Understanding the Impact of the Skin Microbiome on Dermatological Assessments and Therapeutic Innovation
Abstract
1. Introduction
2. Intestine-Skin Axis
3. The Influence of Microbiome on the Skin
3.1. Acne
3.2. Aging
3.3. Hyperpigmentation
3.4. Infrared Radiation
3.5. Hair Disorders
4. Microbiome and the Cosmetics Market
5. Future Perspectives and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| HMP | Human Microbiome Project |
| iHMP | Integrative HMP |
| SCFAs | Short-chain fatty acids |
| ROS | Reactive oxygen species |
| MMPs | Metalloproteinases |
| TLR | Toll-like receptor |
| UV | Ultraviolet |
| SD | Seborrheic dermatitis |
| AGA | Androgenetic alopecia |
| AA | Alopecia areata |
| FD | Folliculitis decalvans |
| PS | Scalp psoriasis |
| PIH | Hyperpigmentation |
| mTOR | Mammalian target of rapamycin |
| IGF-1 | Insulin-like growth factor-1 |
References
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- NCBI Human Microbiome Project. Available online: https://pubmed.ncbi.nlm.nih.gov/32419029/ (accessed on 4 May 2025).
- Proctor, L.M.; Creasy, H.H.; Fettweis, J.M.; Lloyd-Price, J.; Mahurkar, A.; Zhou, W.; Buck, G.A.; Snyder, M.P.; Strauss, J.F.; Weinstock, G.M.; et al. The Integrative Human Microbiome Project. Nature 2019, 569, 641–648. [Google Scholar] [CrossRef]
- Integrative HMP (iHMP) Research Network Consortium. The Integrative Human Microbiome Project: Dynamic Analysis of Microbiome-Host Omics Profiles during Periods of Human Health and Disease. Cell Host Microbe 2014, 16, 276–289. [Google Scholar] [CrossRef]
- Galloway-Peña, J.; Hanson, B. Tools for Analysis of the Microbiome. Dig. Dis. Sci. 2020, 65, 674–685. [Google Scholar] [CrossRef]
- Santiago-Rodriguez, T.M.; Le François, B.; Macklaim, J.M.; Doukhanine, E.; Hollister, E.B. The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms 2023, 11, 1222. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, M.S.; Chang, E.B. The Microbiome: Composition and Locations. In Progress in Molecular Biology and Translational Science; Kasselman, L.J., Ed.; Academic Press: Cambridge, MA, USA, 2020; Volume 126, pp. 1–42. [Google Scholar]
- Grice, E.A.; Segre, J.A. The Skin Microbiome. Nat. Rev. Microbiol. 2011, 9, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Edslev, S.; Agner, T.; Andersen, P. Skin Microbiome in Atopic Dermatitis. Acta Derm. Venereol. 2020, 100, adv00164. [Google Scholar] [CrossRef]
- Byrd, A.L.; Belkaid, Y.; Segre, J.A. The Human Skin Microbiome. Nat. Rev. Microbiol. 2018, 16, 143–155. [Google Scholar] [CrossRef]
- Pérez-Losada, M.; Crandall, K.A. Spatial Diversity of the Skin Bacteriome. Front. Microbiol. 2023, 14, 1257276. [Google Scholar] [CrossRef] [PubMed]
- Carmona-Cruz, S.; Orozco-Covarrubias, L.; Sáez-de-Ocariz, M. The Human Skin Microbiome in Selected Cutaneous Diseases. Front. Cell Infect. Microbiol. 2022, 12, 834135. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, X.; Cheng, G. Human Skin Bacterial Microbiota Homeostasis: A Delicate Balance between Health and Disease. mLife 2023, 2, 107–120. [Google Scholar] [CrossRef]
- Cosseau, C.; Romano-Bertrand, S.; Duplan, H.; Lucas, O.; Ingrassia, I.; Pigasse, C.; Roques, C.; Jumas-Bilak, E. Proteobacteria from the Human Skin Microbiota: Species-Level Diversity and Hypotheses. One Health 2016, 2, 33–41. [Google Scholar] [CrossRef]
- Yang, Y.; Qu, L.; Mijakovic, I.; Wei, Y. Advances in the Human Skin Microbiota and Its Roles in Cutaneous Diseases. Microb. Cell Fact. 2022, 21, 176. [Google Scholar] [CrossRef]
- Ruuskanen, M.O.; Vats, D.; Potbhare, R.; RaviKumar, A.; Munukka, E.; Ashma, R.; Lahti, L. Towards Standardized and Reproducible Research in Skin Microbiomes. Environ. Microbiol. 2022, 24, 3840–3860. [Google Scholar] [CrossRef]
- Kargadouri, A.; Beleri, S.; Patsoula, E. Data on Demodex Ectoparasite Infestation in Patients Attending an Outpatient Clinic in Greece. Parasitologia 2024, 4, 129–136. [Google Scholar] [CrossRef]
- Chen, Y.; Knight, R.; Gallo, R.L. Evolving Approaches to Profiling the Microbiome in Skin Disease. Front. Immunol. 2023, 14, 1151527. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, I.J.; Wright, E.M.; Tagg, J.R.; Jain, R.; Hale, J.D.F. Skin Microbiome—The Next Frontier for Probiotic Intervention. Probiotics Antimicrob. Proteins 2022, 14, 630–647. [Google Scholar] [CrossRef]
- Weng, Y.-C.; Chen, Y.-J. Skin Microbiome in Acne Vulgaris, Skin Aging, and Rosacea. Dermatol. Sin. 2022, 40, 129–142. [Google Scholar] [CrossRef]
- Kolarsick, P.A.J.; Kolarsick, M.A.; Goodwin, C. Anatomy and Physiology of the Skin. J. Dermatol. Nurses. Assoc. 2011, 3, 203–213. [Google Scholar] [CrossRef]
- Hou, K.; Wu, Z.-X.; Chen, X.-Y.; Wang, J.-Q.; Zhang, D.; Xiao, C.; Zhu, D.; Koya, J.B.; Wei, L.; Li, J.; et al. Microbiota in Health and Diseases. Signal Transduct. Target. Ther. 2022, 7, 135. [Google Scholar] [CrossRef]
- Jimenez-Sanchez, M.; Celiberto, L.S.; Yang, H.; Sham, H.P.; Vallance, B.A. The Gut-Skin Axis: A Bi-Directional, Microbiota-Driven Relationship with Therapeutic Potential. Gut Microbes 2025, 17, 2473524. [Google Scholar] [CrossRef]
- Min, M.; Egli, C.; Sivamani, R.K. The Gut and Skin Microbiome and Its Association with Aging Clocks. Int. J. Mol. Sci. 2024, 25, 7471. [Google Scholar] [CrossRef]
- Van Hul, M.; Cani, P.D.; Petifils, C.; De Vos, W.M.; Tilg, H.; El Omar, E.M. What Defines a Healthy Gut Microbiome? Gut 2024, 73, 1893–1908. [Google Scholar] [CrossRef]
- Boyajian, J.L.; Ghebretatios, M.; Schaly, S.; Islam, P.; Prakash, S. Microbiome and Human Aging: Probiotic and Prebiotic Potentials in Longevity, Skin Health and Cellular Senescence. Nutrients 2021, 13, 4550. [Google Scholar] [CrossRef]
- Sinha, S.; Lin, G.; Ferenczi, K. The Skin Microbiome and the Gut-Skin Axis. Clin. Dermatol. 2021, 39, 829–839. [Google Scholar] [CrossRef]
- Wiertsema, S.P.; van Bergenhenegouwen, J.; Garssen, J.; Knippels, L.M.J. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients 2021, 13, 886. [Google Scholar] [CrossRef]
- De Pessemier, B.; Grine, L.; Debaere, M.; Maes, A.; Paetzold, B.; Callewaert, C. Gut-Skin Axis: Current Knowledge of the Interrelationship between Microbial Dysbiosis and Skin Conditions. Microorganisms 2021, 9, 353. [Google Scholar] [CrossRef]
- Stec, A.; Sikora, M.; Maciejewska, M.; Paralusz-Stec, K.; Michalska, M.; Sikorska, E.; Rudnicka, L. Bacterial Metabolites: A Link between Gut Microbiota and Dermatological Diseases. Int. J. Mol. Sci. 2023, 24, 3494. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro Priester, A.; Datsch Bennemann, G.; Daros Massarollo, M.; Mazur, C.E. EIXO INTESTINO-PELE: DISBIOSE INTESTINAL, ALIMENTAÇÃO E DISTÚRBIOS DERMATOLÓGICOS EM MULHERES. Rev. Bras. Obesidade Nutr. Emagrecimento 2024, 18, 527–539. [Google Scholar]
- O’Neill, C.A.; Monteleone, G.; McLaughlin, J.T.; Paus, R. The Gut-Skin Axis in Health and Disease: A Paradigm with Therapeutic Implications. Bioessays 2016, 38, 1167–1176. [Google Scholar] [CrossRef] [PubMed]
- Amann, R.I.; Ludwig, W.; Schleifer, K.H. Phylogenetic Identification and in Situ Detection of Individual Microbial Cells without Cultivation. Microbiol. Rev. 1995, 59, 143–169. [Google Scholar] [CrossRef] [PubMed]
- Franco-Duarte, R.; Černáková, L.; Kadam, S.; Kaushik, K.S.; Salehi, B.; Bevilacqua, A.; Corbo, M.R.; Antolak, H.; Dybka-Stępień, K.; Leszczewicz, M.; et al. Advances in Chemical and Biological Methods to Identify Microorganisms—From Past to Present. Microorganisms 2019, 7, 130. [Google Scholar] [CrossRef] [PubMed]
- Breitwieser, F.P.; Lu, J.; Salzberg, S.L. A Review of Methods and Databases for Metagenomic Classification and Assembly. Brief. Bioinform. 2019, 20, 1125–1136. [Google Scholar] [CrossRef] [PubMed]
- Klenk, H.-P. Culturomics as Tool in Research and Service in Culture Collections. In ECCO XXXIV—European Culture Collections as Tools in Research and Biotechnology; Institut Pasteur: Paris, France, 2015. [Google Scholar]
- Morshed, A.S.M.; Noor, T.; Uddin Ahmed, M.A.; Mili, F.S.; Ikram, S.; Rahman, M.; Ahmed, S.; Uddin, M.B. Understanding the Impact of Acne Vulgaris and Associated Psychological Distress on Self-Esteem and Quality of Life via Regression Modeling with CADI, DLQI, and WHOQoL. Sci. Rep. 2023, 13, 21084. [Google Scholar] [CrossRef]
- Chen, H.; Zhang, T.C.; Yin, X.L.; Man, J.Y.; Yang, X.R.; Lu, M. Magnitude and Temporal Trend of Acne Vulgaris Burden in 204 Countries and Territories from 1990 to 2019: An Analysis from the Global Burden of Disease Study 2019. Br. J. Dermatol. 2022, 186, 673–683. [Google Scholar] [CrossRef]
- Navarro-López, V.; Núñez-Delegido, E.; Ruzafa-Costas, B.; Sánchez-Pellicer, P.; Agüera-Santos, J.; Navarro-Moratalla, L. Probiotics in the Therapeutic Arsenal of Dermatologists. Microorganisms 2021, 9, 1513. [Google Scholar] [CrossRef]
- Siddiqui, R.; Makhlouf, Z.; Khan, N.A. The Increasing Importance of the Gut Microbiome in Acne Vulgaris. Folia Microbiol. 2022, 67, 825–835. [Google Scholar] [CrossRef]
- Toyoda, M.; Morohashi, M. Pathogenesis of Acne. Med. Electron. Microsc. 2001, 34, 29–40. [Google Scholar] [CrossRef]
- Costa, A.; Alchorne, M.M.D.A.; Goldschmidt, M.C.B. Fatores Etiopatogênicos Da Acne Vulgar. An. Bras. Dermatol. 2008, 83, 451–459. [Google Scholar] [CrossRef]
- Lee, Y.B.; Byun, E.J.; Kim, H.S. Potential Role of the Microbiome in Acne: A Comprehensive Review. J. Clin. Med. 2019, 8, 987. [Google Scholar] [CrossRef]
- Hauk, L. Acne Vulgaris: Treatment Guidelines from the AAD. Am. Fam. Physician 2017, 95, 740–741. [Google Scholar] [PubMed]
- Hochheim, L.D.; Caron, P.; Poleto, F.C. Princípios Básicos Para o Tratamento Cosmético Da Acne Vulgar. Univali 2010, 1, 21. [Google Scholar]
- Barros, A.B.D.; Sarruf, F.D.; Fileto, M.B.; Valéria, M.R.V. Acne Vulgar: Aspectos Gerais e Atualizações No Protocolo de Tratamento. BWS J. 2020, 3, 1–13. [Google Scholar]
- Lucena, H.A.; Gonçalves, C.W.L.; Santos Neto, F.T.d.; Souza, J.A.d.; Ferreira, R.D.F.; Freitas Filho, T.F.d.O.; Sousa, M.N.A.d. Eficácia Do Tratamento Da Acne Vulgar: Um Estudo Comparativo Entre a Isotretinoína e Antibióticos. Peer Rev. 2023, 5, 94–107. [Google Scholar] [CrossRef]
- Silva, L.L.d.S.; Lima, R.M.d.S.; Sousa, E.R.d.S.; Silva, V.G.S.d.; Silva, C.H.P.d.; Silva, T.K.H.d. Uso Clínico de Antibióticos Orais No Tratamento Da Acne Vulgar: Segurança e Eficácia Terapêutica. Res. Soc. Dev. 2023, 12, e132121143147. [Google Scholar] [CrossRef]
- Negreiros, K.O.d.A.; Barbosa, T.d.C.; Mariano, J.P.A.V.; de Faria, L.d.O.M.L.; Luzzani, J.M.; Leite, C.Q. Tratamentos Cosméticos e Estéticos Para Acne Vulgar: Uma Revisão de Literatura. Rev. Cient. Estét. Cosmetol. 2023, 3, E1132023-1. [Google Scholar] [CrossRef]
- Ryguła, I.; Pikiewicz, W.; Grabarek, B.O.; Wójcik, M.; Kaminiów, K. The Role of the Gut Microbiome and Microbial Dysbiosis in Common Skin Diseases. Int. J. Mol. Sci. 2024, 25, 1984. [Google Scholar] [CrossRef]
- Conforti, C.; Agozzino, M.; Emendato, G.; Fai, A.; Fichera, F.; Marangi, G.F.; Neagu, N.; Pellacani, G.; Persichetti, P.; Segreto, F.; et al. Acne and Diet: A Review. Int. J. Dermatol. 2022, 61, 930–934. [Google Scholar] [CrossRef]
- Fournière, M.; Latire, T.; Souak, D.; Feuilloley, M.G.J.; Bedoux, G. Staphylococcus epidermidis and Cutibacterium acnes: Two Major Sentinels of Skin Microbiota and the Influence of Cosmetics. Microorganisms 2020, 8, 1752. [Google Scholar] [CrossRef]
- Mayslich, C.; Grange, P.A.; Dupin, N. Cutibacterium acnes as an Opportunistic Pathogen: An Update of Its Virulence-Associated Factors. Microorganisms 2021, 9, 303. [Google Scholar] [CrossRef]
- Tsuru, A.; Hamazaki, Y.; Tomida, S.; Ali, M.S.; Komura, T.; Nishikawa, Y.; Kage-Nakadai, E. Nonpathogenic Cutibacterium acnes Confers Host Resistance against Staphylococcus aureus. Microbiol. Spectr. 2021, 9, e00562-21. [Google Scholar] [CrossRef]
- Wei, Q.; Li, Z.; Gu, Z.; Liu, X.; Krutmann, J.; Wang, J.; Xia, J. Shotgun Metagenomic Sequencing Reveals Skin Microbial Variability from Different Facial Sites. Front. Microbiol. 2022, 13, 933189. [Google Scholar] [CrossRef]
- Barnard, E.; Shi, B.; Kang, D.; Craft, N.; Li, H. The Balance of Metagenomic Elements Shapes the Skin Microbiome in Acne and Health. Sci. Rep. 2016, 6, 39491. [Google Scholar] [CrossRef]
- Schneider, A.M.; Nolan, Z.T.; Banerjee, K.; Paine, A.R.; Cong, Z.; Gettle, S.L.; Longenecker, A.L.; Zhan, X.; Agak, G.W.; Nelson, A.M. Evolution of the Facial Skin Microbiome during Puberty in Normal and Acne Skin. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 166–175. [Google Scholar] [CrossRef]
- Huang, C.; Zhuo, F.; Han, B.; Li, W.; Jiang, B.; Zhang, K.; Jian, X.; Chen, Z.; Li, H.; Huang, H.; et al. The Updates and Implications of Cutaneous Microbiota in Acne. Cell Biosci. 2023, 13, 113. [Google Scholar] [CrossRef]
- Dréno, B.; Dagnelie, M.A.; Khammari, A.; Corvec, S. The Skin Microbiome: A New Actor in Inflammatory Acne. Am. J. Clin. Dermatol. 2020, 21, 18–24. [Google Scholar] [CrossRef]
- Dagnelie, M.-A.; Corvec, S.; Saint-Jean, M.; Nguyen, J.-M.; Khammari, A.; Dréno, B. Cutibacterium acnes Phylotypes Diversity Loss: A Trigger for Skin Inflammatory Process. J. Eur. Acad. Dermatol. Venereol. 2019, 33, 2340–2348. [Google Scholar] [CrossRef]
- Zargaran, D.; Zoller, F.; Zargaran, A.; Weyrich, T.; Mosahebi, A. Facial Skin Ageing: Key Concepts and Overview of Processes. Int. J. Cosmet. Sci. 2022, 44, 414–420. [Google Scholar] [CrossRef]
- Bonté, F.; Girard, D.; Archambault, J.-C.; Desmoulière, A. Skin Changes During Ageing. In Biochemistry and Cell Biology of Ageing: Part II Clinical Science; Springer: Singapore, 2019; pp. 249–280. [Google Scholar]
- Low, E.; Alimohammadiha, G.; Smith, L.A.; Costello, L.F.; Przyborski, S.A.; von Zglinicki, T.; Miwa, S. How Good Is the Evidence That Cellular Senescence Causes Skin Ageing? Ageing Res. Rev. 2021, 71, 101456. [Google Scholar] [CrossRef]
- Ratanapokasatit, Y.; Laisuan, W.; Rattananukrom, T.; Petchlorlian, A.; Thaipisuttikul, I.; Sompornrattanaphan, M. How Microbiomes Affect Skin Aging: The Updated Evidence and Current Perspectives. Life 2022, 12, 936. [Google Scholar] [CrossRef]
- Luna, P.C. Skin Microbiome as Years Go By. Am. J. Clin. Dermatol. 2020, 21, 12–17. [Google Scholar] [CrossRef]
- Schommer, N.N.; Gallo, R.L. Structure and Function of the Human Skin Microbiome. Trends Microbiol. 2013, 21, 660–668. [Google Scholar] [CrossRef]
- Kim, G.; Kim, M.; Kim, M.; Park, C.; Yoon, Y.; Lim, D.-H.; Yeo, H.; Kang, S.; Lee, Y.-G.; Beak, N.-I.; et al. Spermidine-Induced Recovery of Human Dermal Structure and Barrier Function by Skin Microbiome. Commun. Biol. 2021, 4, 231. [Google Scholar] [CrossRef]
- Meunier, M.; Scandolera, A.; Chapuis, E.; Lambert, C.; Jarrin, C.; Robe, P.; Chajra, H.; Auriol, D.; Reynaud, R. From Stem Cells Protection to Skin Microbiota Balance: Orobanche rapum Extract, a New Natural Strategy. J. Cosmet. Dermatol. 2019, 18, 1140–1154. [Google Scholar] [CrossRef]
- Habeebuddin, M.; Karnati, R.K.; Shiroorkar, P.N.; Nagaraja, S.; Asdaq, S.M.B.; Khalid Anwer, M.; Fattepur, S. Topical Probiotics: More Than a Skin Deep. Pharmaceutics 2022, 14, 557. [Google Scholar] [CrossRef]
- Iglesia, S.; Kononov, T.; Zahr, A.S. A Multi-Functional Anti-Aging Moisturizer Maintains a Diverse and Balanced Facial Skin Microbiome. J. Appl. Microbiol. 2022, 133, 1791–1799. [Google Scholar] [CrossRef]
- Pistone, D.; Meroni, G.; Panelli, S.; D’Auria, E.; Acunzo, M.; Pasala, A.R.; Zuccotti, G.V.; Bandi, C.; Drago, L. A Journey on the Skin Microbiome: Pitfalls and Opportunities. Int. J. Mol. Sci. 2021, 22, 9846. [Google Scholar] [CrossRef]
- Boxberger, M.; Cenizo, V.; Cassir, N.; La Scola, B. Challenges in Exploring and Manipulating the Human Skin Microbiome. Microbiome 2021, 9, 125. [Google Scholar] [CrossRef] [PubMed]
- Woolery-Lloyd, H.; Andriessen, A.; Day, D.; Gonzalez, N.; Green, L.; Grice, E.; Henry, M. Review of the Microbiome in Skin Aging and the Effect of a Topical Prebiotic Containing Thermal Spring Water. J. Cosmet. Dermatol. 2023, 22, 96–102. [Google Scholar] [CrossRef]
- Thawabteh, A.M.; Jibreen, A.; Karaman, D.; Thawabteh, A.; Karaman, R. Skin Pigmentation Types, Causes and Treatment—A Review. Molecules 2023, 28, 4839. [Google Scholar] [CrossRef]
- Hossain, M.R.; Ansary, T.M.; Komine, M.; Ohtsuki, M. Diversified Stimuli-Induced Inflammatory Pathways Cause Skin Pigmentation. Int. J. Mol. Sci. 2021, 22, 3970. [Google Scholar] [CrossRef] [PubMed]
- Bolognia, J.L.; Jorizzo, J.L.; Schaffer, J.V. Dermatology, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 9780702057571. [Google Scholar]
- Zanchetta, C.; Vilanova, D.; Jarrin, C.; Scandolera, A.; Chapuis, E.; Auriol, D.; Robe, P.; Dupont, J.; Lapierre, L.; Reynaud, R. Bacterial Taxa Predictive of Hyperpigmented Skins. Health Sci. Rep. 2022, 5, e609. [Google Scholar] [CrossRef] [PubMed]
- Phansuk, K.; Vachiramon, V.; Jurairattanaporn, N.; Chanprapaph, K.; Rattananukrom, T. Dermal Pathology in Melasma: An Update Review. Clin. Cosmet. Investig. Dermatol. 2022, 15, 11–19. [Google Scholar] [CrossRef]
- Wang, Z.; Mascarenhas, N.; Eckmann, L.; Miyamoto, Y.; Sun, X.; Kawakami, T.; Di Nardo, A. Skin Microbiome Promotes Mast Cell Maturation by Triggering Stem Cell Factor Production in Keratinocytes. J. Allergy Clin. Immunol. 2017, 139, 1205–1216.e6. [Google Scholar] [CrossRef]
- Auffret, N.; Leccia, M.-T.; Ballanger, F.; Claudel, J.P.; Dahan, S.; Dréno, B. Acne-Induced Post-Inflammatory Hyperpigmentation: From Grading to Treatment. Acta Derm. Venereol. 2025, 105, adv42925. [Google Scholar] [CrossRef]
- Patra, V.; Wagner, K.; Arulampalam, V.; Wolf, P. Skin Microbiome Modulates the Effect of Ultraviolet Radiation on Cellular Response and Immune Function. iScience 2019, 15, 211–222. [Google Scholar] [CrossRef]
- Wang, Z.; Choi, J.; Wu, C.; Di Nardo, A. Skin Commensal Bacteria Staphylococcus epidermidis Promote Survival of Melanocytes Bearing UVB-induced DNA Damage, While Bacteria Propionibacterium acnes Inhibit Survival of Melanocytes by Increasing Apoptosis. Photodermatol. Photoimmunol. Photomed. 2018, 34, 405–414. [Google Scholar] [CrossRef]
- Kao, H.J.; Wang, Y.H.; Keshari, S.; Yang, J.J.; Simbolon, S.; Chen, C.C.; Huang, C.M. Propionic Acid Produced by Cutibacterium acnes Fermentation Ameliorates Ultraviolet B-Induced Melanin Synthesis. Sci. Rep. 2021, 11, 11980. [Google Scholar] [CrossRef]
- Holick, M.F. Biological Effects of Sunlight, Ultraviolet Radiation, Visible Light, Infrared Radiation and Vitamin D for Health. Anticancer. Res. 2016, 36, 1345–1356. [Google Scholar]
- Liebert, A.; Bicknell, B.; Johnstone, D.M.; Gordon, L.C.; Kiat, H.; Hamblin, M.R. “Photobiomics”: Can Light, Including Photobiomodulation, Alter the Microbiome? Photobiomodul Photomed. Laser Surg. 2019, 37, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Coats, J.G.; Maktabi, B.; Abou-Dahech, M.S.; Baki, G. Blue Light Protection, Part I—Effects of Blue Light on the Skin. J. Cosmet. Dermatol. 2021, 20, 714–717. [Google Scholar] [CrossRef]
- Proksch, E.; Brandner, J.M.; Jensen, J. The Skin: An Indispensable Barrier. Exp. Dermatol. 2008, 17, 1063–1072. [Google Scholar] [CrossRef] [PubMed]
- Polefka, T.G.; Meyer, T.A.; Agin, P.P.; Bianchini, R.J. Effects of Solar Radiation on the Skin. J. Cosmet. Dermatol. 2012, 11, 134–143. [Google Scholar] [CrossRef]
- Fernández, E.; Fajarí, L.; Rodríguez, G.; Cócera, M.; Moner, V.; Barbosa-Barros, L.; Kamma-Lorger, C.S.; de la Maza, A.; López, O. Reducing the Harmful Effects of Infrared Radiation on the Skin Using Bicosomes Incorporating β-Carotene. Skin. Pharmacol. Physiol. 2016, 29, 169–177. [Google Scholar] [CrossRef]
- Barolet, D.; Christiaens, F.; Hamblin, M.R. Infrared and Skin: Friend or Foe. J. Photochem. Photobiol. B 2016, 155, 78–85. [Google Scholar] [CrossRef]
- Chen, J.; Liu, Y.; Zhao, Z.; Qiu, J. Oxidative Stress in the Skin: Impact and Related Protection. Int. J. Cosmet. Sci. 2021, 43, 495–509. [Google Scholar] [CrossRef]
- Harel, N.; Reshef, L.; Biran, D.; Brenner, S.; Ron, E.Z.; Gophna, U. Effect of Solar Radiation on Skin Microbiome: Study of Two Populations. Microorganisms 2022, 10, 1523. [Google Scholar] [CrossRef] [PubMed]
- Serrage, H.J.; O’ Neill, C.A.; Uzunbajakava, N.E. Illuminating Microflora: Shedding Light on the Potential of Blue Light to Modulate the Cutaneous Microbiome. Front. Cell Infect. Microbiol. 2024, 14, 1307374. [Google Scholar] [CrossRef]
- Rasheedkhan Regina, V.; Chopra, T.; Weihao, K.; Cheruvalli, S.; Sabrina, A.; Fatimah Binte Jamal Mohamed, H.; Ramasamy, K.P.; Sarah, K.; Yan, C.Y.; Kaliyamoorthi, E.; et al. Decoding Scalp Health and Microbiome Dysbiosis in Dandruff. bioRxiv 2024. [Google Scholar] [CrossRef]
- Joo, J.H.; Kim, J.; Shin, J.Y.; Choi, Y.; Jun, S.; Kang, N. An in Vivo Approach for Revealing Physiological Properties of Human Scalp Microbiome. J. Cosmet. Dermatol. 2024, 23, 4374–4376. [Google Scholar] [CrossRef]
- Cafarchia, C.; Gallo, S.; Danesi, P.; Capelli, G.; Paradies, P.; Traversa, D.; Gasser, R.B.; Otranto, D. Assessing the Relationship between Malassezia and Leishmaniasis in Dogs with or without Skin Lesions. Acta Trop. 2008, 107, 25–29. [Google Scholar] [CrossRef]
- Teramoto, K.; Okubo, T.; Yamada, Y.; Sekiya, S.; Iwamoto, S.; Tanaka, K. Classification of Cutibacterium acnes at Phylotype Level by MALDI-MS Proteotyping. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2019, 95, 612–623. [Google Scholar] [CrossRef]
- Yang, J.; Tsukimi, T.; Yoshikawa, M.; Suzuki, K.; Takeda, T.; Tomita, M.; Fukuda, S. Cutibacterium acnes (Propionibacterium acnes) 16S RRNA Genotyping of Microbial Samples from Possessions Contributes to Owner Identification. mSystems 2019, 4, e00594-19. [Google Scholar] [CrossRef]
- Polak-Witka, K.; Rudnicka, L.; Blume-Peytavi, U.; Vogt, A. The Role of the Microbiome in Scalp Hair Follicle Biology and Disease. Exp. Dermatol. 2020, 29, 286–294. [Google Scholar] [CrossRef] [PubMed]
- Meisel, J.S.; Sfyroera, G.; Bartow-McKenney, C.; Gimblet, C.; Bugayev, J.; Horwinski, J.; Kim, B.; Brestoff, J.R.; Tyldsley, A.S.; Zheng, Q.; et al. Commensal Microbiota Modulate Gene Expression in the Skin. Microbiome 2018, 6, 20. [Google Scholar] [CrossRef] [PubMed]
- Yu, R.; Lin, Q.; Zhai, Y.; Mao, Y.; Li, K.; Gao, Y.; Liu, Y.; Fu, L.; Fang, T.; Zhao, M.; et al. Recombinant Human Thymosin Beta-4 (RhTβ4) Improved Scalp Condition and Microbiome Homeostasis in Seborrheic Dermatitis. Microb. Biotechnol. 2021, 14, 2152–2163. [Google Scholar] [CrossRef] [PubMed]
- Hiruma, M.; Cho, O.; Hiruma, M.; Kurakado, S.; Sugita, T.; Ikeda, S. Genotype Analyses of Human Commensal Scalp Fungi, Malassezia globosa, and Malassezia restricta on the Scalps of Patients with Dandruff and Healthy Subjects. Mycopathologia 2014, 177, 263–269. [Google Scholar] [CrossRef]
- Park, H.K.; Ha, M.-H.; Park, S.-G.; Kim, M.N.; Kim, B.J.; Kim, W. Characterization of the Fungal Microbiota (Mycobiome) in Healthy and Dandruff-Afflicted Human Scalps. PLoS ONE 2012, 7, e32847. [Google Scholar] [CrossRef]
- Jo, J.-H.; Jang, H.-S.; Ko, H.-C.; Kim, M.-B.; Oh, C.-K.; Kwon, Y.-W.; Kwon, K.-S. Pustular Psoriasis and the Kobner Phenomenon Caused by Allergic Contact Dermatitis from Zinc Pyrithione-Containing Shampoo. Contact Dermat. 2005, 52, 142–144. [Google Scholar] [CrossRef]
- Filaire, E.; Dreux, A.; Boutot, C.; Ranouille, E.; Berthon, J.Y. Characteristics of Healthy and Androgenetic Alopecia Scalp Microbiome: Effect of Lindera strychnifolia Roots Extract as a Natural Solution for Its Modulation. Int. J. Cosmet. Sci. 2020, 42, 615–621. [Google Scholar] [CrossRef]
- Pinto, D.; Ciardiello, T.; Franzoni, M.; Pasini, F.; Giuliani, G.; Rinaldi, F. Effect of Commonly Used Cosmetic Preservatives on Skin Resident Microflora Dynamics. Sci. Rep. 2021, 11, 8695. [Google Scholar] [CrossRef]
- Rinaldi, F.; Pinto, D.; Marzani, B.; Rucco, M.; Giuliani, G.; Sorbellini, S. Human Microbiome: What’s New in Scalp Diseases. J. Transl. Sci. 2018, 4, 1–4. [Google Scholar] [CrossRef]
- Doğan, S.; Atakan, N. Immunology of the Hair Follicle. TURKDERM—Turk. Arch. Dermatol. Venereol. 2014, 48, 10–12. [Google Scholar] [CrossRef]
- Guéniche, A.; Cathelineau, A.-C.; Bastien, P.; Esdaile, J.; Martin, R.; Queille Roussel, C.; Breton, L. Vitreoscilla filiformis Biomass Improves Seborrheic Dermatitis. J. Eur. Acad. Dermatol. Venereol. 2008, 22, 1014–1015. [Google Scholar] [CrossRef]
- Krutmann, J. Pre- and Probiotics for Human Skin. J. Dermatol. Sci. 2009, 54, 1–5. [Google Scholar] [CrossRef] [PubMed]
- ESTÚDIO DE CRIAÇÃO/EGCN Por Que a Aveia Prebiótica é o Hit Da Vez No Cuidado Corporal. Available online: https://vogue.globo.com/marcas-parceiras/noticia/2023/03/por-que-a-aveia-prebiotica-e-o-hit-da-vez-no-cuidado-corporal.ghtml (accessed on 22 June 2025).
- THERASKIN Loção Multirreparadora Amilia Repair TheraSkin—Loja Oficial TheraSkin. Available online: https://loja.theraskin.com.br/locao-multirreparadora-amilia-repair-60g-150215 (accessed on 29 October 2025).
- RENNOVA BEAUTÉ Clear Skin Bruma Hidratante Prébiótica 50ml—Rennova Beauté. 2023. Available online: https://www.epocacosmeticos.com.br/bruma-hidratante-rennova-beaute-clear-skin/p (accessed on 29 October 2025).
- BABYBAR Loção Probiótica Hidratante 100g—BioKinder—Baby Bar. 2023. Available online: https://anitagalvao.com.br/project/locao-probiotica-hidratante-biokinder-fragrancia-free-alergen-100g/ (accessed on 29 October 2025).
- OCÉANE Sérum Facial Noturno de Probióticos 30 Ml—Océane. 2023. Available online: https://www.oceane.com.br/serum-facial-noturno-de-probioticos-probiotic-night-serum-30ml-ap2000982cunit/p?srsltid=AfmBOoqHd1ooQkNXxPfnMrEY8D5PebWB8os9H1avQP_PcExsabkJAM55 (accessed on 29 October 2025).
- SIMPLE ORGANIC SIMPLE ORGANIC GEL PREBIÓTICO. Available online: https://simpleorganic.com.br/blogs/simple-blog/beauty-gel-prebiotico-para-equilibrar-a-pele (accessed on 29 October 2025).
- VITAMÉDICA Vitamédica—HOF—Bio Sérum Probiótico. Available online: https://www.vitamedicadermo.com.br/bio-serum-probiotico?gclid=Cj0KCQjwm66pBhDQARIsALIR2zBOYnOAapOSJixYWlU_tcEoOipqyFDZSOJ6wuZkklEmd5fCMW6m0dMaAmJLEALw_wcB (accessed on 29 October 2025).
- BIOSSANCE ESQUALANO + GEL HIDRATANTE PROBIÓTICO. Available online: https://biossance.com/products/squalane-probiotic-moisturizer (accessed on 22 June 2025).


| Author/Title | Summary and Conclusion |
|---|---|
| SCHNEIDER et al., 2023 | Puberty influences facial skin microbiome changes, highlighting shifts in microbial diversity and C. acnes strain composition associated with increased sebum production and acne development. Puberty significantly alters the skin microbiome, and a distinct acne-associated microbiome emerges in late puberty, suggesting potential targets for acne treatment. |
| SCHOLZ; KILIAN, 2016 | Analyzes of whole-genome sequences of Propionibacteriaceae, revealing that traditional classification does not reflect genetic relationships. It proposes splitting the genus Propionibacterium into three new genera—Acidipropionibacterium, Cutibacterium, and Pseudopropionibacterium—and redefines species boundaries, especially for skin-associated bacteria like P. acnes. The paper concludes that genome-based taxonomy clarifies evolutionary relationships, leading to a more accurate classification system that distinguishes skin-specific bacteria from those in other environments, improving understanding of their adaptation and biology. |
| ZAENGLEIN, 2018 | Clinical features, pathogenesis, psychological impact, and management strategies for acne vulgaris, emphasizing a multifactorial cause involving sebum production, follicular hyperkeratinization, inflammation, and bacteria Effective treatment requires combination therapy targeting different pathogenic mechanisms, with an understanding of individual patient factors and potential side effects to improve outcomes and quality of life. |
| DAGNELIE et al., 2019 | How severe back acne and mild-to-moderate facial acne are is linked to alterations in skin bacterial communities, notably reductions in diversity and imbalances in Propionibacteriaceae, Staphylococcaceae, and Enterococcaceae families, highlighting microbiota’s role in skin inflammation. Skin inflammation in acne correlates with decreased bacterial diversity and specific microbial imbalances, suggesting potential for treatments that modulate skin microbiota to restore balance and reduce inflammation. |
| DRÉNO et al., 2020 | Acne development is linked to a loss of diversity among skin bacteria, especially different strains of Cutibacterium acnes and Staphylococcus epidermidis. This imbalance triggers immune responses and inflammation. It emphasizes that targeting microbiomes for treatment could be a promising alternative to antibiotics. Restoring microbial diversity and balance may lead to more effective, tailored, and eco-friendly acne therapies, moving beyond traditional antibiotic use. |
| FITZ-GIBBON et al., 2013 | Compares C. acnes strains on acne patients versus healthy skin, revealing that while bacterial abundance is similar, strain types differ significantly—some strains are linked with acne, others with health. Genetic analysis suggests these differences may influence the bacteria’s role in disease. Strain-level variation in C. acnes is crucial in acne development; understanding these differences can guide targeted therapies and improve skin health strategies. |
| WEI et al., 2022 | Microbial diversity across facial sites (forehead, cheek, nose) in Chinese and American populations using shotgun metagenomics. It finds distinct microbial compositions and functions at different sites, with the nose showing higher levels of porphyrin-producing bacteria like C. acnes, linked to inflammation. The patterns suggest a combination of neutral drift and niche selection influences these biogeographic differences. Facial microbiomes exhibit site-specific variability influenced by both stochastic and deterministic processes, and these patterns differ between populations, impacting skin health and disease susceptibility. |
| BARNARD et al., 2020 | Porphyrin production among skin bacteria, highlighting that C. acnes type I strains produce significantly more porphyrin, especially those linked to acne. Vitamin B12 increases porphyrin levels in acne-associated strains but not in healthy skin strains. The composition and strain diversity of skin bacteria influence porphyrin levels and inflammation. The skin microbiome’s species and strain makeup determine its metabolic activity and inflammatory potential, providing insights for developing acne treatments that modulate bacterial composition and porphyrin production. |
| GRICE; SEGRE, 2011 [8] | Diverse microbial communities living on the skin, their roles in protection and immune education, and how various environmental, genetic, and physiological factors influence this ecosystem. It emphasizes the importance of under-standing these interactions for skin health and disease. Maintaining the delicate balance of skin microbiota is crucial; disruptions may lead to skin disorders, and understanding these interactions could guide future therapies and microbiome-based treatments. |
| MARPLES; DOWNING; KLIGMAN, 1971 | How C. acnes bacteria contribute to the production of free fatty acids (FFA) on human scalp skin by breaking down surface lipids, and how antibiotics that suppress C. acnes reduce FFA levels. C. acnes is a primary source of lipolytic enzymes that generate FFAs, which are implicated in conditions like acne; reducing C. acnes levels decreases FFA production, highlighting its key role in lipid metabolism on skin. |
| Author/Title | Summary and Conclusion |
|---|---|
| MCLOUGHLIN et al., 2022 | Relationship between the skin and its microbiome, focusing on microbial dysbiosis and probiotic interventions for its management. The topical use of probiotics and post-biotics is promising but still lacks clinical evidence and a clearer understanding of the mechanisms of skin dysbiosis. |
| RATANAPOKASATIT et al., 2022 | Influence of human microbiomes on skin aging and interventions, such as probiotics, to modulate health. The interactome is a promising future strategy for slowing down ageing, but clinical studies are lacking. |
| SFRISO et al., 2020 | Overview of the skin microbiome, sampling and analysis techniques, and skin care strategies to restore and balance the microbiota. Advances in DNA sequencing and extraction techniques have broadened knowledge of skin microbiome. |
| ISHAQ et al., 2021 | Review linking intestinal dysbiosis, ageing and oxidative stress, highlighting the role of Lactobacillus strains in modulating these processes. Lactobacillus shows promising effects in modulating aging and intestinal health, but robust clinical trials to confirm doses, strains and efficacy in humans are lacking. |
| RUSSELL-GOLDMAN; MURPHY, 2020 | Skin aging and its implications for the body’s well-being. Skin ageing is influenced by multiple external factors, brought together in the concept of the exposome. These factors affect the epigenome and compromise skin cell integrity. |
| HABEEBUDDIN et al., 2022 | Applications and influences of topical probiotics on skin health and diseases, and their relationship with skin microbiome. Recent advances highlight the role of topical probiotics in the treatment of inflammatory skin conditions associated with dysbiosis. Clinical trials investigate their efficacy and safety in various skin conditions. |
| MAGUIRE; MAGUIRE, 2017 | Importance of skin microbiome, emphasizing the role of prebiotics and probiotics in skin modulation, balance and health. Modulation of the microbiome with prebiotics and probiotics, combined with stem cells, can treat conditions such as acne, ageing and Epidermolysis bullosa (EB). |
| BOYAJIAN et al., 2021 | Impact of microbiome on aging, highlighting cellular senescence, the gut-skin axis and the potential of probiotics and prebiotics as anti-senescent therapies. The interaction between the microbiome, cellular senescence and senescence-associated secretory phenotype (SASP) directly affects the health of the skin and the body. Probiotics and prebiotics are promising as anti-senescent therapies. |
| WOOLERY-LLOYD et al., 2022 | Influence of skin microbiome on facial aging, addressing the use of oral and topical prebiotics, probiotics and postbiotics to reduce the signs of aging. Oral and topical probiotics, prebiotics and postbiotics can reduce fine lines, signs of ageing and improve hydration by balancing the skin’s microbiome. |
| BONTÉ et al., 2019 | How intrinsic and extrinsic factors—such as aging, UV exposure, pollution, and lifestyle—impact skin structure and function. It emphasizes the role of oxidative stress, hormonal changes, and cellular senescence in skin ageing. It also explores how these changes impair wound healing in the elderly and reviews strategies to mitigate skin ageing through skincare and medical interventions. Maintaining skin health requires understanding and addressing factors like oxidative damage and hormonal alterations. Improving healing in aged skin is crucial, and skincare strategies targeting these mechanisms can help slow ageing and enhance skin repair. |
| Author/Title | Summary |
|---|---|
| ZANCHETTA, C. et al., 2022 | Identifies specific skin bacteria associated with hyperpigmented spots (HPS). It reveals that skin microbiota composition and interactions differ between skin with high and low HPS levels, suggesting bacteria may influence dark spot development through immune regulation. The skin microbiota could be a new target for skincare, as it plays a role in the emergence of dark spots and skin health. |
| WANG, Z. et al., 2017 | Demonstrates that the skin microbiome promotes mast cell maturation by stimulating keratinocytes to produce stem cell factor (SCF), involving microbial components like lipoteichoic acid (LTA). Absence of microbiota results in immature mast cells and reduced immune defense, which can be reversed by microbiome restoration. The skin microbiota signals mast cell recruitment and maturation through keratinocyte-derived SCF, revealing a novel mechanism that has implications for skin diseases such as atopic dermatitis. |
| BOSVELD, C. J. et al.2023 | Reviews how mast cells interact with the skin microbiome to maintain skin health, recognizing that this crosstalk influences immune responses and skin diseases like psoriasis and atopic dermatitis. Understanding mast cell-microbiota interactions is crucial for developing new strategies to promote skin health and treat related disorders. |
| DRÉNO, B; 2019 | Skin microbiome’s composition, its importance in maintaining skin health, factors influencing it (such as birth method and environment), and its potential as a target for new dermatological treatments within the framework of ecobiology. The skin microbiome is a vital, dynamic organ that plays a key role in skin health and immune regulation. Restoring and maintaining its balance may lead to innovative treatments in dermatology, emphasizing the preservation of this complex ecosystem. |
| HE, G. et al. 2017 | Explores how fibroblasts from mastitis bovine mammary glands secrete SDF-1, which promotes inflammation and EMT in epithelial cells, contributing to mastitis and early fibrosis. Mastitis-associated fibroblasts produce SDF-1 that drives inflammation and EMT, potentially leading to tissue spread of disease and fibrosis; inhibiting SDF-1 signaling may help mitigate these effects. |
| You et al., 2013 | Investigates how lipoteichoic acid (LTA) from Lactobacillus sakei can prevent UVA-induced skin aging by blocking MMP-1 production and MAPK signaling pathways in human skin cells. It highlights LTA’s potential to act as an anti-photoaging agent by modulating immune responses and inhibiting molecular signals triggered by UVA exposure. LTA from Lactobacillus sakei effectively suppresses UVA-induced MMP-1 expression and associated signaling pathways, indicating its promising role as a natural anti-photoaging agent. |
| KIM, H. M. et al.; 2014 | Demonstrates that L. plantarum HY7714 protects skin cells and mice from UVB-induced aging by reducing collagen-degrading enzymes, inhibiting inflammation-related pathways, and decreasing wrinkle formation. L. plantarum HY7714 shows potential as an anti-photoaging agent, offering a promising strategy for skin protection against UV damage. |
| GAO, T. et al. 2023 | Discusses how probiotics can improve skin health by modulating the gut-skin axis, reducing inflammation, oxidative stress, and supporting immune functions, thus addressing issues like aging, dryness, and skin diseases. Probiotics offer a promising, safe alternative for skin care by maintaining microbiota balance and enhancing skin health through gut-skin interactions, providing a theoretical foundation for future applications. |
| KAO, H.-J. et al.; 2021 | Demonstrates that propionic acid (PA), a metabolite from C. acnes fermentation, inhibits UVB-induced melanin production by suppressing tyrosinase activity via FFAR2, without affecting melanocyte proliferation or disrupting skin microbiota, suggesting a natural, safe skin-lightening approach. PA effectively reduces skin pigmentation caused by UV exposure through natural mechanisms, making it a promising safe alternative for hyperpigmentation treatment. |
| Hossain et al., 2021 | Explores how various stimulus such as UV exposure, allergens, pathogens, and physical injuries—trigger inflammatory responses that influence skin pigmentation. It highlights the role of cytokines and immune cells in regulating melanocyte activity and melanin production, emphasizing the connection between inflammation and pigmentary disorders. Understanding the inflammatory mechanisms affecting melanogenesis can lead to the development of targeted therapies for pigmentation-related skin conditions, emphasizing the importance of controlling inflammatory responses to manage skin pigmentation effectively. |
| Articles | Outcomes and Conclusions | |
|---|---|---|
| 1 | POLEFKA et al., 2012 | Importance of understanding the effects of solar radiation, including infrared, on human skin. Insights into the mechanisms involved in skin responses to solar radiation support the development of effective protective strategies and the prevention of skin damage. Furthermore, the analysis of infrared impact suggests a potential influence on skin health and balance, encouraging the consideration of infrared radiation in therapeutic and cosmetic approaches for maintaining skin health. |
| 2 | HAREL et al., 2022 | The results provide evidence of the impact of solar radiation, including infrared, on skin microbiome across different populations. Understanding these effects is crucial for developing personalized skincare approaches that consider individual differences and specific exposure to these rays. Identifying infrared-related alterations in the skin microbiome may open new avenues for targeted therapeutic and cosmetic interventions aimed at preserving skin health and function. |
| 3 | PATRA et al., 2018 | Emphasizes the complex interplay between ultraviolet radiation, skin microbiome, and local immune responses. Understanding these interactions is essential for developing more effective protective and therapeutic strategies. Considering infrared radiation as a relevant component in this context offers a more comprehensive view of the effects of solar radiation on skin health. These findings support the pursuit of personalized preventive and therapeutic approaches that take into account the influence of infrared radiation on the skin microbiome and immune responses. |
| 4 | FERNÁNDEZ et al., 2016 | Emphasizes the importance of protective approaches against infrared radiation. The use of β-carotene-incorporated bicosomes proved promising in reducing damage induced by infrared exposure. These findings support the development of topical and therapeutic formulations designed to protect the skin from the harmful effects of infrared radiation, thereby maintaining skin integrity and health. Incorporating β-carotene into bicosomes offers an effective strategy to minimize oxidative stress and other damage caused by infrared exposure, presenting a potential solution for preserving skin health. |
| 5 | BAROLET et al., 2016 | The literature review on the effects of infrared radiation on human skin and the skin microbiome reveals a range of conflicting findings. While infrared radiation may have beneficial effects such as stimulating collagen production, it can also cause cellular damage and premature skin aging at high doses. Therefore, careful consideration of the dose and duration of infrared exposure is essential to avoid adverse effects. These findings underscore the need for a personalized approach to infrared radiation protection, taking into account individual skin characteristics and specific exposure levels. |
| Author/Title | Summary and Conclusion |
|---|---|
| Park et al., 2017 | Cohort study to investigate the microbiota of 102 individuals in Korea. Staphylococcus sp. and Malassezia restricta associated with higher incidence in unhealthy skin. Propionibacterium sp. and Malassezia globosa linked to normal scalp. |
| Saxena et al., 2018 | To examine the bacterial and fungal diversity of the scalp microbiome in 140 Indian women. Cutibacterium acnes and Staphylococcus epidermis were reported as the main bacterial species, the former being associated with healthy scalp and the latter, the opposite. |
| Park et al., 2012 | Investigation of the fungal biota present in cases of dandruff and how they affect the scalp, leading to other disorders. Basidiomycota (Filobasidium ssp.) was commonly associated with dandruff, while Ascomycota (Acremonium ssp.), with healthy scalps. |
| Filaire et al., 2020 | Comparative study of 24 healthy men with androgenetic alopecia (AAG) and possible use of Lindera to treat the disorder. Treatment with Lindera extract for 83 days was able to restore the scalp microbiota of patients with AGA, obtaining results similar to those found in healthy individuals. |
| Wang et al., 2022 | Conducted with 95 patients of Chinese origin, the study seeks to correlate the bacterial community in healthy and dandruff scalps. Microbial networks were less integrated in cases of dandruff when compared to the healthy surface. Cutibacterium, Staphylococcus and Malassezia were the most abundant microorganisms on the diseased scalp. |
| Yu et al., 2021 | Evaluation of the microbiota of patients with seborrheic dermatitis and treatment with rhT beta 4 as a promising therapeutic strategy in the prevention and treatment of SD. Compared to treatment with ketoconazole, treatment with rhTβ4 showed a significant improvement in leather homeostasis. Malassezia and Staphylococcus increased in cases of SD. |
| Grimshaw et al., 2019 | Investigative study of the microbiota of Chinese patients with and without dandruff. With a taxonomic study of the main genera found. The most abundant bacterial genera were Cutibacterium and Staphylococcus, while the most abundant fungal genera were Malassezia (M. resctricta with the main alteration). |
| Hiruma et al., 2014 | Investigation of Malassezia fungal genotypes in patients with dandruff and seborrheic dermatitis. Malassezia level is 3× higher in individuals with dandruff, with M. globosa and M. restricta predominating. |
| Pinto et al., 2019 | Investigation of bacterial communities in individuals with alopecia areata. Bacterial distribution with increased levels of C. acnes and decreased levels of Staphylococcus epidermis in patients with AA. |
| Viduthalai Rasheedkhan et al., 2024 | Detailed investigation of the scalp and hair follicles, in healthy individuals and those with dandruff/seborrheic dermatitis. They demonstrated that the microbiome inhabiting hair follicles serves as a reservoir for the scalp microbiome and propionic acid, produced by C. acnes, plays a main role in maintaining microbiome balance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xavier-Souza, J.F.; Siqueira, R.A.G.B.; Moreira, B.S.; Barbosa, S.G.; Mariano, E.S.N.; Marinotti, L.I.; Costa, I.G.; Requena, B.S.; Lima, T.P.; Hradkova, I.; et al. Understanding the Impact of the Skin Microbiome on Dermatological Assessments and Therapeutic Innovation. Dermato 2025, 5, 21. https://doi.org/10.3390/dermato5040021
Xavier-Souza JF, Siqueira RAGB, Moreira BS, Barbosa SG, Mariano ESN, Marinotti LI, Costa IG, Requena BS, Lima TP, Hradkova I, et al. Understanding the Impact of the Skin Microbiome on Dermatological Assessments and Therapeutic Innovation. Dermato. 2025; 5(4):21. https://doi.org/10.3390/dermato5040021
Chicago/Turabian StyleXavier-Souza, Jéssica Ferreira, Raquel Allen Garcia Barbeto Siqueira, Beatriz Silva Moreira, Stephany Garcia Barbosa, Estella Souza Nascimento Mariano, Layra Inês Marinotti, Isabelle Gomes Costa, Bruna Sousa Requena, Thais Porta Lima, Iveta Hradkova, and et al. 2025. "Understanding the Impact of the Skin Microbiome on Dermatological Assessments and Therapeutic Innovation" Dermato 5, no. 4: 21. https://doi.org/10.3390/dermato5040021
APA StyleXavier-Souza, J. F., Siqueira, R. A. G. B., Moreira, B. S., Barbosa, S. G., Mariano, E. S. N., Marinotti, L. I., Costa, I. G., Requena, B. S., Lima, T. P., Hradkova, I., Leite-Silva, V. R., Andréo-Filho, N., & Lopes, P. S. (2025). Understanding the Impact of the Skin Microbiome on Dermatological Assessments and Therapeutic Innovation. Dermato, 5(4), 21. https://doi.org/10.3390/dermato5040021

