Augmented and Virtual Reality in Dermatology—Where Do We Stand and What Comes Next?
Abstract
:1. Introduction
2. Education
3. Dermatologic Surgery
4. Diagnostics
5. Methodology
6. Limitations
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azuma, R.T. A survey of augmented reality. Presence-Virtual Augment. Real. 1997, 6, 355–385. [Google Scholar] [CrossRef]
- Reznick, R.K.; MacRae, H. Medical education-Teaching surgical skills-Changes in the wind. N. Engl. J. Med. 2006, 355, 2664–2669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obagi, Z.; Rundle, C.; Dellavalle, R. Widening the scope of virtual reality and augmented reality in dermatology. Dermatol. Online J. 2020, 26, 13030. [Google Scholar] [CrossRef] [PubMed]
- Sharma, P.; Vleugels, R.A.; Nambudiri, V.E. Augmented reality in dermatology: Are we ready for AR? J. Am. Acad. Dermatol. 2019, 81, 1216–1222. [Google Scholar] [CrossRef]
- Prado, G.; Kovarik, C. Cutting Edge Technology in Dermatology: Virtual Reality and Artificial Intelligence. Cutis 2018, 101, 236–237. [Google Scholar]
- Noll, C.; Haussermann, B.; von Jan, U.; Raap, U.; Albrecht, U.V. Mobile Augmented Reality in Dermatology. Biomed. Eng.-Biomed. Tech. 2014, 59, S1216. [Google Scholar] [CrossRef]
- Noll, C.; von Jan, U.; Raap, U.; Albrecht, U.-V. Mobile Augmented Reality as a Feature for Self-Oriented, Blended Learning in Medicine: Randomized Controlled Trial. JMIR mHealth uHealth 2017, 5, e7943. [Google Scholar] [CrossRef] [Green Version]
- Aldridge, R.B.; Li, X.A.; Ballerini, L.; Fisher, R.B.; Rees, J.L. Teaching Dermatology Using 3-Dimensional Virtual Reality. Arch. Dermatol. 2010, 146, 1184–1185. [Google Scholar] [CrossRef]
- Kantor, J. Application of Google Glass to Mohs Micrographic Surgery: A Pilot Study in 120 Patients. Dermatol. Surg. 2015, 41, 288–289. [Google Scholar] [CrossRef]
- Gladstone, H.B.; Raugi, G.J.; Berg, D.; Berkley, J.; Weghorst, S.; Ganter, M. Virtual reality for dermatologic surgery: Virtually a reality in the 21st century. J. Am. Acad. Dermatol. 2000, 42, 106–112. [Google Scholar] [CrossRef]
- Zhang, S.; Blalock, T.W. Measuring Cutaneous Lesions: Trends in Clinical Practice. Dermatol. Surg. 2018, 44, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Federman, D.G.; Kirsner, R.S. The abilities of primary care physicians in dermatology: Implications for quality of care. Am. J. Manag. Care 1997, 3, 1487–1492. [Google Scholar] [PubMed]
- Garg, A.; Haley, H.-L.; Hatem, D. Modern Moulage Evaluating the Use of 3-Dimensional Prosthetic Mimics in a Dermatology Teaching Program for Second-Year Medical Students. Arch. Dermatol. 2010, 146, 143–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Culp, M.B.; Lunsford, N.B. Melanoma among Non-Hispanic Black Americans. Prev. Chronic Dis. 2019, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caryn Rabin, R. Dermatology’s Skin Color Problem. The New York Times, 8 September 2020; 1. [Google Scholar]
- Ghorbani, A.; Natarajan, V.; Coz, D.; Liu, Y. DermGAN: Synthetic Generation of Clinical Skin Images with Pathology. In Proceedings of the Machine Learning for Health NeurIPS Workshop. Proc. Mach. Learn. Res. 2020, 116, 155–170. [Google Scholar]
- Horsham, C.; Dutton-Regester, K.; Antrobus, J.; Goldston, A.; Price, H.; Ford, H.; Hacker, E. A Virtual Reality Game to Change Sun Protection Behavior and Prevent Cancer: User-Centered Design Approach. JMIR Serious Games 2021, 9, e24652. [Google Scholar] [CrossRef]
- Virtual Derm Is a Health Education app, Meant to Provide a Training Platform to Help Medical Students and Dermatologists Training Their Observational, Diagnostic and Treatment/Care Skills for a Better Patient Care in Dermatology. Version 2.0 Available for Download on Google Play. Available online: https://play.google.com/store/apps/details?id=com.HumanGames.VirtualDerm2&hl=en&gl=US (accessed on 20 December 2021).
- Hale, E. Handbook of Dermatologic Surgery; Springer: New York, NY, USA, 2014. [Google Scholar]
- Khor, W.S.; Baker, B.; Amin, K.; Chan, A.; Patel, K.; Wong, J. Augmented and virtual reality in surgery-the digital surgical environment: Applications, limitations and legal pitfalls. Ann. Transl. Med. 2016, 4. [Google Scholar] [CrossRef] [Green Version]
- Berg, D.; Raugi, G.; Gladstone, H.; Berkley, J.; Weghorst, S.; Ganter, M.; Turkiyyah, G. Virtual reality simulators for dermatologic surgery: Measuring their validity as a teaching tool. Dermatol. Surg. 2001, 27, 370–374. [Google Scholar] [CrossRef]
- Higgins, S.; Feinstein, S.; Hawkins, M.; Cockburn, M.; Wysong, A. Virtual Reality to Improve the Experience of the Mohs Patient-A Prospective Interventional Study. Dermatol. Surg. 2019, 45, 1009–1018. [Google Scholar] [CrossRef]
- Rodriguez-Jimenez, P.; Ruiz-Rodriguez, R. Augmented reality in Mohs micrographic surgery. Int. J. Dermatol. 2020, 59, E22–E23. [Google Scholar] [CrossRef]
- Young, A.T.; Xiong, M.L.; Pfau, J.; Keiser, M.J.; Wei, M.L. Artificial Intelligence in Dermatology: A Primer. J. Investig. Dermatol. 2020, 140, 1504–1512. [Google Scholar] [CrossRef] [PubMed]
- Francese, R.; Frasca, M.; Risi, M.; Tortora, G. A mobile augmented reality application for supporting real-time skin lesion analysis based on deep learning. J. Real-Time Image Process. 2021, 18, 1247–1259. [Google Scholar] [CrossRef]
- Freeman, K.; Dinnes, J.; Chuchu, N.; Takwoingi, Y.; Bayliss, S.E.; Matin, R.N.; Jain, A.; Walter, F.M.; Williams, H.C.; Deeks, J.J. Algorithm based smartphone apps to assess risk of skin cancer in adults: Systematic review of diagnostic accuracy studies. Bmj-Br. Med. J. 2020, 368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, M.D.; Kentley, J.; Mehta, P.; Duzsa, S.; Halpern, A.C.; Rotemberg, V. Accuracy of commercially available smartphone applications for the detection of melanoma. Br. J. Dermatol. 2021. [Google Scholar] [CrossRef]
- Chuchu, N.; Takwoingi, Y.; Dinnes, J.; Matin, R.N.; Bassett, O.; Fmoreau, J.; Bayliss, S.E.; Davenport, C.; Godfrey, K.; O’Connell, S.; et al. Smartphone applications for triaging adults with skin lesions that are suspicious for melanoma. Cochrane Database Syst. Rev. 2018, 12. [Google Scholar] [CrossRef]
- Srinivasan, M.A.; Basdogan, C. Haptics in virtual environments: Taxonomy, research status, and challenges. Comput. Graph. 1997, 21, 393–404. [Google Scholar] [CrossRef]
- Waldron, K.J.; Enedah, C.; Gladstone, H. Stiffness and texture perception for teledermatology. Stud. Health Technol. Inform. 2005, 111, 579–585. [Google Scholar]
- Kim, K.; Lee, S. Perception-based 3D tactile rendering from a single image for human skin examinations by dynamic touch. Ski. Res. Technol. 2015, 21, 164–174. [Google Scholar] [CrossRef]
- Kim, K. Roughness based perceptual analysis towards digital skin imaging system with haptic feedback. Ski. Res. Technol. 2016, 22, 334–340. [Google Scholar] [CrossRef]
- Parsons, D.; MacCallum, K. Current Perspectives on Augmented Reality in Medical Education: Applications, Affordances and Limitations. Adv. Med. Educ. Pract. 2021, 12, 77–91. [Google Scholar] [CrossRef]
- Xu, X.; Mangina, E.; Campbell, A.G. HMD-Based Virtual and Augmented Reality in Medical Education: A Systematic Review. Front. Virtual Real. 2021, 2. [Google Scholar] [CrossRef]
- Kassutto, S.M.; Baston, C.; Clancy, C. Virtual, Augmented, and Alternate Reality in Medical Education: Socially Distanced but Fully Immersed. ATS Sch. 2021, 2, 651–664. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonmarin, M.; Läuchli, S.; Navarini, A. Augmented and Virtual Reality in Dermatology—Where Do We Stand and What Comes Next? Dermato 2022, 2, 1-7. https://doi.org/10.3390/dermato2010001
Bonmarin M, Läuchli S, Navarini A. Augmented and Virtual Reality in Dermatology—Where Do We Stand and What Comes Next? Dermato. 2022; 2(1):1-7. https://doi.org/10.3390/dermato2010001
Chicago/Turabian StyleBonmarin, Mathias, Severin Läuchli, and Alexander Navarini. 2022. "Augmented and Virtual Reality in Dermatology—Where Do We Stand and What Comes Next?" Dermato 2, no. 1: 1-7. https://doi.org/10.3390/dermato2010001
APA StyleBonmarin, M., Läuchli, S., & Navarini, A. (2022). Augmented and Virtual Reality in Dermatology—Where Do We Stand and What Comes Next? Dermato, 2(1), 1-7. https://doi.org/10.3390/dermato2010001