Life History and Sociality Predict Variation in Eye Size across Birds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Rojas, L.M.; Ramírez, Y.; McNeil, R.; Mitchell, M.; Marín, G. Retinal morphology and electrophysiology of two Caprimulgiformes birds: The cave-living and nocturnal Oilbird (Steatornis caripensis), and the crepuscularly and nocturnally foraging Common Pauraque (Nyctidromus albicollis). Brain Behav. Evol. 2004, 64, 19–33. [Google Scholar] [CrossRef] [PubMed]
- Lisney, T.J.; Stecyk, K.; Kolominsky, J.; Schmidt, B.K.; Corfield, J.R.; Iwaniuk, A.N.; Wylie, D.R. Ecomorphology of eye shape and retinal topography in waterfowl (Aves: Anseriformes: Anatidae) with different foraging modes. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 2013, 199, 385–402. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Juricic, E.; Moore, B.A.; Doppler, M.; Freeman, J.; Blackwell, B.F.; Lima, S.L.; DeVault, T.L. Testing the terrain hypothesis: Canada geese see their world laterally and obliquely. Brain Behav. Evol. 2011, 77, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Potier, S.; Mitkus, M.; Kelber, A. Visual adaptations of diurnal and nocturnal raptors. Semin. Cell Dev. Biol. 2020, 106, 116–126. [Google Scholar] [CrossRef]
- Land, M.F.; Nilsson, D.E. Animal Eyes; Oxford University Press: Oxford, UK, 2012. [Google Scholar]
- Thomas, R.J.; Székely, T.; Powell, R.F.; Cuthill, I.C. Eye size, foraging methods and the timing of foraging in shorebirds. Funct. Ecol. 2006, 20, 157–165. [Google Scholar] [CrossRef]
- Wylie, D.R.; Gutiérrez-Ibáñez, C.; Iwaniuk, A.N. Integrating brain, behavior, and phylogeny to understand the evolution of sensory systems in birds. Front. Neurosci. 2015, 9, 281. [Google Scholar] [CrossRef]
- Moran, D.; Softley, R.; Warrant, E.J. The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci. Adv. 2015, 1, e1500363. [Google Scholar] [CrossRef]
- Ausprey, I.J. Adaptations to light contribute to the ecological niches and evolution of the terrestrial avifauna. Proc. R. Soc. B Boil. Sci. 2021, 288, 20210853. [Google Scholar] [CrossRef]
- Garamszegi, L.Z.; Møller, A.P.; Erritzøe, J. Coevolving avian eye size and brain size in relation to prey capture and nocturnality. Proc. R. Soc. B Boil. Sci. 2002, 269, 961–967. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Jiang, Y.; Xu, J.S.; Liao, W. Evolution of avian eye size is associated with habitat openness, food type and brain size. Animals 2023, 13, 1675. [Google Scholar] [CrossRef] [PubMed]
- Tisdale, V.; Fernández-Juricic, E. Vigilance and predator detection vary between avian species with different visual acuity and coverage. Behav. Ecol. 2009, 20, 936–945. [Google Scholar] [CrossRef]
- Møller, A.P.; Erritzøe, J. Flight distance and eye size in birds. Ethology 2010, 116, 458–465. [Google Scholar] [CrossRef]
- Svanbäck, R.; Johansson, F. Predation selects for smaller eye size in a vertebrate: Effects of environmental conditions and sex. Proc. R. Soc. B Boil. Sci. 2019, 286, 20182625. [Google Scholar] [CrossRef] [PubMed]
- Fullard, J.H.; Napoleone, N. Diel flight periodicity and the evolution of auditory defences in the Macrolepidoptera. Anim. Behav. 2001, 62, 349–368. [Google Scholar] [CrossRef]
- Roff, D.A. Life History Evolution; Sinauer Associates: Sunderland, MA, USA, 2002. [Google Scholar]
- Clark, C.W. Antipredator behavior and the asset-protection principle. Behav. Ecol. 1994, 5, 159–170. [Google Scholar] [CrossRef]
- Blumstein, D.T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 2006, 71, 389–399. [Google Scholar] [CrossRef]
- Møller, A.P.; Liang, W. Tropical birds take small risks. Behav. Ecol. 2012, 24, 267–272. [Google Scholar] [CrossRef]
- Gotanda, K.M.; Turgeon, K.; Kramer, D.L. Body size and reserve protection affect flight initiation distance in parrotfishes. Behav. Ecol. Sociobiol. 2009, 63, 1563–1572. [Google Scholar] [CrossRef]
- Hau, M.; Ricklefs, R.E.; Wikelski, M.; Lee, K.A.; Brawn, J.D. Corticosterone, testosterone and life-history strategies of birds. Proc. R. Soc. B Boil. Sci. 2010, 277, 3203–3212. [Google Scholar] [CrossRef]
- Ghalambor, C.K.; Martin, T.E. Fecundity-survival trade-offs and parental risk-taking in birds. Science 2001, 292, 494–497. [Google Scholar] [CrossRef]
- Caro, T.M. Antipredator Defenses in Birds and Mammals; University of Chicago Press: Chicago, IL, USA, 2005. [Google Scholar]
- Brown, C.R.; Brown, M.B. Group size and ectoparasitism affect daily survival probability in a colonial bird. Behav. Ecol. Sociobiol. 2004, 56, 498–511. [Google Scholar] [CrossRef]
- Cash, K.J.; McKee, M.H.; Wrona, F.J. Short- and long-term consequences of grouping and group foraging in the free-living flatworm Dugesia tigrina. J. Anim. Ecol. 1993, 62, 529–535. [Google Scholar] [CrossRef]
- Clutton-Brock, T.H.; Gaynor, D.; McIlrath, G.M.; Maccoll, A.D.C.; Kansky, R.; Chadwick, P.; Manser, M.; Skinner, J.D.; Brotherton, P.N.M. Predation, group size and mortality in a cooperative mongoose, Suricata suricatta. J. Anim. Ecol. 1999, 68, 672–683. [Google Scholar] [CrossRef]
- Serrano, D.; Oro, D.; Ursúa, E.; Tella, J.L. Colony size selection determines adult survival and dispersal preferences: Allee effects in a colonial bird. Am. Nat. 2005, 166, E22–E31. [Google Scholar] [CrossRef]
- Beauchamp, G. Flocking in birds increases annual adult survival in a global analysis. Oecologia 2021, 197, 387–394. [Google Scholar] [CrossRef]
- Srinivasan, U. Morphological and behavioral correlates of long-term bird survival in selectively logged forest. Front. Ecol. Evol. 2019, 7, 17. [Google Scholar] [CrossRef]
- Jullien, M.; Clobert, J. The survival value of flocking in neotropical birds: Reality or fiction? Ecology 2000, 81, 3416–3430. [Google Scholar] [CrossRef]
- Cruz-Angón, A.; Sillett, T.S.; Greenberg, R. An experimental study of habitat selection by birds in a coffee plantation. Ecology 2008, 89, 921–927. [Google Scholar] [CrossRef]
- Shultz, S.; Noë, R.; McGraw, W.S.; Dunbar, R.I.M. A community-level evaluation of the impact of prey behavioural and ecological characteristics on predator diet composition. Proc. R. Soc. B Boil. Sci. 2004, 271, 725–732. [Google Scholar] [CrossRef]
- Beauchamp, G. Susceptibility to predation varies with body mass, foraging niche, and anti-predator responses among bird species. Birds 2023, 4, 73–84. [Google Scholar] [CrossRef]
- Ritland, S.M. The Allometry of the Vertebrate Eye; University of Chicago: Chicago, IL, USA, 1982. [Google Scholar]
- Brooke, M.d.L.; Hanley, S.; Laughlin, S.B. The scaling of eye size with body mass in birds. Proc. R. Soc. B Boil. Sci. 1999, 266, 405–412. [Google Scholar] [CrossRef]
- Beauchamp, G. Flocking in birds is associated with diet, foraging substrate, timing of activity, and life history. Behav. Ecol. Sociobiol. 2022, 76, 74. [Google Scholar] [CrossRef]
- Thomas, K.N.; Gower, D.J.; Bell, R.C.; Fujita, M.K.; Schott, R.K.; Streicher, J.W. Eye size and investment in frogs and toads correlate with adult habitat, activity pattern and breeding ecology. Proc. R. Soc. B Boil. Sci. 2020, 287, 20201393. [Google Scholar] [CrossRef] [PubMed]
- Hall, M.I.; Ross, C.F. Eye shape and activity pattern in birds. J. Zool. 2007, 271, 437–444. [Google Scholar] [CrossRef]
- Wilman, H.; Belmaker, J.; Simpson, J.; de la Rosa, C.; Rivadeneira, M.M.; Jetz, W. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 2014, 95, 2027. [Google Scholar]
- Tobias, J.A.; Sheard, C.; Pigot, A.L.; Devenish, A.J.M.; Yang, J.X.; Sayol, F.; Neate-Clegg, M.H.C.; Alioravainen, N.; Weeks, T.L.; Barber, R.A.; et al. AVONET: Morphological, ecological and geographical data for all birds. Ecol. Lett. 2022, 25, 581–597. [Google Scholar] [CrossRef]
- McNeil, R.; Drapeau, P.; Goss-Custard, J.D. The occurrence and adaptive significance of nocturnal habits in waterfowl. Biol. Rev. 1992, 67, 381–419. [Google Scholar] [CrossRef]
- McNeil, R.; Drapeau, P.; Pierotti, R. Nocturnality in colonial waterbirds: Occurrence, special adaptations and suspected benefits. In Current Ornithology; Power, D.M., Ed.; Plenum Press: New York, NY, USA, 1993; pp. 187–246. [Google Scholar]
- Revell, L.J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 2012, 3, 217–223. [Google Scholar] [CrossRef]
- Ho, S.L.T.; Ane, C.; Lachlan, R.; Tarpinia, K.; Feldman, R.; Yu, Q.; van der Bijl, W.; Maspons, J.; Vos, R. Package ‘Phylolm’ v. 2.6.2. 2020. Available online: https://github.com/lamho86/phylolm (accessed on 1 May 2023).
- Hackett, S.J.; Kimball, R.T.; Reddy, S.; Bowie, R.C.K.; Braun, E.L.; Braun, M.J.; Chojnowski, J.L.; Cox, W.A.; Han, K.L.; Harshman, J.; et al. A phylogenomic study of birds reveals their evolutionary history. Science 2008, 320, 1763–1768. [Google Scholar] [CrossRef]
- Paradis, E.; Claude, J.; Strimmer, K. APE: Analyses of Phylogenetics and Evolution in R language. Bioinformatics 2004, 20, 289–290. [Google Scholar] [CrossRef]
- O’Brien, R.M. A caution regarding rules of thumb for variance inflation factors. Qual. Quant. 2007, 41, 673–690. [Google Scholar] [CrossRef]
- Ives, A.R.; Li, D. rr2: An R package to calculate R^2s for regression models. J. Open Source Softw. 2019, 3, 1028. [Google Scholar] [CrossRef]
- Langerhans, R.B.; Layman, C.A.; Shokrollahi, A.M.; DeWitt, T.J. Predator-driven phenotypic diversification in Gambusia affinis. Evolution 2004, 58, 2305–2318. [Google Scholar]
- Glazier, D.S.; Deptola, T.J. The amphipod Gammarus minus has larger eyes in freshwater springs with numerous fish predators. Invertebr. Biol. 2011, 130, 60–67. [Google Scholar] [CrossRef]
- Beston, S.M.; Wostl, E.; Walsh, M.R. The evolution of vertebrate eye size across an environmental gradient: Phenotype does not predict genotype in a Trinidadian killifish. Evolution 2017, 71, 2037–2049. [Google Scholar] [CrossRef]
- Liu, Y.; Ding, L.; Lei, J.; Zhao, E.; Tang, Y.P. Eye size variation reflects habitat and daily activity patterns in colubrid snakes. J. Morphol. 2012, 273, 883–893. [Google Scholar] [CrossRef]
- Hall, M.I.; Heesy, C.P. Eye size, flight speed and Leuckart’s Law in birds. J. Zool. 2011, 283, 291–297. [Google Scholar] [CrossRef]
- Wiersma, P.; Muñoz-Garcia, A.; Walker, A.; Williams, J.B. Tropical birds have a slow pace of life. Proc. Natl. Acad. Sci. USA 2007, 104, 9340–9345. [Google Scholar] [CrossRef]
- Thiollay, J.-M.; Jullien, M. Flocking behaviour of foraging birds in a neotropical rain forest and the antipredator defence hypothesis. Ibis 1998, 140, 382–394. [Google Scholar] [CrossRef]
- Barrowclough, G.F.; Cracraft, J.; Klicka, J.; Zink, R.M. How many kinds of birds are there and why does it matter? PLoS ONE 2016, 11, e0166307. [Google Scholar] [CrossRef]
- Veilleux, C.C.; Kirk, E.C. Visual acuity in Mammals: Effects of eye size and ecology. Brain Behav. Evol. 2014, 83, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Juricic, E. Sensory basis of vigilance behavior in birds: Synthesis and future prospects. Behav. Proc. 2012, 89, 143–152. [Google Scholar] [CrossRef] [PubMed]
Variable | Level | Definition | References |
---|---|---|---|
Habitat | Closed | Habitats with dense vegetation and low light levels (e.g., under-story) | [40] |
Semi-open | Habitats with sparse vegetation and moderate light levels (e.g., open forest and shrubland) | ||
Open | Habitats with little light obstruction (e.g., desert or water) | ||
Diet | Fruits and nectar | Diet composed primarily of fruits and/or nectar | [39] |
Invertebrate | Diet composed primarily of invertebrates | ||
Omnivore | A mixed category | ||
Plants | Diet composed primarily of plant parts or seeds | ||
Vertebrate | Diet composed primarily of vertebrates, including carrion | ||
Foraging substrate | Aquatic | Foraging in aquatic habitats (e.g., shores, lakes, sea) | [39] |
Aerial | Foraging in the air | ||
Terrestrial-ground | Foraging in terrestrial habitats on the ground | ||
Terrestrial-under-story | Foraging in terrestrial habitats in the under-story | ||
Terrestrial-mid-story | Foraging in terrestrial habitats in the mid-story | ||
Terrestrial-canopy | Foraging in terrestrial habitats in the canopy | ||
Sociality | Flocking | Foraging in flocks most times | [36] |
Occasional flocking | Foraging in flocks or alone | ||
Solitary | Foraging mostly alone | ||
Timing of activity | Diurnal | Foraging primarily during the day | [41,42] |
Nocturnal | Foraging primarily at night | ||
Diurnal/nocturnal | Foraging diurnally or nocturnally | ||
Migration | Resident | No directional movement during non-breeding season | Cornell Laboratory of Ornithology Birds of the World |
Migrant | Short- or long-distance directional movement during non-breeding season | ||
Foraging maneuver | Myopic | Foraging primarily on nearby food items (e.g., gleaning) | [9] |
Hyperopic | Foraging primarily on distant prey items (e.g., sallying) | ||
Latitude | - | Absolute latitude of the study site used to determine annual adult survival | [36] |
Body mass | - | PCA axis related to estimated body mass | This paper |
Life history | - | PCA axis based on annual adult survival and average clutch size | This paper |
Factor | Level | Estimate (SEM) | p-Value |
---|---|---|---|
Intercept | - | 0.29 (0.21) | 0.17 |
Habitat | Semi-open vs. closed | −0.027 (0.015) | 0.07 |
Open vs. closed | −0.080 (0.019) | <0.0001 | |
Diet | Fruits/nectar vs. invertebrates | −0.025 (0.029) | 0.39 |
Omnivore vs. invertebrates | −0.0033 (0.017) | 0.84 | |
Plants/seeds vs. invertebrates | −0.012 (0.028) | 0.65 | |
Vertebrates/carrion vs. invertebrates | −0.0036 (0.024) | 0.88 | |
Foraging substrate | Aerial vs. terrestrial-ground | 0.30 (0.073) | <0.0001 |
Aquatic vs. terrestrial-ground | −0.089 (0.029) | 0.003 | |
Terrestrial-canopy vs. terrestrial-ground | −0.046 (0.026) | 0.09 | |
Terrestrial-mid-story vs. terrestrial-ground | −0.032 (0.019) | 0.09 | |
Terrestrial-under-story vs. terrestrial-ground | −0.0028 (0.017) | 0.87 | |
Sociality | Occasional flocking vs. solitary | −0.024 (0.016) | 0.12 |
Flocking vs. solitary | −0.064 (0.016) | <0.0001 | |
Timing of activity | Nocturnal-diurnal vs. diurnal | −0.016 (0.025) | 0.53 |
Nocturnal vs. diurnal | −0.023 (0.039) | 0.55 | |
Migration | Absent vs. present | 0.0049 (0.014) | 0.73 |
Foraging maneuver | Myopic vs. hyperopic | −0.057 (0.023) | 0.01 |
Absolute latitude | - | −0.00057 (0.00039) | 0.150 |
Pace-of-life axis (PC1) | - | −1.03 (0.063) | <0.0001 |
Body mass axis (PC2) | - | 2.31 (0.069) | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beauchamp, G. Life History and Sociality Predict Variation in Eye Size across Birds. Birds 2023, 4, 284-294. https://doi.org/10.3390/birds4030024
Beauchamp G. Life History and Sociality Predict Variation in Eye Size across Birds. Birds. 2023; 4(3):284-294. https://doi.org/10.3390/birds4030024
Chicago/Turabian StyleBeauchamp, Guy. 2023. "Life History and Sociality Predict Variation in Eye Size across Birds" Birds 4, no. 3: 284-294. https://doi.org/10.3390/birds4030024
APA StyleBeauchamp, G. (2023). Life History and Sociality Predict Variation in Eye Size across Birds. Birds, 4(3), 284-294. https://doi.org/10.3390/birds4030024