Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the PDMAEMA Homopolymer Precursor
2.3. Synthesis of the P(DMAEMA-co-QFDMAEMA) (PQFD) 90:10 and 80:20 Statistical Copolymers
2.4. Self-Assembly of the P(DMAEMA-co-QDMAEMA) (PQFD)Statistical Copolymers
2.5. Characterization Methods
2.5.1. Size-Exclusion Chromatography
2.5.2. 1H-NMR Spectroscopy
2.5.3. ATR-FTIR Spectroscopy
2.5.4. Fluorescence Spectroscopy
2.5.5. Dynamic Light Scattering
CNaCl | 0.001 M | 0.011 M | 0.021 M | 0.03 M | 0.048 M | 0.092 M | 0.201 M | 0.334 M | 0.429 M | 0.5 M |
2.5.6. Electrophoretic Light Scattering—ζ-Potential
3. Results and Discussion
3.1. Synthesis of the PDMAEMA Homopolymer Precursor
3.2. Synthesis of the PQFD 90:10 and 80:20 Statistical Copolymers
3.3. Self-Assembly of PQFD Amphiphilic Copolymers in Aqueous Media
3.3.1. Fluorescence Spectroscopy Results
3.3.2. pH Effects on the Self-Assembly Behavior of PQFD Copolymers—Light Scattering Results
3.3.3. Temperature Effects on the Self-Assembly Behavior of thePQFD Copolymers—Light Scattering Results
3.3.4. Ionic Strength Effects on the Self-Assembly Behavior of PQFD Copolymers—Light Scattering Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hadjichristidis, N.; Pispas, S.; Floudas, G. Block Copolymers: Synthetic Strategies, Physical Properties, and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131. [Google Scholar] [CrossRef]
- Adams, M.L.; Lavasanifar, A.; Kwon, G.S. Amphiphilic block copolymers for drug delivery. J. Pharm. Sci. 2003, 92, 1343–1355. [Google Scholar] [CrossRef] [PubMed]
- Torchilin, V.P. Nanoparticulates as Drug Carriers; Imperial College Press: London, UK, 2006. [Google Scholar]
- Blanazs, A.; Armes, S.P.; Ryan, A.J. Self-assembled block copolymer aggregates: From micelles to vesicles and their biological applications. Macromol. Rapid Commun. 2009, 30, 267–277. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Raghupathi, K.; Song, C.; Prasad, P.; Thayumanavan, S. Self-assembly of random copolymers. ChemComm 2014, 50, 13417–13432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kimura, Y.; Terashima, T.; Sawamoto, M. Self-Assembly of Amphiphilic Random Copolyacrylamides into Uniform and Necklace Micelles in Water. Macromol. Chem. Phys. 2017, 218, 1700230. [Google Scholar] [CrossRef] [Green Version]
- Oosawa, F. Polyelectrolytes; M. Dekker: New York, NY, USA, 1971. [Google Scholar]
- Miyajima, T.; Radeva, T. Physical Chemistry of Polyelectrolytes; Surfactant Science Series; M. Dekker: New York, NY, USA, 2001; Volume 99. [Google Scholar]
- Mandel, M. Encyclopedia of Polymer Science and Engineering; Wiley-Interscience, John Wiley & Sons: New York, NY, USA, 1988; Volume 11. [Google Scholar]
- Kopeček, J. Biodegradation of polymers for biomedical use. In Macromolecules; Elsevier: Amsterdam, The Netherlands, 1982; pp. 305–320. [Google Scholar]
- Moradi-Araghi, A.; Beardmore, D.; Stahl, G. The application of gels in enhanced oil recovery: Theory, polymers and crosslinker systems. In Water-Soluble Polymers for Petroleum Recovery; Springer: Berlin/Heidelberg, Germany, 1988; pp. 299–312. [Google Scholar]
- Kocak, G.; Tuncer, C.; Bütün, V. pH-Responsive polymers. Polym. Chem. 2017, 8, 144–176. [Google Scholar] [CrossRef]
- Ward, M.A.; Georgiou, T.K. Thermoresponsive polymers for biomedical applications. Polymers 2011, 3, 1215–1242. [Google Scholar] [CrossRef] [Green Version]
- Gohy, J.-F.; Lohmeijer, B.G.; Varshney, S.K.; Décamps, B.; Leroy, E.; Boileau, S.; Schubert, U.S. Stimuliresponsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer. Macromolecules 2002, 35, 9748–9755. [Google Scholar] [CrossRef]
- Lee, A.S.; Bütün, V.; Vamvakaki, M.; Armes, S.P.; Pople, J.A.; Gast, A.P. Structure of pH-dependent block copolymer micelles: Charge and ionic strength dependence. Macromolecules 2002, 35, 8540–8551. [Google Scholar] [CrossRef]
- Gupta, P.; Vermani, K.; Garg, S. Hydrogels: From controlled release to pH-responsive drug delivery. Drug Discov. 2002, 7, 569–579. [Google Scholar] [CrossRef]
- Schmaljohann, D. Thermo-and pH-responsive polymers in drug delivery. Adv. Drug Deliv. Rev. 2006, 58, 1655–1670. [Google Scholar] [CrossRef] [PubMed]
- Kurisawa, M.; Yui, N. Dual-stimuli-responsive drug release from interpenetrating polymer network-structured hydrogels of gelatin and dextran. J. Control. Release 1998, 54, 191–200. [Google Scholar] [CrossRef]
- Gan, L.; Gan, Y.; Deen, G.R. Poly (N-acryloyl-N ‘-propylpiperazine): A new stimuli-responsive polymer. Macromolecules 2000, 33, 7893–7897. [Google Scholar] [CrossRef]
- Perrier, S. 50th Anniversary Perspective: RAFT Polymerization—A User Guide. Macromolecules 2017, 50, 7433–7447. [Google Scholar] [CrossRef]
- Moad, G. RAFT polymerization to form stimuli-responsive polymers. Polym. Chem. 2017, 8, 177–219. [Google Scholar] [CrossRef]
- Moad, G.; Rizzardo, E.; Thang, S.H. Living radical polymerization by the RAFT process–A second update. Aust. J. Chem. 2009, 62, 1402–1472. [Google Scholar] [CrossRef]
- Plamper, F.A.; Ruppel, M.; Schmalz, A.; Borisov, O.; Ballauff, M.; Müller, A.H. Tuning the thermoresponsive properties of weak polyelectrolytes: Aqueous solutions of star-shaped and linear poly (N, N-dimethylaminoethyl methacrylate). Macromolecules 2007, 40, 8361–8366. [Google Scholar] [CrossRef]
- Xu, Y.; Bolisetty, S.; Drechsler, M.; Fang, B.; Yuan, J.; Ballauff, M.; Müller, A.H. pH and salt responsive poly (N, N-dimethylaminoethyl methacrylate) cylindrical brushes and their quaternized derivatives. Polymer 2008, 49, 3957–3964. [Google Scholar] [CrossRef]
- Mohammadi, M.; Salami-Kalajahi, M.; Roghani-Mamaqani, H.; Golshan, M. Effect of molecular weight and polymer concentration on the triple temperature/pH/ionic strength-sensitive behavior of poly (2-(dimethylamino) ethyl methacrylate). Int. J. Polym. Mater. 2017, 66, 455–461. [Google Scholar] [CrossRef]
- Guerre, M.; Lopez, G.; Ameduri, B.; Semsarilar, M.; Ladmiral, V. Solution self-assembly of fluorinated polymers, an overview. Polym. Chem. 2021, 12, 3852–3877. [Google Scholar] [CrossRef]
- Coates, J. Interpretation of Infrared Spectra, a Practical Approach; John Wiley & Sons Ltd.: Chichester, UK, 2000; pp. 10815–10837. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Colthup, N. Introduction to Infrared and Raman Spectroscopy; Elsevier: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Li, J.; Jiang, T.-T.; Shen, J.-N.; Ruan, H.-M. Preparation and Characterization of PMMA and its Derivative via RAFT Technique in the Presence of Disulfide as a Source of Chain Transfer Agent. J. Memb. Separ. 2012, 1, 117. [Google Scholar]
- Skandalis, A.; Pispas, S. PDMAEMA-b-PLMA-b-POEGMA triblock terpolymers via RAFT polymerization and their self-assembly in aqueous solutions. Polym. Chem. 2017, 8, 4538–4547. [Google Scholar] [CrossRef]
- Manouras, T.; Koufakis, E.; Anastasiadis, S.H.; Vamvakaki, M. A facile route towards PDMAEMA homopolymer amphiphiles. Soft Matter 2017, 13, 3777–3782. [Google Scholar] [CrossRef]
- Mihály, J.; Sterkel, S.; Ortner, H.M.; Kocsis, L.; Hajba, L.; Furdyga, É.; Mink, J. FTIR and FT-Raman spectroscopic study on polymer based high pressure digestion vessels. Croat. Chem. Acta 2006, 79, 497–501. [Google Scholar]
- Okten, N.S.; Canakci, C.C.; Orakdogen, N. Hertzian elasticity and triggered swelling kinetics of poly (amino ester)-based gel beads with controlled hydrophilicity and functionality: A mild and convenient synthesis via dropwise freezing into cryogenic liquid. Eur. Polym. J. 2019, 114, 176–188. [Google Scholar] [CrossRef]
- Zhao, C.L.; Winnik, M.A.; Riess, G.; Croucher, M.D. Fluorescence probe techniques used to study micelle formation in water-soluble block copolymers. Langmuir 1990, 6, 514–516. [Google Scholar] [CrossRef]
- Winnik, F.M.; Ringsdorf, H.; Venzmer, J. Interactions of surfactants with hydrophobically-modified poly (N-isopropylacrylamides). 1. Fluorescence probe studies. Langmuir 1991, 7, 905–911. [Google Scholar] [CrossRef]
- Wilhelm, M.; Zhao, C.L.; Wang, Y.; Xu, R.; Winnik, M.A.; Mura, J.L.; Riess, G.; Croucher, M.D. Poly (styrene-ethylene oxide) block copolymer micelle formation in water: A fluorescence probe study. Macromolecules 1991, 24, 1033–1040. [Google Scholar] [CrossRef]
- Domínguez, A.; Fernández, A.; González, N.; Iglesias, E.; Montenegro, L. Determination of critical micelle concentration of some surfactants by three techniques. J. Chem. Educ. 1997, 74, 1227. [Google Scholar] [CrossRef]
- Gohy, J.-F. Block copolymer micelles. In Block Copolymers II; Springer: Berlin/Heidelberg, Germany, 2005; pp. 65–136. [Google Scholar]
Sample | Mw (g/mol) 1 | Mw/Mn 1 | %DMAEMA 2 | %QDMAEMA 2 |
---|---|---|---|---|
PDMAEMA 10 K | 6450 | 1.14 | 100% | - |
PQFD 10% | 8200 3 | - | 93% | 7% |
PQFD 20% | 8750 3 | - | 90% | 10% |
Sample | CAC Value |
---|---|
PQFD 10% (H2O protocol) | - |
PQFD 20% (H2O protocol) | 6.2 × 10−5 g/mL |
PQFD 10% (THF protocol) | 4.7 × 10−5 g/mL |
PQFD 20% (THF protocol) | 9.9 × 10−6 g/mL |
Sample | I1/I3 | |||
---|---|---|---|---|
25 °C | 50 °C | |||
PQFD 10% | H2O protocol | pH 3 | 1.36 | 1.55 |
pH 7 | 1.6 | 1.53 | ||
pH 10 | 1.41 | 1.43 | ||
THF protocol | pH 3 | 1.64 | 1.55 | |
pH 7 | 1.55 | 1.53 | ||
pH 10 | 1.4 | 1.48 | ||
PQFD 20% | H2O protocol | pH 3 | 1.5 | 1.53 |
pH 7 | 1.21 | 1.45 | ||
pH 10 | 1.44 | 1.31 | ||
THF protocol | pH 3 | 1.61 | 1.56 | |
pH 7 | 1.58 | 1.51 | ||
pH 10 | 1.51 | 1.41 |
Preparation Protocol | pH | Intensity (kC/s) | Rh from Cumulants (nm) | PDI | Rh from CONTIN (nm) | %wt | ζ-Potential |
---|---|---|---|---|---|---|---|
H2O | 3 | 3743 | 107 | 0.230 | 122 | 99 | +44 mV |
7 | 232 | 94 | 0.387 | 127 | 98 | +39 mV | |
10 | 268 | 81 | 0.498 | 108 | 98 | −38 mV | |
THF | 3 | 389 | 303 | 0.433 | 58 449 | 50 50 | +48 mV |
7 | 1052 | 548 | 0.47 | 36 99 744 | 10 29 61 | +32 mV | |
10 | 642 | 150 | 0.498 | 47 285 | 38 62 | −35 mV |
Preparation Protocol | pH | Intensity (KC/s) | Rh from Cumulants (nm) | PDI | Rh from CONTIN (nm) | %wt | ζ-Potential |
---|---|---|---|---|---|---|---|
H2O | 3 | 285 | 80 | 0.412 | 89 | 98 | +44 mV |
7 | 99 | 97 | 0.407 | 136 | 98 | +40 mV | |
10 | 150 | 84 | 0.512 | 39 116 | 31 69 | −35 mV | |
THF | 3 | 787 | 2060 | 0.389 | 50 958 | 20 80 | +0.6 mV |
7 | 937 | 18,980 | 0.338 | 102 973 | 11 89 | +27 mV | |
10 | 655 | 3550 | 0.436 | 34 555 | 10 90 | −27 mV |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Didaskalou, P.; Kafetzi, M.; Pispas, S. Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol 2022, 2, 194-210. https://doi.org/10.3390/macromol2020013
Didaskalou P, Kafetzi M, Pispas S. Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol. 2022; 2(2):194-210. https://doi.org/10.3390/macromol2020013
Chicago/Turabian StyleDidaskalou, Periklis, Martha Kafetzi, and Stergios Pispas. 2022. "Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions" Macromol 2, no. 2: 194-210. https://doi.org/10.3390/macromol2020013
APA StyleDidaskalou, P., Kafetzi, M., & Pispas, S. (2022). Cationic Polyelectrolytes Containing Perfluorinated Groups: Synthesis and Self-Assembly Properties in Aqueous Solutions. Macromol, 2(2), 194-210. https://doi.org/10.3390/macromol2020013