DNA Prevalence of Eukaryotic Parasites with Zoonotic Potential in Urban-Associated Birds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Sample Processing
2.3. Zoonotic Parasites
2.4. Bioinformatic Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haque, R. Human intestinal parasites. J. Health Popul. Nutr. 2007, 25, 387. [Google Scholar]
- Harhay, M.O.; Horton, J.; Olliaro, P.L. Epidemiology and control of human gastrointestinal parasites in children. Expert Rev. Anti-Infect. Ther. 2010, 8, 219–234. [Google Scholar] [CrossRef] [PubMed]
- Veronesi, F.; Deak, G.; Diakou, A. Wild mesocarnivores as reservoirs of endoparasites causing important zoonoses and emerging bridging infections across Europe. Pathogens 2023, 12, 178. [Google Scholar] [CrossRef] [PubMed]
- Jones, K.E.; Patel, N.G.; Levy, M.A.; Storeygard, A.; Balk, D.; Gittleman, J.L.; Daszak, P. Global trends in emerging infectious diseases. Nature 2008, 451, 990993. [Google Scholar] [CrossRef] [PubMed]
- Malik, Y.S.; Milton, A.A.P.; Ghatak, S.; Ghosh, S. Role of Birds in Transmitting Zoonotic Pathogens; Springer: Singapore, 2021. [Google Scholar]
- Boseret, G.; Losson, B.; Mainil, J.G.; Thiry, E.; Saegerman, C. Zoonoses in pet birds: Review and perspectives. Vet. Res. 2013, 44, 36. [Google Scholar] [CrossRef] [PubMed]
- Contreras, A.; Gómez-Martín, A.; Paterna, A.; Tatay-Dualde, J.; Prats-Van Der Ham, M.; Corrales, J.C.; de la Fe, C.; Sánchez, A. Epidemiological role of birds in the transmission and maintenance of zoonoses. Rev. Sci. Tech. 2016, 35, 845–862. [Google Scholar] [CrossRef] [PubMed]
- Hubálek, Z. Microorganismos patógenos asociados a gaviotas y charranes (Laridae). J. Vertebr. Biol. 2021, 70, 21009-1. [Google Scholar]
- Mackenstedt, U.; Jenkins, D.; Romig, T. The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas. Int. J. Parasitol. Parasites Wildl. 2015, 4, 71–79. [Google Scholar] [CrossRef]
- Millán, J. Diseases of the red-legged partridge (Alectoris rufa L.): A review. Wildl. Biol. Pract. 2009, 5, 70–88. [Google Scholar] [CrossRef]
- Ombugadu, A.; Echor, B.; Jibril, A.; Angbalaga, G.; Lapang, M.; Micah, E.; Njila, H.L.; Isah, L.; Nkup, C.D.; Dogo, K.S.; et al. Impact of parasites in captive birds: A review. Curr. Res. Environ. Biodivers 2018, 2019, 1–12. [Google Scholar]
- Lord, A.T.; Mohandas, K.; Somanath, S.; Ambu, S. Multidrug resistant yeasts in synanthropic wild birds. Ann. Clin. Microbiol. Antimicrob. 2010, 9, 11. [Google Scholar] [CrossRef] [PubMed]
- Glushakova, A.; Kachalkin, A. Wild and partially synanthropic bird yeast diversity, in vitro virulence, and antifungal susceptibility of Candida parapsilosis and Candida tropicalis strains isolated from feces. Int. Microbiol. 2024, 27, 883–897. [Google Scholar] [CrossRef] [PubMed]
- Strube, C.; Heuer, L.; Janecek, E. Toxocara spp. infections in paratenic hosts. Vet. Parasitol. 2013, 193, 375–389. [Google Scholar] [CrossRef] [PubMed]
- Muehlenbachs, A.; Bhatnagar, J.; Agudelo, C.A.; Hidron, A.; Eberhard, M.L.; Mathison, B.A.; Frace, M.A.; Ito, A.; Metcalfe, M.G.; Rollin, D.C.; et al. Malignant transformation of Hymenolepis nana in a human host. N. Engl. J. Med. 2015, 373, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Lindahl, J.; Magnusson, U. Zoonotic pathogens in urban animals: Enough research to protect the health of the urban population? Anim. Health Res. Rev. 2020, 21, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Chinchio, E.; Crotta, M.; Romeo, C.; Drewe, J.A.; Guitian, J.; Ferrari, N. Invasive alien species and disease risk: An open challenge in public and animal health. PLoS Pathog. 2020, 16, e1008922. [Google Scholar] [CrossRef] [PubMed]
- Najberek, K.; Olszańska, A.; Tokarska-Guzik, B.; Mazurska, K.; Dajdok, Z.; Solarz, W. Invasive alien species as reservoirs for pathogens. Ecol. Indic. 2022, 139, 108879. [Google Scholar] [CrossRef]
- Mori, E.; Meini, S.; Strubbe, D.; Ancillotto, L.; Sposimo, P.; Menchetti, M. Do alien free-ranging birds affect human health? A global summary of known zoonoses. In Invasive Species and Human Health; CAB International: Wallingford, UK, 2018; pp. 120–129. [Google Scholar]
- Galván, I.; Marchamalo, J.; Bakken, V.; Traverso, J.M. The origin of Lesser Black-backed Gulls Larus fuscus wintering in central Iberia. Ringing Migr. 2003, 21, 209–214. [Google Scholar] [CrossRef]
- Martín-Maldonado, B.; Vega, S.; Mencía-Gutiérrez, A.; Lorenzo-Rebenaque, L.; De Frutos, C.; González, F.; Revuelta, L.; Marin, C. Urban birds: An important source of antimicrobial resistant Salmonella strains in Central Spain. Comp. Immunol. Microbiol. Infect. Dis. 2020, 72, 101519. [Google Scholar] [CrossRef]
- Pineda-Pampliega, J.; Ramiro, Y.; HerreraDueñas, A.; MartinezHaro, M.; Hernández, J.M.; Aguirre, J.I.; Höfle, U. A multidisciplinary approach to the evaluation of the effects of foraging on landfills on white stork nestlings. Sci. Total Environ. 2021, 775, 145197. [Google Scholar] [CrossRef]
- Bourret, V.; Gutiérrez López, R.; Melo, M.; Loiseau, C. Metabarcoding options to study eukaryotic endoparasites of birds. Ecol. Evol. 2021, 11, 10821–10833. [Google Scholar] [CrossRef]
- Cabodevilla, X.; Gómez-Moliner, B.J.; Abad, N.; Madeira, M.J. Simultaneous analysis of the intestinal parasites and diet through eDNA metabarcoding. Integr. Zool. 2023, 18, 399–413. [Google Scholar] [CrossRef] [PubMed]
- Cabodevilla, X.; Malo, J.E.; Aguirre de Carcer, D.; Zurdo, J.; Chaboy-Cansado, R.; Rastrojo, A.; García, F.J.; Traba, J. Zoonotic Potential of Urban Wildlife Faeces, Assessed Through Metabarcoding. Available SSRN 2024. [Google Scholar] [CrossRef]
- Aivelo, T.; Medlar, A. Opportunities and challenges in metabarcoding approaches for helminth community identification in wild mammals. Parasitology 2018, 145, 608–621. [Google Scholar] [CrossRef] [PubMed]
- Davey, M.L.; Utaaker, K.S.; Fossøy, F. Characterizing parasitic nematode faunas in faeces and soil using DNA metabarcoding. Parasites Vectors 2021, 14, 422. [Google Scholar] [CrossRef]
- Taberlet, P.; Coissac, E.; Pompanon, F.; Brochmann, C.; Willerslev, E. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol. 2012, 21, 2045–2050. [Google Scholar] [CrossRef] [PubMed]
- Vogtmann, E.; Chen, J.; Amir, A.; Shi, J.; Abnet, C.C.; Nelson, H.; Knight, R.; Chia, N.; Sinha, R. Comparison of collection methods for fecal samples in microbiome studies. Am. J. Epidemiol. 2017, 185, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, R.; Nicolaisen, M. High-throughput sequencing of nematode communities from total soil DNA extractions. BMC Ecol. 2015, 15, 3. [Google Scholar] [CrossRef]
- Caro, A.; Madeira, M.J.; Gómez-Moliner, B.J.; Cabodevilla, X. A new methodology for Blastocystis subtype assessment and semi-quantification through metabarcoding, tested in wild and farm-reared birds. Forest Science and Technology Centre of Catalonia, University of the Basque Country, Leioa, Spain 2024, Under Review.
- Martin, M. Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet. J. 2011, 17, 1012. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Holmes, S.P. Exact sequence variants should replace operational taxonomic units in markergene data analysis. ISME J. 2017, 11, 26392643. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: Highresolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581583. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.Rproject.org/ (accessed on 7 July 2024).
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glöckner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and webbased tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Cabodevilla, X. Silva v132 eukaryotic 18S non-redundant database formatted for DADA2 [Data set]. Zenodo 2024. [Google Scholar] [CrossRef]
- Hedayati, M.T.; Pasqualotto, A.C.; Warn, P.A.; Bowyer, P.; Denning, D.W. Aspergillus flavus: Human pathogen, allergen and mycotoxin producer. Microbiology 2007, 153, 1677–1692. [Google Scholar] [CrossRef]
- Gnat, S.; Łagowski, D.; Nowakiewicz, A.; Dyląg, M. A global view on fungal infections in humans and animals: Opportunistic infections and microsporidioses. J. Appl. Microbiol. 2021, 131, 2095–2113. [Google Scholar] [CrossRef] [PubMed]
- Hyde, K.D.; Al-Hatmi, A.M.; Andersen, B.; Boekhout, T.; Buzina, W.; Dawson, T.L.; Eastwood, D.C.; Jones, E.G.; de Hoog, S.; Kang, Y.; et al. The world’s ten most feared fungi. Fungal Divers. 2018, 93, 161–194. [Google Scholar] [CrossRef]
- Velegraki, A.; Cafarchia, C.; Gaitanis, G.; Iatta, R.; Boekhout, T. Malassezia infections in humans and animals: Pathophysiology, detection, and treatment. PLoS Pathog. 2015, 11, e1004523. [Google Scholar] [CrossRef] [PubMed]
- Hobi, S.; Cafarchia, C.; Romano, V.; Barrs, V.R. Malassezia: Zoonotic implications, parallels and differences in colonization and disease in humans and animals. J. Fungi 2022, 8, 708. [Google Scholar] [CrossRef] [PubMed]
- Wirth, F.; Goldani, L.Z. Epidemiology of Rhodotorula: An emerging pathogen. Interdiscip. Perspect. Infect. Dis. 2012, 2012, 465717. [Google Scholar] [CrossRef]
- Ryan, U.; Fayer, R.; Xiao, L. Cryptosporidium species in humans and animals: Current understanding and research needs. Parasitology 2014, 141, 1667–1685. [Google Scholar] [CrossRef] [PubMed]
- Ryan, U.; Zahedi, A.; Feng, Y.; Xiao, L. An update on zoonotic Cryptosporidium species and genotypes in humans. Animals 2021, 11, 3307. [Google Scholar] [CrossRef] [PubMed]
- Ajjampur, S.S.; Tan, K.S. Pathogenic mechanisms in Blastocystis spp.—Interpreting results from in vitro and in vivo studies. Parasitol. Int. 2016, 65, 772–779. [Google Scholar] [CrossRef]
- Rajamanikam, A.; Isa MN, M.; Samudi, C.; Devaraj, S.; Govind, S.K. Gut bacteria influence Blastocystis sp. phenotypes and may trigger pathogenicity. PLoS Neglected Trop. Dis. 2023, 17, e0011170. [Google Scholar] [CrossRef]
- Holland, C.; Sepidarkish, M.; Deslyper, G.; Abdollahi, A.; Valizadeh, S.; Mollalo, A.; Mahjour, S.; Ghodsian, S.; Ardekani, A.; Behniafar, H.; et al. Global prevalence of Ascaris infection in humans (2010–2021): A systematic review and meta-analysis. Infect. Dis. Poverty 2022, 11, 113. [Google Scholar] [CrossRef]
- Papadi, B.; Boudreaux, C.; Tucker, J.A.; Mathison, B.; Bishop, H.; Eberhard, M.E. Case report: Halicephalobus gingivalis: A rare cause of fatal meningoencephalomyelitis in humans. Am. J. Trop. Med. Hyg. 2013, 88, 1062. [Google Scholar] [CrossRef] [PubMed]
- Onyiche, T.E.; Okute, T.O.; Oseni, O.S.; Okoro, D.O.; Biu, A.A.; Mbaya, A.W. Parasitic and zoonotic meningoencephalitis in humans and equids: Current knowledge and the role of Halicephalobus gingivalis. Parasite Epidemiol. Control 2018, 3, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Samorek-Pieróg, M.; Cencek, T.; Łabuć, E.; Pac-Sosińska, M.; Pieróg, M.; Korpysa-Dzirba, W.; Bełcik, A.; Bilska-Zając, E.; Karamon, J. Occurrence of Eucoleus aerophilus in wild and domestic animals: A systematic review and meta-analysis. Parasites Vectors 2023, 16, 245. [Google Scholar] [CrossRef] [PubMed]
- Chaudhury, A. Raillietina Infection. In Textbook of Parasitic Zoonoses; Springer Nature: Singapore, 2022; pp. 401–406. [Google Scholar]
- Sanmartín, M.L.; Cordeiro, J.A.; Alvarez, M.F.; Leiro, J. Helminth fauna of the yellow-legged gull Larus cachinnans in Galicia, north-west Spain. J. Helminthol. 2005, 79, 361–371. [Google Scholar] [CrossRef]
- Arné, P.; Lee, M.D. Fungal infections. In Diseases of Poultry; Wiley-Blackwell: Hoboken, NJ, USA, 2020; pp. 1109–1133. [Google Scholar]
- Seyedmousavi, S.; Bosco SD, M.; De Hoog, S.; Ebel, F.; Elad, D.; Gomes, R.R.; Jacobsen, I.D.; Jensen, H.E.; Martel, A.; Mignon, B.; et al. Fungal infections in animals: A patchwork of different situations. Med. Mycol. 2018, 56 (Suppl. S1), S165–S187. [Google Scholar] [CrossRef]
- Arné, P.; Risco-Castillo, V.; Jouvion, G.; Le Barzic, C.; Guillot, J. Aspergillosis in wild birds. J. Fungi 2021, 7, 241. [Google Scholar] [CrossRef]
- van der Torre, M.H.; Andrews, R.A.; Hooker, E.L.; Rankin, A.; Dodd, S. Systematic review on Cryptococcus neoformans/Cryptococcus gattii species complex infections with recommendations for practice in health and care settings. Clin. Infect. Pract. 2022, 15, 100154. [Google Scholar] [CrossRef]
- Rosario, I.; Acosta, B.; Colom, F. La paloma y otras aves como reservorio de Cryptococcus spp. Rev. Iberoam. De Micol. 2008, 25, S13–S18. [Google Scholar] [CrossRef] [PubMed]
- Cafarchia, C.; Romito, D.; Iatta, R.; Camarda, A.; Montagna, M.T.; Otranto, D. Role of birds of prey as carriers and spreaders of Cryptococcus neoformans and other zoonotic yeasts. Med. Mycol. 2006, 44, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Soltani, M.; Bayat, M.; Hashemi, S.J.; Zia, M.; Pestechian, N. Isolation of Cryptococcus neoformans and other opportunistic fungi from pigeon droppings. J. Res. Med. Sci. Off. J. Isfahan Univ. Med. Sci. 2013, 18, 56. [Google Scholar]
- Simi, W.B.; Leite-Jr, D.P.; Paula, C.R.; Hoffmann-Santos, H.D.; Takahara, D.T.; Hahn, R.C. Yeasts and filamentous fungi in psittacidae and birds of prey droppings in midwest region of Brazil: A potential hazard to human health. Braz. J. Biol. 2018, 79, 414–422. [Google Scholar] [CrossRef] [PubMed]
- Casadevall, A.; Kontoyiannis, D.P.; Robert, V. On the emergence of Candida auris: Climate change, azoles, swamps, and birds. MBio 2019, 10, 10–1128. [Google Scholar] [CrossRef] [PubMed]
- Majewska, A.C.; Graczyk, T.K.; Słodkowicz-Kowalska, A.; Tamang, L.; Jędrzejewski, S.; Zduniak, P.; Solarczyk, P.; Nowosad, A.; Nowosad, P. The role of free-ranging, captive, and domestic birds of Western Poland in environmental contamination with Cryptosporidium parvum oocysts and Giardia lamblia cysts. Parasitol. Res. 2009, 104, 1093–1099. [Google Scholar] [CrossRef]
- Smith, H.V.; Brown, J.; Coulson, J.C.; Morris, G.P.; Girdwood RW, A. Occurrence of oocysts of Cryptosporidium sp. in Larus spp. gulls. Epidemiol. Infect. 1993, 110, 135–143. [Google Scholar] [CrossRef]
- Briceño, C.; Marcone, D.; Larraechea, M.; Hidalgo, H.; Fredes, F.; Ramírez-Toloza, G.; Cabrera, G. Zoonotic Cryptosporidium meleagridis in urban invasive monk parakeets. Zoonoses Public Health 2023, 70, 705–710. [Google Scholar] [CrossRef]
- Cian, A.; El Safadi, D.; Osman, M.; Moriniere, R.; Gantois, N.; Benamrouz-Vanneste, S.; Delgado-Viscogliosi, P.; Guyot, K.; Li, L.-L.; Monchy, S.; et al. Molecular epidemiology of Blastocystis sp. in various animal groups from two French zoos and evaluation of potential zoonotic risk. PLoS ONE 2017, 12, e0169659. [Google Scholar] [CrossRef]
- Popruk, S.; Adao, D.E.V.; Rivera, W.L. Epidemiology and subtype distribution of Blastocystis in humans: A review. Infect. Genet. Evol. 2021, 95, 105085. [Google Scholar] [CrossRef] [PubMed]
- Burrell, A.; Tomley, F.M.; Vaughan, S.; Marugan-Hernandez, V. Life cycle stages, specific organelles and invasion mechanisms of Eimeria species. Parasitology 2020, 147, 263–278. [Google Scholar] [CrossRef] [PubMed]
- Schwemmer, P.; Garthe, S. At-sea distribution and behaviour of a surface-feeding seabird, the lesser black-backed gull Larus fuscus, and its association with different prey. Mar. Ecol. Prog. Ser. 2005, 285, 245–258. [Google Scholar] [CrossRef]
Scientific Name | Collected Samples | Sample with Data |
---|---|---|
Ciconia ciconia | 45 | 41 |
Larus fuscus | 45 | 43 |
Myiopsitta monachus | 80 | 79 |
Psittacula krameri | 10 | 10 |
Genus | Species | Source | |
---|---|---|---|
Fungi | Arthroderma | A. sp. (Berk, 1860) | 2 |
Cryptococcus | C. neoformans (Vuill, 1901) | 2 | |
Enterocytozoon | E. bieneusi (Desportes, et al., 1985) | 1 | |
Histoplasma | H. sp. (Darling, 1906) | 2 | |
Microsporum | M. sp. (Gruby 1843) | 2 | |
Sporothrix | S. sp. (Hektoen and Perkins, 1901) | 2 | |
Cestoda | Dipylidium | D. sp. (Leuckart, 1863) | 2 |
Echinococcus | E. sp. (Rudolphi, 1801) | 1 and 2 | |
Taenia | T. saginata (Goeze, 1782) | 1 | |
Taenia | T. solium (Linnaeus, 1758) | 1 and 2 | |
Nematoda | Ancylostoma | A. braziliense (De Faria, 1910) | 2 |
Ancylostoma | A. caninum (Ercolani, 1859) | 2 | |
Ancylostoma | A. ceylanicum (Ercolani, 1859) | 2 | |
Anisakis | A. sp. (Dujardin, 1845) | 1 | |
Ascaris | A. sp. (Linnaeus, 1758) | 2 | |
Baylisascaris | B. procyonis (Stefanski and Zarnowski, 1951) | 2 | |
Toxocara | T. canis (Werner, 1782) | 2 | |
Toxocara | T. cati (Schrank, 1788) | 2 | |
Trichinella | T. spiralis (Owen, 1835) | 1 | |
Uncinaria | U. stenocephala (Railliet, 1884) | 2 | |
Protist | Cryptosporidium | C. sp. (Tyzzer, 1912) | 1 and 2 |
Giardia | G. sp. (Kunstler, 1882) | 1 and 2 | |
Leishmania | L. sp. (Nicolle, 1908) | 1 and 2 | |
Sarcocystis | S. sp. (Lankester, 1882) | 1 | |
Toxoplasma | T. gondii (Nicolle and Manceaux, 1908) | 1 and 2 |
Genus | Relevance to Human Health | Pathogenicity | Literature | |
---|---|---|---|---|
Fungi | Aspergillus | High | Opportunistic fungi responsible for high prevalence of infections in humans | [38,39] |
Candida | High | Opportunistic fungi responsible for high prevalence of infections in humans | [39] | |
Stachybotrys (Timm, 1956) | Low-Medium | Toxic black mould. Pose a danger when it grows massively on cellulose-rich plant debris. Should not pose a risk in faeces. | [40] | |
Malassezia (Baillon, 1889) | Low | Opportunistic fungi. Very common organism of the skin and digestive tract, usually harmless | [41,42] | |
Rhodotorula (Harrison, 1927) | Low | Opportunistic fungi. A common environmental yeast, usually harmless | [43] | |
Cryptococcus | High | Opportunistic fungi responsible for high prevalence of infections in humans’ | [39] | |
Protist | Cryptosporidium | High | Patients with impaired immune system may develop profuse, life-threatening, watery diarrhoea that is very difficult to treat with currently available drugs | [44,45] |
Eimeria (Schneider, 1875) | Apparently no | |||
Blastocystis | Low-Medium | The causes of its pathogenicity are not clear, but it seems that it can generate a dysbiosis and affect the epithelia of the digestive tract | [46,47] | |
Nematoda | Ascaris | High | Globally important parasite, especially in underdeveloped areas. Ascariasis is considered one of the most important neglected tropical diseases. | [48] |
Halicephalobus (Timm, 1956) | High | Rare parasite of humans, but can cause fatal Meningoencephalomyelitis | [49,50] | |
Travassostrongylus (Orloff, 1933) | Apparently no | |||
Aonchotheca (López-Neyra, 1947) | Apparently no | |||
Eucoleus (Dujardin, 1845) | Low | Very rarely cause respiratory infections in humans | [51] | |
Cestoda | Parorchites (Fuhrmann, 1932) | Apparently no | ||
Raillietina (Fuhrmann, 1920) | Low | Rarely causes intestinal infection in humans | [52] | |
Trematoda | Cardiocephaloides (Sudarikov, 1959) | Apparently no | ||
Collyriclum (Bremser, 1831) | Apparently no | |||
Cryptocotyle (Luhe, 1899) | Apparently no | |||
Diplostomum (von Nordmann, 1832) | Apparently no | |||
Galactosomum (Looss, 1899) | Apparently no | |||
Gigantobilharzia (Odhner, 1910) | Low-Medium | Cercarial Dermatitis | [53] | |
Posthodiplostomum (Dubois, 1936) | Apparently no |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cabodevilla, X.; Malo, J.E.; Aguirre de Carcer, D.; Zurdo, J.; Chaboy-Cansado, R.; Rastrojo, A.; Traba, J. DNA Prevalence of Eukaryotic Parasites with Zoonotic Potential in Urban-Associated Birds. Birds 2024, 5, 375-387. https://doi.org/10.3390/birds5030025
Cabodevilla X, Malo JE, Aguirre de Carcer D, Zurdo J, Chaboy-Cansado R, Rastrojo A, Traba J. DNA Prevalence of Eukaryotic Parasites with Zoonotic Potential in Urban-Associated Birds. Birds. 2024; 5(3):375-387. https://doi.org/10.3390/birds5030025
Chicago/Turabian StyleCabodevilla, Xabier, Juan E. Malo, Daniel Aguirre de Carcer, Julia Zurdo, Rubén Chaboy-Cansado, Alberto Rastrojo, and Juan Traba. 2024. "DNA Prevalence of Eukaryotic Parasites with Zoonotic Potential in Urban-Associated Birds" Birds 5, no. 3: 375-387. https://doi.org/10.3390/birds5030025
APA StyleCabodevilla, X., Malo, J. E., Aguirre de Carcer, D., Zurdo, J., Chaboy-Cansado, R., Rastrojo, A., & Traba, J. (2024). DNA Prevalence of Eukaryotic Parasites with Zoonotic Potential in Urban-Associated Birds. Birds, 5(3), 375-387. https://doi.org/10.3390/birds5030025