Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Elastomer
2.3. Nanocomposite Synthesis
2.4. FT-NIR Characterization
2.5. Gel Fraction Determination
2.6. Swelling (Mt) Degree Assays
2.7. Thermal Characterization
2.8. X-ray Diffraction
2.9. Transmission Electron Microscopy (TEM)
2.10. Magnetic Characterization
2.11. Rheological Measurements
2.12. Adsorption Kinetics in Copper Solutions
3. Results and Discussion
3.1. Synthesis and Characterization of the Elastomers
3.2. Nanocomposites Synthesis and Characterization
3.3. Adsorption Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pascault, J.-P.; Williams, R.J.J. Epoxy Polymers New Materials and Innovations, 1st ed.; Sons, J.W., Ed.; Wiley: Weinheim, Germany, 2009; ISBN 3527628711. [Google Scholar]
- Auvergne, R.; Caillol, S.; David, G.; Boutevin, B.; Pascault, J.P. Biobased Thermosetting Epoxy: Present and Future. Chem. Rev. 2014, 114, 1082–1115. [Google Scholar] [CrossRef] [PubMed]
- Pascault, J.-P.; Sautereau, H.; Verdu, J.; Williams, R.J.J. Thermosetting Polymers; Dekker, M., Ed.; CRC Press: Boca Raton, FL, USA, 2002; Chapter 2; ISBN 0824706706. [Google Scholar]
- Gitsov, I.; Zhu, C. Amphiphilic Hydrogels Constructed by Poly(ethylene glycol) and Shape-Persistent Dendritic Fragments. Macromolecules 2002, 35, 8418–8427. [Google Scholar] [CrossRef]
- Duchet, J.; Pascault, J.P. Do Epoxy-Amine Networks Become Inhomogeneous at the Nanometric Scale? J. Polym. Sci. Part B Polym. Phys. 2003, 41, 2422–2432. [Google Scholar] [CrossRef]
- Zhu, C.; Hard, C.; Lin, C.; Gitsov, I. Novel Materials for Bioanalytical and Biomedical Applications: Environmental Response and Binding/Release Capabilities of Amphiphilic Hydrogels with Shape-Persistent Dendritic Junctions. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 4017–4029. [Google Scholar] [CrossRef]
- Tess, R.W. Epoxy Resins Chemistry and Technology; May, C.A., Dekker, M., Eds.; Springer Science: New York, NY, USA, 1988; ISBN 1351449966. [Google Scholar]
- Ledo-Suárez, A.; Puig, J.; Zucchi, I.A.; Hoppe, C.E.; Gómez, M.L.; Zysler, R.; Ramos, C.; Marchi, M.C.; Bilmes, S.A.; Lazzari, M.; et al. Functional Nanocomposites Based on the Infusion or in Situ Generation of Nanoparticles into Amphiphilic Epoxy Gels. J. Mater. Chem. 2010, 20, 10135–10145. [Google Scholar] [CrossRef]
- Puig, J.; Zucchi, I.A.; Hoppe, C.E.; Ṕerez, C.J.; Galante, M.J.; Williams, R.J.J.; Rodríguez-Abreu, C. Epoxy Networks with Physical Cross-Links Produced by Tail-to-Tail Associations of Alkyl Chains. Macromolecules 2009, 42, 9344–9350. [Google Scholar] [CrossRef]
- Kwok, A.Y.; Qiao, G.G.; Solomon, D.H. Interpenetrating Amphiphilic Polymer Networks of Poly(2-hydroxyethyl methacrylate) and Poly(ethylene oxide). Chem. Mater. 2004, 16, 5650–5658. [Google Scholar] [CrossRef]
- Naga, N.; Sato, M.; Mori, K.; Nageh, H.; Nakano, T. Synthesis of Network Polymers by Means of Addition Reactions of Multifunctional-Amine and Poly(ethylene glycol) Diglycidyl Ether or Diacrylate Compounds. Polymers 2020, 12, 2047. [Google Scholar] [CrossRef]
- Lin-Gibson, S.; Bencherif, S.; Cooper, J.A.; Wetzel, S.J.; Antonucci, J.M.; Vogel, B.M.; Horkay, F.; Washburn, N.R. Synthesis and Characterization of PEG Dimethacrylates and Their Hydrogels. Biomacromolecules 2004, 5, 1280–1287. [Google Scholar] [CrossRef]
- Stocke, N.A.; Zhang, X.; Hilt, J.Z.; DeRouchey, J.E. Transport in PEG-Based Hydrogels: Role of Water Content at Synthesis and Crosslinker Molecular Weight. Macromol. Chem. Phys. 2017, 218, 3. [Google Scholar] [CrossRef]
- Amirkiai, A.; Abrisham, M.; Panahi-Sarmad, M.; Xiao, X.; Alimardani, A.; Sadri, M. Tracing Evolutions of Elastomeric Composites in Shape Memory Actuators: A Comprehensive Review. Mater. Today Commun. 2021, 28, 102658. [Google Scholar] [CrossRef]
- Seifert, J.; Koch, K.; Hess, M.; Schmidt, A.M. Magneto-Mechanical Coupling of Single Domain Particles in Soft Matter Systems. Phys. Sci. Rev. 2020. ahead-of-print. [Google Scholar] [CrossRef]
- Puig, J.; Hoppe, C.E.; Fasce, L.A.; Pérez, C.J.; Piñeiro-Redondo, Y.; Bañobre-López, M.; López-Quintela, M.A.; Rivas, J.; Williams, R.J.J. Superparamagnetic Nanocomposites Based on the Dispersion of Oleic Acid-Stabilized Magnetite Nanoparticles in a Diglycidylether of Bisphenol A-Based Epoxy Matrix: Magnetic Hyperthermia and Shape Memory. J. Phys. Chem. C 2012, 116, 13421–13428. [Google Scholar] [CrossRef]
- Bastola, A.K.; Ang, E.; Paudel, M.; Li, L. Soft Hybrid Magnetorheological Elastomer: Gap Bridging between MR Fluid and MR Elastomer. Colloids Surf. A Physicochem. Eng. Asp. 2019, 583, 123975. [Google Scholar] [CrossRef]
- Rus, D.; Tolley, M.T. Design, Fabrication and Control of Soft Robots. Nature 2015, 521, 467–475. [Google Scholar] [CrossRef]
- Li, S.; Bai, H.; Shepherd, R.F.; Zhao, H. Bio-inspired Design and Additive Manufacturing of Soft Materials Machines Robots and Haptic Interfaces. Angew. Chem. 2019, 58, 11182–11204. [Google Scholar] [CrossRef]
- Gonzalez, J.S.; Hoppe, C.E.; Williams, R.J.J. Elastomers Obtained by Crosslinking of α,ω-Bis(Glycidylether) Poly(Dimethylsiloxane) as Versatile Platforms for Functional Materials. Eur. Polym. J. 2017, 87, 200–208. [Google Scholar] [CrossRef]
- Horst, M.F.; Pizzano, A.; Spetter, C.; Lassalle, V. Magnetic Nanotechnological Devices as Efficient Tools to Improve the Quality of Water: Analysis on a Real Case. Environ. Sci. Pollut. Res. 2018, 25, 28185–28194. [Google Scholar] [CrossRef]
- Areal, M.P.; Arciniegas, M.L.; Horst, F.; Lassalle, V.; Sánchez, F.H.; Alvarez, V.A.; Gonzalez, J.S. Water Remediation: PVA-Based Magnetic Gels as Efficient Devices to Heavy Metal Removal. J. Polym. Environ. 2018, 26, 3129–3138. [Google Scholar] [CrossRef]
- Sanchez, L.M.; Ollier, R.P.; Gonzalez, J.S.; Alvarez, V.A. Nanocomposite Materials for Dyes Removal; Hussain, C.M., Ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2018; ISBN 9780128133514. [Google Scholar]
- Friedman, R.M.; Freeman, J.J.; Lytle, F.W. Characterization of Cu Al2O3 Catalysts. J. Catal. 1978, 55, 10–28. [Google Scholar] [CrossRef]
- Morgan, R.J.; Kong, F.M.; Walkup, C.M. Structure-Property Relations of Polyethertriamine-Cured Bisphenol-A-Diglycidyl Ether Epoxies. Polymers 1984, 25, 375–386. [Google Scholar] [CrossRef]
- Tanaka, Y.; Bauer, R.S. Curing Reactions. In Epoxy Resins; Routledge: New York, NY, USA, 2018; pp. 285–463. [Google Scholar]
- Gonzalez Gonzalez, M.; Cabanelas, J.C.; Baselga, J. Applications of FTIR on Epoxy Resins-Identification, Monitoring the Curing Process, Phase Separation and Water Uptake. In Infrared Spectroscopy: Materials Science, Engineering and Technology; Theophile, T., Ed.; National Technical University of Athens: Athens, Greece, 2012; pp. 261–284. [Google Scholar]
- Linde, E.; Giron, N.H.; Celina, M.C. Water Diffusion with Temperature Enabling Predictions for Sorption and Transport Behavior in Thermoset Materials; Elsevier B.V.: Amsterdam, The Netherlands, 2018; Volume 153, ISBN 5058449781. [Google Scholar]
- Barton, A.F. CRC Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd ed.; Routledge: New York, NY, USA, 2017; ISBN 9781315140575. [Google Scholar]
- Ahn, T.; Kim, J.H.; Yang, H.M.; Lee, J.W.; Kim, J.D. Formation Pathways of Magnetite Nanoparticles by Coprecipitation Method. J. Phys. Chem. C 2012, 116, 6069–6076. [Google Scholar] [CrossRef]
- Gonzalez, J.S.; Hoppe, C.E.; Zélis, P.M.; Arciniegas, L.; Pasquevich, G.A.; Sánchez, F.H.; Alvarez, V.A. Simple and Efficient Procedure for the Synthesis of Ferrogels Based on Physically Cross-Linked PVA. Ind. Eng. Chem. Res. 2014, 53, 214–221. [Google Scholar] [CrossRef]
- Sivudu, K.S.; Rhee, K.Y. Preparation and Characterization of PH-Responsive Hydrogel Magnetite Nanocomposite. Colloids Surf. A Physicochem. Eng. Asp. 2009, 349, 29–34. [Google Scholar] [CrossRef]
- Wang, Y.; Li, B.; Zhou, Y.; Jia, D. Chitosan-Induced Synthesis of Magnetite Nanoparticles via Iron Ions Assembly. Polym. Adv. Technol. 2008, 19, 1256–1261. [Google Scholar] [CrossRef]
- Thomas, V.; Namdeo, M.; Mohan, Y.M.; Bajpai, S.K.; Bajpai, M. Review on Polymer, Hydrogel and Microgel Metal Nanocomposites: A Facile Nanotechnological Approach. J. Macromol. Sci. Part A Pure Appl. Chem. 2008, 45, 107–119. [Google Scholar] [CrossRef]
- Katime, I.; Rodríguez, E. Absorption of Metal Ions and Swelling Properties of Poly(Acrylic Acid-Co-Itaconic Acid) Hydrogels. J. Macromol. Sci.-Pure Appl. Chem. 2001, 38 A, 543–558. [Google Scholar] [CrossRef]
- Zhu, J.; Wei, S.; Chen, M.; Gu, H.; Rapole, S.B.; Pallavkar, S.; Ho, T.C.; Hopper, J.; Guo, Z. Magnetic Nanocomposites for Environmental Remediation. Adv. Powder Technol. 2013, 24, 459–467. [Google Scholar] [CrossRef]
- Gupta, A.; Sharma, V.; Sharma, K.; Kumar, V.; Choudhary, S.; Mankotia, P.; Kumar, B.; Mishra, H.; Moulick, A.; Ekielski, A.; et al. A Review of Adsorbents for Heavy Metal Decontamination: Growing Approach to Wastewater Treatment. Materials 2021, 14, 4702. [Google Scholar] [CrossRef]
- Zhu, H.Z.; You, L.Q.; Wei, H.L.; Wang, G.F.; Chu, H.J.; Zhu, J.; He, J. Preparation and Characterization of PH-Sensitive Hydrogel Microspheres Based on Atom Transfer Radical Polymerization. Polym. Eng. Sci. 2015, 55, 2775–2782. [Google Scholar] [CrossRef]
- Liu, J.; Chu, H.; Wei, H.; Zhu, H.; Wang, G.; Zhu, J.; He, J. Facile Fabrication of Carboxymethyl Cellulose Sodium/Graphene Oxide Hydrogel Microparticles for Water Purification. RSC Adv. 2016, 6, 50061–50069. [Google Scholar] [CrossRef]
- Crini, G. Recent Developments in Polysaccharide-Based Materials Used as Adsorbents in Wastewater Treatment. Prog. Polym. Sci. 2005, 30, 38–70. [Google Scholar] [CrossRef]
- Paulino, A.T.; Belfiore, L.A.; Kubota, L.T.; Muniz, E.C.; Almeida, V.C.; Tambourgi, E.B. Effect of Magnetite on the Adsorption Behavior of Pb(II), Cd(II), and Cu(II) in Chitosan-Based Hydrogels. Desalination 2011, 275, 187–196. [Google Scholar] [CrossRef]
Sample | ||||
---|---|---|---|---|
ME | 8300 | 49.8 | 7.6 | 2.3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arciniegas Vaca, M.L.; Gonzalez, J.S.; Hoppe, C.E. Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol 2022, 2, 426-439. https://doi.org/10.3390/macromol2030027
Arciniegas Vaca ML, Gonzalez JS, Hoppe CE. Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol. 2022; 2(3):426-439. https://doi.org/10.3390/macromol2030027
Chicago/Turabian StyleArciniegas Vaca, Magda Lorena, Jimena S. Gonzalez, and Cristina E. Hoppe. 2022. "Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites" Macromol 2, no. 3: 426-439. https://doi.org/10.3390/macromol2030027
APA StyleArciniegas Vaca, M. L., Gonzalez, J. S., & Hoppe, C. E. (2022). Soft Elastomers Based on the Epoxy–Amine Chemistry and Their Use for the Design of Adsorbent Amphiphilic Magnetic Nanocomposites. Macromol, 2(3), 426-439. https://doi.org/10.3390/macromol2030027