/Nano Plastics on the Release of NOM from Flocs during the Aging Process. J. Hazard. Mater. 2024, 472, 134421. [Google Scholar] [CrossRef]
- Wimalaweera, I.P.; Wei, Y.; Ritigala, T.; Wang, Y.; Zhong, H.; Weerasooriya, R.; Jinadasa, S.; Weragoda, S. Enhanced Pretreatment of Natural Rubber Industrial Wastewater Using Magnetic Seed Coagulation with Ca(OH)2. Water 2024, 16, 847. [Google Scholar] [CrossRef]
- Ribeiro, T.; Ladeia Janz, F.J.; Vizibelli, D.; Borges, J.C.Â.; Borssoi, J.A.; Fukumoto, A.A.F.; Bergamasco, R.; Ueda Yamaguchi, N.; Pereira, E.R. Magnetic Natural Coagulants for Plastic Recycling Industry Wastewater Treatability. Water 2023, 15, 1276. [Google Scholar] [CrossRef]
- Rumky, J.; Bandina, E.; Repo, E. Behavior of Sludge Dewaterability and Nutrient Contents after Treatment with Cellulose-Based Flocculants with Combined PTS and Catalytic Behavior of Sludge towards Tetracycline Degradation. Resources 2023, 12, 17. [Google Scholar] [CrossRef]
- Xiang, Z.; Huang, C.; Huang, J.; Yan, Y.; Liu, G.; Yu, X.; Liu, W.; Cao, H.; Liu, A. Mechanism for the Synergistic Removal of Sb(III) and Sb(V) from Printing and Dyeing Wastewater by Polyferric Sulfate. J. Environ. Chem. Eng. 2024, 12, 112492. [Google Scholar] [CrossRef]
- Tsoutsa, E.K.; Tolkou, A.K.; Katsoyiannis, I.A.; Kyzas, G.Z. Composite Activated Carbon Modified with AlCl3 for the Effective Removal of Reactive Black 5 Dye from Wastewaters. J. Compos. Sci. 2023, 7, 224. [Google Scholar] [CrossRef]
- Ahmad, A.; Kurniawan, S.B.; Ahmad, J.; Alias, J.; Marsidi, N.; Said, N.S.M.; Yusof, A.S.M.; Buhari, J.; Ramli, N.N.; Rahim, N.F.M.; et al. Dosage-Based Application versus Ratio-Based Approach for Metal- and Plant-Based Coagulants in Wastewater Treatment: Merits, Limitations, and Applicability. J. Clean. Prod. 2022, 334, 130245. [Google Scholar] [CrossRef]
- Jin, Y.; Chen, F.; Xu, B.; Ma, G.; Zhang, L.; Yang, Z.; Liu, R.; Sun, C.; Cheng, X.; Guo, N.; et al. Iron-Based Technology Coupling Moderate Preoxidation with Hybrid Coagulation for Highly Effective Removal and Moderate Growth Inhibition of Oscillatoria in Drinking Water Treatment Plants. J. Environ. Chem. Eng. 2022, 10, 107723. [Google Scholar] [CrossRef]
- Sahu, J.N.; Kapelyushin, Y.; Mishra, D.P.; Ghosh, P.; Sahoo, B.K.; Trofimov, E.; Meikap, B.C. Utilization of Ferrous Slags as Coagulants, Filters, Adsorbents, Neutralizers/Stabilizers, Catalysts, Additives, and Bed Materials for Water and Wastewater Treatment: A Review. Chemosphere 2023, 325, 138201. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Long, Y.; Yang, X.; Liu, J.; Zhu, G. Preparation and Application of Polymeric Silicate Coagulant: A Short Review. Environ. Eng. Res. 2024, 29, 230672. [Google Scholar] [CrossRef]
- Wang, L.; Al-Dhabi, N.A.; Huang, X.; Luan, Z.; Tang, W.; Xu, Z.; Xu, W. Suitability of Inorganic Coagulants for Algae-Laden Water Treatment: Trade-off between Algae Removal and Cell Viability, Aggregate Properties and Coagulant Residue. J. Hazard. Mater. 2024, 471, 134314. [Google Scholar] [CrossRef] [PubMed]
- Shamira Shaharom, M.; Siti Quraisyah Abg Adenan, D. Potential of Orange Peel as a Coagulant for Water Treatment. Infrastruct. Univ. Kuala Lumpur Res. J. 2019, 7, 63–72. [Google Scholar]
- Santos, L.d.L.C.d.; Silva, J.B.M.; Neves, L.S.; Renato, N.d.S.; Moltó, J.; Conesa, J.A.; Borges, A.C. Life Cycle Assessment of a Vegetable Tannin-Based Agent Production for Waters Treatment. Water 2024, 16, 1007. [Google Scholar] [CrossRef]
- Tomasi, I.T.; Machado, C.A.; Boaventura, R.A.R.; Botelho, C.M.S.; Santos, S.C.R. Tannin-Based Coagulants: Current Development and Prospects on Synthesis and Uses. Sci. Total Environ. 2022, 822, 153454. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.K.; Tsoutsa, E.K.; Katsoyiannis, I.A.; Kyzas, G.Z. Simultaneous Removal of Anionic and Cationic Dyes on Quaternary Mixtures by Adsorption onto Banana, Orange and Pomegranate Peels. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 685, 133176. [Google Scholar] [CrossRef]
- Garcés-Gómez, Y.A.; Pacheco-Gonzalez, S.I. Method for Extraction and Evaluation of Heliocarpus Popayanensis and Triumfetta Bogotensis as Natural Coagulants for the Treatment of Wastewater. Methods Protoc. 2023, 6, 105. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, E.A.; Habibi, M.; Haddad, E.; Sammar, M.; Angel, D.L.; Dror, H.; Lahovitski, H.; Booth, A.M.; Sabbah, I. Mechanism of Nanoplastics Capture by Jellyfish Mucin and Its Potential as a Sustainable Water Treatment Technology. Sci. Total Environ. 2023, 869, 161824. [Google Scholar] [CrossRef] [PubMed]
- Kristianto, H.; Angelina Kurniawan, M.; M Soetedjo, J.N. Utilization of Papaya Seeds as Natural Coagulant for Synthetic Textile Coloring Agent Wastewater Treatment. Int. J. Adv. Sci. Eng. Inf. Technol. 2018, 8, 2071–2077. [Google Scholar] [CrossRef]
- Abujazar, M.S.S.; Karaağaç, S.U.; Abu Amr, S.S.; Alazaiza, M.Y.D.; Fatihah, S.; Bashir, M.J.K. Recent Advancements in Plant-Based Natural Coagulant Application in the Water and Wastewater Coagulation-Flocculation Process: Challenges and Future Perspectives. Glob. Nest J. 2022, 24, 687–705. [Google Scholar] [CrossRef]
- Abujazar, M.S.S.; Karaağaç, S.U.; Abu Amr, S.S.; Alazaiza, M.Y.D.; Bashir, M.J. Recent Advancement in the Application of Hybrid Coagulants in Coagulation-Flocculation of Wastewater: A Review. J. Clean. Prod. 2022, 345, 131133. [Google Scholar] [CrossRef]
- Cui, H.; Huang, X.; Yu, Z.; Chen, P.; Cao, X. Application Progress of Enhanced Coagulation in Water Treatment. RSC Adv. 2020, 10, 20231–20244. [Google Scholar] [CrossRef] [PubMed]
- Ang, W.L.; Mohammad, A.W. State of the Art and Sustainability of Natural Coagulants in Water and Wastewater Treatment. J. Clean. Prod. 2020, 262, 121267. [Google Scholar] [CrossRef]
- Sibiya, N.P.; Amo-Duodu, G.; Tetteh, E.K.; Rathilal, S. Magnetic Field Effect on Coagulation Treatment of Wastewater Using Magnetite Rice Starch and Aluminium Sulfate. Polymers 2023, 15, 10. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, R.R.; Ketabachi, M.R.; McKay, G. Combined Magnetic Field and Adsorption Process for Treatment of Biologically Treated Palm Oil Mill Effluent (POME). Chem. Eng. J. 2014, 243, 31–42. [Google Scholar] [CrossRef]
- Ahmad, A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Kurniawan, S.B. Aquaculture Wastewater Treatment Using Plant-Based Coagulants: Evaluating Removal Efficiency through the Coagulation-Flocculation Process. Results Chem. 2024, 7, 101390. [Google Scholar] [CrossRef]
- Nouj, N.; Majbar, Z.; Abelouah, M.R.; Ben Hamou, A.; Chaoui, A.; Hafid, N.; Benafqir, M.; El Alem, N.; Jada, A.; Ouachtak, H.; et al. Eco-Friendly Wastewater Treatment Using a Crab Shell-Based Liquid Bio-Coagulant: Multi-Criteria Decision Analysis Related to Different Pollutants Separation. J. Environ. Chem. Eng. 2024, 12, 112318. [Google Scholar] [CrossRef]
- Benalia, A.; Chaibraa, W.; Djeghar, S.; Derbal, K.; Khalfaoui, A.; Mahfouf, A.; Bouchareb, R.; Panico, A.; Pizzi, A. Use of Extracted Proteins from Oak Leaves as Bio-Coagulant for Water and Wastewater Treatment: Optimization by a Fractional Factorial Design. Water 2023, 15, 1984. [Google Scholar] [CrossRef]
- Elsergany, M. The Potential Use of Moringa Peregrina Seeds and Seed Extract as a Bio-Coagulant for Water Purification. Water 2023, 15, 2804. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Lara, C.R.; Díaz-Gómez, J.; Gómez Castaño, J.A.; Cifuentes, G.R. Assessment of Prickly Pear Fruit Peel Mucilage in Form of Gel as a Green Coagulant for the Tertiary Treatment of Domestic Wastewater. Gels 2023, 9, 723. [Google Scholar] [CrossRef] [PubMed]
- Gomes, A.; Jorge, N.; Teixeira, A.; Peres, J.A.; Lucas, M.S. Cattle Wastewater Treatment Using Almond Hull and Cherry Pit as Coagulants–Flocculants. Eng. Proc. 2023, 56, 222. [Google Scholar] [CrossRef]
- El Gaayda, J.; Titchou, F.E.; Barra, I.; Karmal, I.; Afanga, H.; Zazou, H.; Yap, P.S.; Abidin, Z.Z.; Hamdani, M.; Akbour, R.A. Optimization of Turbidity and Dye Removal from Synthetic Wastewater Using Response Surface Methodology: Effectiveness of Moringa Oleifera Seed Powder as a Green Coagulant. J. Environ. Chem. Eng. 2022, 10, 106988. [Google Scholar] [CrossRef]
- Naruka, A.K.; Suganya, S.; Kumar, P.S.; Amit, C.; Ankita, K.; Bhatt, D.; Kumar, M.A. Kinetic Modelling of High Turbid Water Flocculation Using Native and Surface Functionalized Coagulants Prepared from Shed-Leaves of Avicennia Marina Plants. Chemosphere 2021, 272, 129894. [Google Scholar] [CrossRef] [PubMed]
- Ovuoraye, P.E.; Okpala, L.C.; Ugonabo, V.I.; Nwokocha, G.F. Clarification Efficacy of Eggshell and Aluminum Base Coagulant for the Removal of Total Suspended Solids (TSS) from Cosmetics Wastewater by Coag-Flocculation. Chem. Pap. 2021, 75, 4759–4777. [Google Scholar] [CrossRef]
- Vijayavenkataraman, S.; Iniyan, S.; Goic, R. A Review of Solar Drying Technologies. Renew. Sustain. Energy Rev. 2012, 16, 2652–2670. [Google Scholar] [CrossRef]
- Benalia, A.; Derbal, K.; Khalfaoui, A.; Bouchareb, R.; Panico, A.; Gisonni, C.; Crispino, G.; Pirozzi, F.; Pizzi, A. Use of Aloe Vera as an Organic Coagulant for Improving Drinking Water Quality. Water 2021, 13, 2024. [Google Scholar] [CrossRef]
- Aziz, A.; Agamuthu, P.; Hassan, A.; Auta, H.S.; Fauziah, S.H. Green Coagulant from Dillenia Indica for Removal of Bis(2-Ethylhexyl) Phthalate and Phenol, 4,4’-(1-Methylethylidene)Bis- from Landfill Leachate. Environ. Technol. Innov. 2021, 24, 102061. [Google Scholar] [CrossRef]
- Kumar, V.; Al-Gheethi, A.; Asharuddin, S.M.; Othman, N. Potential of Cassava Peels as a Sustainable Coagulant Aid for Institutional Wastewater Treatment: Characterisation, Optimisation and Techno-Economic Analysis. Chem. Eng. J. 2021, 420, 127642. [Google Scholar] [CrossRef]
- Mauricio, M.; Flores, A.; Emmanuel, O.; Miranda, R.; Andr, N.; Omar, S. Evaluation of the Potential of a Biocoagulant Produced from Prickly Pear Peel Waste Valorization for Wastewater Treatment. Water 2024, 16, 1444. [Google Scholar] [CrossRef]
- Xu, H.; Wei, S.; Li, G.; Guo, B. Advanced Removal of Phosphorus from Urban Sewage Using Chemical Precipitation by Fe-Al Composite Coagulants. Sci. Rep. 2024, 14, 4918. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Chang, F.; Zheng, M. Advanced Treatment of Coking Wastewater by Polyaluminum Silicate Sulfate for Organic Compounds Removal. Int. J. Environ. Res. Public Health 2023, 20, 6342. [Google Scholar] [CrossRef] [PubMed]
- Youssef, H.H.; Younis, S.A.; El-Fawal, E.M.; Ali, H.R.; Moustafa, Y.M.; Mohamed, G.G. Synthesis of Polyaluminum Chloride Coagulant from Waste Aluminum Foil and Utilization in Petroleum Wastewater Treatment. Separations 2023, 10, 570. [Google Scholar] [CrossRef]
- He, J.; Song, Q.; He, J. Preparation and Coagulation Performance of Polyaluminum Lanthanum Silicate Coagulant. Int. J. Environ. Res. Public Health 2023, 20, 2793. [Google Scholar] [CrossRef]
- Du, Z.; Gong, Z.; Qi, W.; Li, E.; Shen, J.; Li, J.; Zhao, H. Coagulation Performance and Floc Characteristics of Poly-Ferric-Titanium-Silicate-Chloride in Coking Wastewater Treatment. Colloids Surfaces A Physicochem. Eng. Asp. 2022, 642, 128413. [Google Scholar] [CrossRef]
- Yue, Y.; An, G.; Lin, L.; Demissie, H.; Yang, X.; Jiao, R.; Wang, D. Design and Coagulation Mechanism of a New Functional Composite Coagulant in Removing Humic Acid. Sep. Purif. Technol. 2022, 292, 121016. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Zouboulis, A.I.; Samaras, P.E. Synthesis and Coagulation Performance of Composite Poly-Aluminum-Ferric-Silicate-Chloride Coagulants in Water and Wastewater Treatment and Their Potentially Use to Alleviate the Membrane Fouling in MBRs. Desalin. Water Treat. 2015, 53, 3309–3318. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Zouboulis, A.I. Application of Composite Pre-Polymerized Coagulants for the Treatment of High-Strength Industrial Wastewaters. Water 2020, 12, 1258. [Google Scholar] [CrossRef]
- Tolkou, A.K.; Mitrakas, M.; Katsoyiannis, I.A.; Ernst, M.; Zouboulis, A.I. Fluoride Removal from Water by Composite Al/Fe/Si/Mg Pre-Polymerized Coagulants: Characterization and Application. Chemosphere 2019, 231, 528–537. [Google Scholar] [CrossRef] [PubMed]
- Hartal, O.; Madinzi, A.; Khattabi Rifi, S.; Haddaji, C.; Agustiono Kurniawan, T.; Anouzla, A.; Souabi, S. Optimization of Coagulation-Flocculation Process for Wastewater Treatment from Vegetable Oil Refineries Using Chitosan as a Natural Flocculant. Environ. Nanotechnol. Monit. Manag. 2024, 22, 100957. [Google Scholar] [CrossRef]
- Khumalo, S.M.; Bakare, B.F.; Tetteh, E.K.; Rathilal, S. Application of Response Surface Methodology on Brewery Wastewater Treatment Using Chitosan as a Coagulant. Water 2023, 15, 1176. [Google Scholar] [CrossRef]
- Chen, N.; Qian, J.; Zhang, Q.; Pan, B. Cationic Surfactant-Mediated Coagulation for Enhanced Removal of Toxic Metal-Organic Complexes: Performance, Mechanism, and Validation. ACS EST Eng. 2022, 2, 895–902. [Google Scholar] [CrossRef]
- Jabin, S.; Kapoor, J.K.; Jadoun, S.; Chandna, N.; Chauhan, N.P.S. Synthesis and Characterization of Polyamine-Based Polyelectrolytes for Wastewater Treatment in the Sugar Industry. J. Mol. Struct. 2023, 1275, 134573. [Google Scholar] [CrossRef]
- Wang, S.; Li, E.; Li, J.; Du, Z.; Cheng, F. Preparation and Coagulation-Flocculation Performance of Covalently Bound Organic Hybrid Coagulant with Excellent Stability. Colloids Surfaces A Physicochem. Eng. Asp. 2020, 600, 124966. [Google Scholar] [CrossRef]
- Latour, I.; Miranda, R.; Carceller, R.; Blanco, A. Efficiency of Polyaluminum Nitrate Sulfate–Polyamine Hybrid Coagulants for Silica Removal. Desalin. Water Treat. 2016, 57, 17973–17984. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Fu, Y.; Su, M.M.; Cai, S.S.; Chen, Q.F. Coagulation Performance of Organic Modified Poly-Polyacrylamide-Al-Zn-Fe (PPAZF) Coagulant. Adv. Mater. Res. 2014, 848, 22–25. [Google Scholar] [CrossRef]
Coagulants | Remove | Initial Conditions | pH | Coagulant Dosage | Removal | Ref. |
---|---|---|---|---|---|---|
MS 1 | Rice Starch-Containing Effluent | 11.78 NTU turbidity | 7.2 | 300 mg/L | 86.00% turbidity | [45] |
85.00% TSS | ||||||
73 mg/L COD | 55.00% COD | |||||
MS 1 with magnetic exposure | 88.00% turbidity | |||||
6.5 mg/L TSS | 87.00% TSS | |||||
56.00% COD | ||||||
PBC 2 | General Wastewater | 392.67–657.33 NTU turbidity | 7.13–7.21 | 0.79 mg/L | 85.17% turbidity | [47] |
711.00–727.33 mg/L COD | 54.63% COD | |||||
776–876 mg/L TSS | 80.28% TSS | |||||
1736–1789 ADM Color | 59.42% Color | |||||
CS 3 bio-coagulant | Fish Processing Wastewater (FPW) | >1000 NTU Turbidity | 11.3 | 31.6 mL/L | 98.91% turbidity | [48] |
3735 mg O2/L COD | 78.92% COD | |||||
2345.5 mg O2/L BOD5 | 92.05% BOD5 | |||||
oak leaves protein | Industrial Oily Wastewater | 187 NTU Turbidity | 12 | 0.538 mg/L | 96.87% turbidity | [49] |
969 mg/L COD | 96.39% COD | |||||
784.45 mg/L TSS | 89.86% TSS | |||||
MPDOEx 4 | Synthetic water | 99.1 NTU Turbidity | 9 | 400 mg/L | 81.00% Turbidity | [50] |
188 mg/L COD | 38.00% COD | |||||
71.8 mg/L Mo | 200 mg/L | 97.40% Mo | ||||
8.1 mg/L Cu | 66.50% Cu | |||||
2.1 mg/L Cd | 51.80% Cd | |||||
11.0 mg/L Cr | 50.30% Cr | |||||
3.1 mg/L Co | 45.80% Co | |||||
10.1 mg/L Mn | 12.00% Mn | |||||
3.8 mg/L Ni | 10.50% Ni | |||||
PP 5 fruit peel mucilage gel | Domestic Wastewater | 88 NTU Turbidity | 13 | 12 mg/L | 94.00% turbidity | [51] |
671 TCU color | 85.00% color | |||||
Almond hull (Prunus dulcis) | Cattle Wastewater | 7207 NTU turbidity | 3 | 0.1 g/L | 38.30% turbidity | [52] |
39.10% COD | ||||||
21178 mg O2/L COD | 52.90% TSS | |||||
cherry pit (Prunus avium) | 88.80% turbidity | |||||
6930 mg/L TSS | 42.40% COD | |||||
22.30% TSS | ||||||
MOSP 6 | Synthetic Wastewater | Turbidity | 6.93 | 0.34 mg/L | 98.50% turbidity | [53] |
7.88 mg/L Amido Black 10B dye | 92.20% Amido Black 10B | |||||
AMC 7 | Starch wastewater | 16.36 NTU turbidity | 7.90 | 1.0 g/L | 89.88% turbidity | [54] |
Mud Wastewater | 15.15 NTU turbidity | 7.82 | 89.74% turbidity | |||
HCl treated AMC 7 | Starch wastewater | 16.36 NTU turbidity | 7.90 | 96.77% turbidity | ||
Mud Wastewater | 15.15 NTU turbidity | 7.82 | 95.87% turbidity | |||
NaOH treated AMC 7 | Starch wastewater | 16.36 NTU turbidity | 7.90 | 96.90% turbidity | ||
Mud Wastewater | 15.15 NTU turbidity | 7.82 | 94.73% turbidity | |||
NaCl treated AMC 7 | Starch wastewater | 16.36 NTU turbidity | 7.90 | 89.87% turbidity | ||
Mud Wastewater | 15.15 NTU turbidity | 7.82 | 94.66% turbidity | |||
EC 8 | - | 232 mg/L TSS | 6 | 0.2 g/L | 85.00% TSS | [55] |
AV 9-powder | General Wastewater | 13 NTU turbidity | 6 | 10 mg/L | 28.23% turbidity | [57] |
AV 9-H2O | 7.5 | 0.1 mL/L | 87.84% turbidity | |||
Dillenia indica | Leachate | 31 mg/L Bisphenol A | 8.5 | 1066 mg/L | 60.00% Bisphenol A | [58] |
15 mg/L DEHP | 958 mg/L | 55.00% DEHP | ||||
CPS 10 | Water with Initial Turbidity, TSS, and COD | 194 NTU turbidity | 6.0 | 448.58 mg/L | 60.19% turbidity | [59] |
57.79% TSS | ||||||
284 mg/L TSS | 30.19% COD | |||||
CPS 10:alum (4:1) | 8.0 | 80% of CPS 20% of alum | 77.48% turbidity | |||
296.248 mg/L COD | 77.34% TSS | |||||
56.89% COD |
Coagulant | Flocculant | Initial Conditions | pH | Coagulant Dosage (mg/L) | Flocculant Dosage (mg/L) | Removal | Ref. |
---|---|---|---|---|---|---|---|
Prickly pear peel waste | Anionic polymer | 45.39 NTU Turbidity | 4 | 100 | 1 | 76.10% turbidity | [60] |
7.8 | 250 | 51.70% turbidity | |||||
30% prickly pear peel waste and 70% aluminum sulfate | 58.10% turbidity |
Coagulants | Remove | Initial Conditions | pH | Coagulant Dosage | Removal | Ref. |
---|---|---|---|---|---|---|
POFC-1 1 | Domestic Wastewater | 86 NTU turbidity | 6–8 | 10 mg/L | 78.00% turbidity | [19] |
67.00% COD | ||||||
342 mg/L COD | 82.00% TSS | |||||
POFC-2 2 | 92.00% turbidity | |||||
300 mg/L TSS | 89.00% COD | |||||
93.00% TSS | ||||||
PFS 3 | printing and dyeing wastewater | 1 mg/L Sb | 5 | 60 mg/L | 95.00% Sb(III), 90.00% Sb(V) | [27] |
0.085 mg/L Sb(III), and 0.1 mg/L Sb(V) | 97.50% total Sb | |||||
FeCl3–AlCl3 4 | – | 0.519 mg/L Total P | 5 | 21.85 mg/L | 91.31% Total P | [61] |
FeSO4–Al2(SO4)3 5 | 7 | 15 mg/L | 86.82% Total P | |||
PASS 6 | Coking Wastewater | 196.67 mg/L CODCr | 7.0 | 7 mmol/L | 69.50% CODCr | [62] |
PACl 7 | Domestic Wastewater | 270 NTU turbidity | 6.5 | 25 mg/L | 98.00% turbidity | [63] |
100 mg/L DOC | 69.80% DOC | |||||
PALS 8 | Simulate Wastewater | 28.6–30.2 NTU Turbidity | 8 | 12 mg/L | 99.00% turbidity | [64] |
2 mg/L total phosphorus | 6 | 8.0 mg/L | 99.60% phosphate | |||
29.68–30.42 mg/L DOC | 3–7 | 14 mg/L | 69.57% DOC | |||
PFTC 9 | Coking Wastewater | 40 NTU turbidity | 9 | 800 mg/L | 93.20% turbidity | [65] |
480 mg/L DOC | 10.10% DOC | |||||
2000 mg/L COD | 10.70% COD | |||||
PTSC 10 | 80.00% turbidity | |||||
Fe-PAA-1:0.1 11 | Humid acid | TOC | 5.0 | 0.1 mM Fe | ~80.00% TOC | [66] |
Fe-PAA-1:1 12 | >80.00% TOC | |||||
Fe-PAA-1:2 13 | <80.00% TOC | |||||
PSiFAC1.5:10:15 14 | Tanner Wastewater | 668 NTU turbidity | 7.8 | 80 | 96.00% turbidity | [67,68] |
6800 mg/L COD | 67.00% COD | |||||
1.76 mg/L phosphates | 62.00% phosphates | |||||
2.981 UV254nm | 10.00% UV254nm | |||||
Yeast wastewater after aerobic treatment | 418 NTU turbidity | 14.00% turbidity | ||||
11455 mg/L COD | 22.00% COD | |||||
3.49 mg/L phosphates | 38.00% phosphates | |||||
3.748 UV254nm | 15.00% UV254nm | |||||
Yeast manufacturing wastewater without preliminary anaerobic treatment | 143 NTU turbidity | 40.00% turbidity | ||||
4590 mg/L COD | 56.00% COD | |||||
2.40 mg/L phosphates | 43.00% phosphates | |||||
3.307 UV254nm | 25.00% UV254nm | |||||
PSiFAC1.5:10:15 14 | Simulated surface water | 17.2 NTU turbidity | 7.0 | 2 mg/L | 97.00% turbidity | [67] |
0.153 UV254nm | 3 mg/L | 93.00% UV254nm | ||||
Tanner wastewater | >2000 turbidity | 100 mg/L | 99.60% turbidity | |||
PAFSiC1.5:15:10 15 | Simulated surface water | 17.2 NTU turbidity | 2 mg/L | ~95.00% UV254nm | ||
0.153 UV254nm | 3 mg/L | ~85.00% turbidity | ||||
Tanner wastewater | >2000 turbidity | 100 mg/L | 99.70% UV254nm | |||
PFASiC1.5:15:10 16 | Simulated surface water | 17.2 NTU turbidity | 2 mg/L | ~95.00% turbidity | ||
0.153 UV254nm | 3 mg/L | >90.00% UV254nm | ||||
Tanner wastewater | >2000 turbidity | 100 mg/L | 99.6.00% turbidity | |||
PACl1.5 17 | Simulated surface water | 17.2 NTU turbidity | 2 mg/L | 93.00% turbidity | ||
0.153 UV254nm | 3 mg/L | 78.00% UV254nm | ||||
PAPEFAC1.5-10-15 18 | Tanner Wastewater | 668 NTU turbidity | 7.8 | 80 mg Al/L | ~96.00% turbidity | [68] |
6800 mg/L COD | ~65.00% COD | |||||
1.76 mg/L phosphates | <65.00% phosphates | |||||
Yeast wastewater after aerobic treatment | 418 NTU turbidity | ~20.00% turbidity | ||||
11455 mg/L COD | ~5.00% COD | |||||
3.49 mg/L phosphates | <30.00% phosphates | |||||
Yeast manufacturing wastewater without preliminary anaerobic treatment | 143 NTU turbidity | ~40.00% turbidity | ||||
4590 mg/L COD | ~15.00% COD | |||||
2.40 mg/L phosphates | ~57.00% phosphates | |||||
PSiFAC-Mg30-10-15 19 | Industrial Wastewater | 5 mg F/L fluoride | 7.0 | 30 mg Al/L | Q1.5 170 mg F/g Al | [69] |
PSiFAC-Na1.5-10-15 20 | Q1.5 94 mg F/g Al |
Coagulant | Flocculant | Remove | Initial Conditions | pH | Coagulant Dosage | Flocculant Dosage | Removal | Ref. |
---|---|---|---|---|---|---|---|---|
FeCl3 1 | chitosan | Vegetable oil refinery wastewater | 3753 NTU turbidity | 6.0 | 1.6 g/L | 13.4 mg/L | 100.00% turbidity | [70] |
7680 mg/L COD | 86.00% COD | |||||||
168.36 mg/L polyphenols | 90.00% polyphenol |
Coagulants | Remove | Initial Conditions | pH | Coagulant Dosage (mg/L) | Removal | Ref. |
---|---|---|---|---|---|---|
Chitosan | Brewery Wastewater | 160 NTU turbidity | 8 | 2000 | 91.00% turbidity | [71] |
176 mg/L TOC | 89.00% TOC | |||||
139 mg/L orthophosphate | 65.00% orthophosphate | |||||
CTAB 1 | Toxic Metal−Organic Complexes | 10.4 mg/L Cr(III) | 10.5 | 57 | 98.00% Cr(III) | [72] |
10.4 mg/L Ni(II) | 92.69% Ni(II) | |||||
10.4 mg/L Cu(II) | 96.63% Cu(II) | |||||
10.4 mg/L Zn(II) | 99.35% Zn(II) | |||||
10.4 mg/L Cd(II) | 99.52% Cd(II) | |||||
PE-1 2 | Sugar industry wastewater | 83 NTU Turbidity | 6.1 | 2.0 | 74.68% turbidity | [73] |
1.0 | 70.25% TSS | |||||
1.5 | 72.48% COD | |||||
1.5 | 71.47% BOD | |||||
PE-2 3 | 1120 mg/L TSS | 1.0 | 100% turbidity | |||
1.0 | 98.40% TSS | |||||
1.5 | 94.50% COD | |||||
1.5 | 71.47% BOD | |||||
PE-3 4 | 991 mg/L COD | 1.0 | 87.00% turbidity | |||
1.0 | 86.59% TSS | |||||
1.5 | 82.25% COD | |||||
1.5 | 79.52% BOD | |||||
PE-4 5 | 543 mg/L BOD | 2.0 | 78.50% turbidity | |||
1.0 | 75.20% TSS | |||||
1.5 | 65.36% COD | |||||
1.5 | 63.67% BOD |
Coagulants | Remove | Initial Conditions | pH | Coagulant Dosage (mg/L) | Removal | Ref. |
---|---|---|---|---|---|---|
PAAP0.1,0.5 1 | Raw coking wastewater | 105 NTU turbidity | 9.98 | 600 | 82.05% turbidity | [74] |
4654 mg/L COD | 24.16% COD | |||||
1138.45 mg/L DOC | 9.34% DOC | |||||
22.75 UV254nm | 12.09% UV254nm | |||||
Biologically treated coking wastewater | 128 NTU turbidity | 8.13 | 300 | 97.84% turbidity | ||
109.03 mg/L COD | 63.39% COD | |||||
41.86 mg/L DOC | 29.97% DOC | |||||
2.197 UV254nm | 37.72% UV254nm | |||||
PANS 2 | Raw water | 11.4 NTU turbidity | 10.5 | 500 | 14.00% silica | [75] |
1500 | 71.00% silica | |||||
2000 | 83.00% silica | |||||
1990 mg/L Total Solids (raw water) | 2500 | 90.00% silica | ||||
PANS-PA1-Z 3 | 500 | ~86.00% silica | ||||
1000 | 50.00% silica | |||||
0.52 meq/L Cationic Demand | 1500 | 70.00% silica | ||||
2000 | 80.00% silica | |||||
2500 | 90.00% silica | |||||
PANS-PA2-Z 4 | 1890 mg/L TOTAL Solids (dissolved fraction) | 500 | 31.00% silica | |||
1000 | 50.00% silica | |||||
1500 | 70.00% silica | |||||
256 mg/L COD | 2000 | 80.00% silica | ||||
2500 | 90.00% silica | |||||
PANS-PA3-Z 5 | 500 | 16.00% silica | ||||
145 mg/L SiO2 Silica | 1000 | 50.00% silica | ||||
Dissolved Fraction | 1500 | 70.00% silica | ||||
2000 | 80.00% silica | |||||
2500 | 90.00% silica | |||||
PANS-PA1-5 6 | 8.4 | 1000 | ~40.00% silica | |||
PANS-PA1-10 7 | 1500 | ~40.00% silica | ||||
PANS-PA1-15 8 | 33.7 mg/L Calcium | 2000 | ~40.00% silica | |||
PANS-PA1-20 9 | 2500 | 47.00% silica | ||||
PANS-PA2-5 10 | 500 | 39.00% silica | ||||
2500 | ~50.00% silica | |||||
PANS-PA2-10 11 | 500 | 35.00% silica | ||||
2500 | ~50.00% silica | |||||
PANS-PA2-15 12 | 2.8 mg/L Magnesium | 500 | 26.00% silica | |||
PANS-PA2-20 13 | 500 | 23.00% silica | ||||
2500 | 40.00% silica | |||||
PANS-PA3-5 14 | 500 | 42.00% silica | ||||
2500 | 51.00% silica | |||||
PANS-PA3-20 15 | 2500 | 40.00% silica | ||||
PPAZF 16 | Domestic sewage | 232 NTU turbidity | 7.71 | 148 | ~98% turbidity | [76] |
661.51 mg/L COD | ~96% COD | |||||
Pharmaceutical wastewater | 265 NTU turbidity | 4.48 | ~73% turbidity | |||
10,025 mg/L COD | ~47% COD |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsoutsa, E.K.; Tolkou, A.K.; Kyzas, G.Z.; Katsoyiannis, I.A. New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol 2024, 4, 509-532. https://doi.org/10.3390/macromol4030030
Tsoutsa EK, Tolkou AK, Kyzas GZ, Katsoyiannis IA. New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol. 2024; 4(3):509-532. https://doi.org/10.3390/macromol4030030
Chicago/Turabian StyleTsoutsa, Eleftheria K., Athanasia K. Tolkou, George Z. Kyzas, and Ioannis A. Katsoyiannis. 2024. "New Trends in Composite Coagulants for Water and Wastewater Treatment" Macromol 4, no. 3: 509-532. https://doi.org/10.3390/macromol4030030
APA StyleTsoutsa, E. K., Tolkou, A. K., Kyzas, G. Z., & Katsoyiannis, I. A. (2024). New Trends in Composite Coagulants for Water and Wastewater Treatment. Macromol, 4(3), 509-532. https://doi.org/10.3390/macromol4030030