Executive Functions in Birds
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Methods
2.1. Keyword-Driven Database Search
- The conceptualization of executive functions: “bird executive function*”, “avian executive function*”, “executive functions Miyake”, “executive functions Diamond”, “executive prefrontal”, “prefrontal function*”.
- Neurophysiology of the avian brain: “nidopallium caudolaterale”, “bird executive”, “bird brain executive”, “avian pallium”, “Herculano-Houzel”, “Güntürkün”, “Colombo”.
- Inhibitory control: “bird inhibition”, “bird inhibitory control”, “motor self-regulation”, “detour”, “self-control”, “MacLean 2014”, “Kabadayi”, “van Horik”.
- Working memory: “bird working memory”, “avian working memory”, “bird delayed response”, “delayed matching bird”, “Dewsbury”, “Hunter”.
- Shifting: “bird task switching”, “bird shifting”, “bird set-shifting”, “bird cognitive flexibility”, “Meier pigeon switching shifting”, “Colombo pigeon switching shifting”.
2.2. Search Driven by Sources Familiar to the Authors
- Bobrowicz, K. Memory for Problem Solving: Comparative Studies in Attention, Working and Long-term Memory. Ph.D. Thesis, Lund University, Lund, Sweden, 2019.
- Diekamp, B.; Kalt, T.; Güntürkün, O. Working memory neurons in pigeons. J. Neurosci. 2002, 22, RC210.
- Güntürkün, O.; Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 2016, 20, 291–303.
- Güntürkün, O. The convergent evolution of neural substrates for cognition. Psychol. Res. 2012, 76, 212–219.
- Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 2017, 16, 1–7.
- Kabadayi, C.; Bobrowicz, K.; Osvath, M. The detour paradigm in animal cognition. Anim. Cogn. 2018, 21, 21–35.
- Kabadayi, C.; Taylor, L.A.; von Bayern, A.M.; Osvath, M. Ravens, New Caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. Royal Soc. Open Sci. 2016, 3, 160104.
- Kabadayi, C.; Krasheninnikova, A.; O’Neill, L.; Weijer, J.V.; Osvath, M.; Bayern, A.V. Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Anim. Cogn. 2017, 20, 1137–1146.
- Mogensen, J.; Divac, I. The prefrontal ‘cortex’ in the pigeon. Behavioral evidence. Brain Behav. Evol. 1982, 21, 60–66.
- Olkowicz, S.; Kocourek, M.; Lučan, R.K.; Porteš, M.; Fitch, W.T.; Herculano-Houzel, S.; Němec, P. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. USA 2016, 113, 7255–7260.
3. Neural Correlates of Executive Functions in the Avian Brain
3.1. Nidopallium Caudolaterale
3.2. Conceptualizations of EFs in Humans and Birds
3.3. EF Tasks in Humans
Term | Definition |
---|---|
Inhibitory control/ Inhibition | Controlled, intentional suppression of currently irrelevant information; supports overriding dominant or automatic response pulls in favour of more productive responses that eventually lead to a more rewarding goal |
Motor self-regulation/Motor inhibition/ Behavioral inhibition | A basic inhibitory mechanism that allows suppressing a prepotent but counterproductive motor response in favour of a productive one |
Self-control | Inhibition of a motor response directed toward a less attractive reward in the present in favour of a motor response directed toward a more attractive reward in the future |
Working memory/ Updating | A host of cognitive processes that support holding, updating, and monitoring currently used information |
Cognitive flexibility/Task-switching/ Shifting | A host of cognitive processes that support switching between mental sets/tasks, or switching between different perspectives and creative thinking |
3.4. Wulst, Medial Lobus Parolfactorius, and the Hippocampal Formation
4. Inhibition
4.1. Motor Self-Regulation Tasks
Detour Tasks
4.2. Discrete Stop-Signal and Stop-Change Tasks
4.3. Self-Control Tasks
4.3.1. Delay Maintenance Tasks
4.3.2. Delay Choice Tasks
4.3.3. The Patch-Leaving Task
4.4. Brief Summary of Inhibition Research
5. Working Memory
5.1. Delayed Alternation Tasks
5.2. Detour Tasks
5.3. Delayed Go/No-Go
5.4. Delayed Matching-to-Sample Tasks
5.5. Delayed Non-Matching-to-Sample Tasks
5.6. Serial Learning Tasks
5.7. Brief Summary of Working Memory Research
6. Cognitive Flexibility
6.1. Response-Shifting Tasks
6.1.1. Binary Choice between Colors or Locations (Reversal)
6.1.2. A-Not-B Tasks
6.1.3. Continuous Stop-Change Tasks
6.2. Dimensional Change Tasks
6.3. Detour Tasks
6.4. Brief Summary of Cognitive Flexibility Research
7. Discussion
7.1. Limitations of This Literature Review
7.2. Future Directions and Conclusions
Core EF | Task | Species | Source |
---|---|---|---|
Inhibition | Detour task | African Grey Parrot (Psittacus erithacus) | [55,154] |
Australian Magpie (Cracticus tibicen dorsalis/Gymnorhina tibicen dorsalis) | [267] | ||
Black-billed Magpie (Pica hudsonia) | [153] | ||
Blue-and-gold Macaw (Ara ararauna) | [154] | ||
Blue-headed Macaw (Primolius couloni) | [55,154] | ||
Blue-throated Macaw (Ara glaucogularis) | [55,154] | ||
Budgerigar (Melopsittacus undulatus) | [291,294] | ||
Clark’s Nutcracker (Nucifraga columbiana) | [136] | ||
Common Pheasant (Phasianus colchicus) | [38,56,111,131] | ||
Common Raven (Corvus corax) | [54,152] | ||
Domestic Chicken (Gallus gallus domesticus) | [6,7,24,25,295,296,297,298,299] | ||
Domestic Pigeon (Columba livia) | [30,300] | ||
Eurasian Jackdaw (Corvus monedula) | [6,54] | ||
Eurasian Jay (Garrulus glandarius) | [30] | ||
Great Green Macaw (Ara ambiguus) | [55,154] | ||
Great Tit (Parus major) | [133,134,135] | ||
New Caledonian Crow (Corvus moneduloides) | [54] | ||
New Zealand Robin (Petroica longpipes) | [155,258] | ||
Orange-winged Amazon (Amazona amazonica) | [30] | ||
Song Sparrow (Melospiza melodia) | [135,261] | ||
Sulphur-crested Cockatoo (Cacatua galerita) | [6] | ||
Swamp Sparrow (Melospiza georgiana) | [30] | ||
Western Scrub Jay (Aphelocoma californica) | [30,153] | ||
Zebra Finch (Taeniopygia guttata) | [30] | ||
Cognitive inhibition task | Goffin’s Cockatoo (Cacatua goffiniana) | [142] | |
Delay maintenance task | African Grey Parrot (Psittacus erithacus) | [163,172,173] | |
Carrion Crow (Corvus corone corone) | [164,170,176] | ||
Common Raven (Corvus corax) | [164,170,176] | ||
Domestic Pigeon (Columba livia domestica) | [174,301] | ||
Goffin’s Cockatoo (Cacatua goffiniana) | [172] | ||
Kea (Nestor notabilis) | [171] | ||
Delay choice task | Domestic Chicken (Gallus gallus domesticus) | [165,177] | |
Domestic Pigeon (Columba livia) | [167] | ||
Western Scrub Jay (Aphelocoma californica) | [168,169] | ||
Patch-leaving task | Blue Jay (Cyanocitta cristata) | [180] | |
Pinyon Jay (Gymnorhinus cyanocephalus) | [178,180] | ||
Western Scrub Jay (Aphelocoma californica) | [168,169] | ||
Working Memory | Delayed alternation task | Blue Tit (Parus caeruleus) | [218] |
Clark’s Nutcracker (Nucifraga columbiana) | [103,214,215,216] | ||
Coal Tit (Parus ater) | [217] | ||
Common Raven (Corvus corax) | [188,189] | ||
Domestic Chicken (Gallus gallus domesticus) | [98] | ||
Domestic Pigeon (Columba livia) | [42,80,126,128,129,207,209,210,211,250] | ||
Eurasian Jackdaw (Corvus monedula) | [103,189] | ||
Florida Scrub Jay (Aphelocoma coerulescens) | [103,214,215] | ||
Great Tit (Parus major) | [217] | ||
Greenfinch (Carduelis choris) | [217] | ||
Hooded Crow (Corvus cornix) | [98] | ||
Japanese quail (Coturnix japonica) | [130] | ||
Marsh Tit (Parus palustris) | [217] | ||
Mexican Jay (Aphelocoma wollweberi) | [214] | ||
Noisy Miner (Manorina melanocephala) | [218,220] | ||
Pinyon Jay (Gymnorhinus cyanocephalus) | [103,214,215] | ||
Rainbow Lorikeet (Trichoglossus haemotodus) | [219,220] | ||
Working Memory | Object-tracking task | African Grey Parrot (Psittacus erithacus) | [114] |
Detour task | Canary (Serinus canaria) | [225] | |
Domestic Chicken (Gallus gallus domesticus) | [222,223,224] | ||
Herring Gull (Larus cachinnans) | [225] | ||
Quail (Coturnix sp.) | [225] | ||
Delayed go no go | Domestic Pigeon (Columba livia domestica) | [159,162,226,227,228,229,230] | |
Delayed matching-to-sample | Black-capped Chickadee (Parus atricapillus) | [125,244] | |
Budgerigar (Melopsittacus undulatus) | [291] | ||
Carrion Crow (Corvus corone corone) | [100,101,102,184,185,186,247] | ||
Clark’s Nutcracker (Nucifraga columbiana) | [252] | ||
Dark-eyed Junco (Junco hyemalis) | [125,244] | ||
Domestic Chicken (Gallus gallus domesticus) | [243] | ||
Domestic Pigeon (Columba livia domestica) | [72,124,202,205,206,207,232,233,234,235,236,237,238,239,240,241,242,249,251] | ||
Large-billed Crow (Corvus macrorhynchos) | [97] | ||
Mexican Jay (Aphelocoma wollweberi) | [252] | ||
Pinyon Jay (Gymnorhinus cyanocephalus) | [252] | ||
Western Scrub Jay (Aphelocoma californica) | [252] | ||
Delayed non-matching-to-sample | Carrion Crow (Corvus corone corone) | [99,104,184] | |
Clark’s Nutcracker (Nucifraga columbiana) | [248,252] | ||
Domestic Pigeon (Columba livia domestica) | [124,191,248] | ||
European Starling (Sturnus vulgaris) | [253,254] | ||
Mexican Jay (Aphelocoma wollweberi) | [252] | ||
Pinyon Jay (Gymnorhinus cyanocephalus) | [252] | ||
Western Scrub Jay (Aphelocoma californica) | [248,252] | ||
Serial learning task | Black-capped Chickadee (Parus atricapillus) | [198] | |
Clark’s Nutcracker (Nucifraga columbiana) | [200] | ||
Domestic Pigeon (Columba livia) | [129,193,194,197,201,255,301] | ||
European Starling (Sturnus vulgaris) | [199] | ||
Cognitive Flexibility | Reversal task | Australian Magpie (Cracticus tibicen dorsalis/Gymnorhina tibicen dorsalis) | [267] |
Barbados Bullfinch (Loxigilla barbadensis) | [259] | ||
Black-capped Chickadee (Parus atricapillus) | [245] | ||
Black-headed Caique (Pionites melanocephalus) | [270] | ||
Blue Jay (Cyanocitta cristata) | [221] | ||
Blue Tit (Parus caeruleus) | [277] | ||
Bobwhite Quail (Colinus virginianus) | [26,158] | ||
Budgerigar (Melopsittacus undulatus) | [302] | ||
Carib Grackle (Quiscalus lugubris) | [246] | ||
Carrion Crow (Corvus corone corone) | [62,303] | ||
Clark’s Nutcracker (Nucifraga columbiana) | [157,200] | ||
Common Pheasant (Phasianus colchicus) | [37,140] | ||
Common Raven (Corvus corax) | [268,269] | ||
Dark-eyed Junco (Junco hyemalis) | [245] | ||
Domestic Chicken (Gallus gallus domesticus) | [26,158,280] | ||
Domestic Pigeon (Columba livia) | [28,41,116,148,149,161,178,185] | ||
Eurasian Jay (Corvus monedula) | [257] | ||
Greater Hill Myna (Gracula religiosa) | [27,158] | ||
Cognitive flexibility | Great-tailed Grackle (Quiscalus mexicanus) | [273] | |
Great Tit (Parus major) | [134,277] | ||
Ground Finch (Geospiza sp.) | [262] | ||
Guinea Fowl (Numididae) | [158] | ||
Indian Myna (Acridotheres tristis) | [256] | ||
Kea (Nestor notabilis) | [231,275] | ||
Mexican Jay (Aphelocoma wollweberi) | [271] | ||
Mountain Chickadee (Poecile gambeli) | [265,266] | ||
New Caledonian Crow (Corvus moneduloides) | [303] | ||
New Zealand Robin (Petroica longpipes) | [155,258] | ||
Partridge (Alectoris sp.) | [158] | ||
Pinyon jay (Gymnorhinus cyanocephalus) | [157,271] | ||
Red-billed Blue Magpie (Urocissa oecipitalis) | [26,158] | ||
Red-shouldered Macaw (Diopsittaca nobilis) | [270] | ||
Ring-necked Dove (Streptopelia capicola) | [158] | ||
Shiny Cowbird (Molothrus bonariensis) | [276] | ||
Small Tree Finch (Camarhynchus parvulus) | [289] | ||
Song Sparrow (Melospiza melodia) | [135,261,274] | ||
Spotted Bowerbird (Chlamydera maculata) | [264] | ||
Tree finch (Camarhynchus sp.) | [262] | ||
Trumpeter (Psophia sp.) | [158] | ||
Western Scrub Jay (Aphelocoma californica) | [157,271] | ||
Woodpecker Finch (Cactospiza pallida) | [262,263,288,289] | ||
Yellow-headed Parrot (Amazona ochrocephala) | [26,158] | ||
Zenaida Dove (Zenaida aurita) | [260] | ||
A-not-B task | Domestic Pigeon (Columba livia domestica) | [30] | |
Eurasian Jackdaw (Corvus monedula) | [257] | ||
Eurasian Jay (Garrulus glandarius) | [30] | ||
Orange-winged Amazon (Amazona amazonica) | [30] | ||
Western Scrub Jay (Aphelocoma californica) | [30] | ||
Dimensional change task | Carrion Crow (Corvus corone corone) | [184] | |
Domestic Pigeon (Columba livia) | [115,117,119,213,279,280,281,282,283] |
Group | Species | Core EF | Source |
---|---|---|---|
Australasian Robins (Eopsaltridae) | New Zealand Robin (Petroica longpipes) | Inhibition | [155,258] |
Cognitive Flexibility | [155,258] | ||
Bowerbirds (Ptilonorhynicdae) | Spotted Bowerbird (Chlamydera maculata) | Cognitive Flexibility | [264] |
Corvids (Corvidae) | Black-billed Magpie (Pica hudsonia) | Inhibition | [153] |
Blue Jay (Cyanocitta cristata) | Inhibition | [180] | |
Cognitive Flexibility | [221] | ||
Carrion Crow (Corvus corone corone) | Inhibition | [164,170,176] | |
Working Memory | [100,101,102,184,185,186,247] | ||
Cognitive flexibility | [62,184,303] | ||
Clark’s Nutcracker (Nucifraga columbiana) | Inhibition | [136] | |
Working Memory | [103,214,215,216,248,252] | ||
Cognitive Flexibility | [157,200] | ||
Common Raven (Corvus corax) | Inhibition | [54,152] | |
Working Memory | [188,189] | ||
Cognitive Flexibility | [268,269] | ||
Eurasian Jackdaw (Corvus monedula) | Inhibition | [6,54] | |
Working Memory | [103,189] | ||
Cognitive Flexibility | [257] | ||
Eurasian Jay (Garrulus glandarius) | Inhibition | [30] | |
Cognitive Flexibility | [257] | ||
Florida Scrub Jay (Aphelocoma coerulescens) | Working Memory | [103,214,215] | |
Hooded Crow (Corvus cornix) | Working Memory | [98] | |
Mexican Jay (Aphelocoma wollweberi) | Working Memory | [214,252] | |
Cognitive Flexibility | [271] | ||
New Caledonian Crow (Corvus moneduloides) | Inhibition | [54] | |
Cognitive Flexibility | [303] | ||
Large-billed Crow (Corvus macrorhynchos) | Working Memory | [97] | |
Red-billed Blue Magpie (Urocissa oecipitalis) | Cognitive Flexibility | [26,158] | |
Pinyon Jay (Gymnorhinus cyanocephalus) | Inhibition | [178,180] | |
Working Memory | [103,214,215,252] | ||
Cognitive Flexibility | [157,271] | ||
Western Scrub Jay (Aphelocoma californica) | Inhibition | [30,153,168,169] | |
Working memory | [248,252] | ||
Cognitive Flexibility | [30,157,271] | ||
Finches (Carduelidae) | Barbados Bullfinch (Loxigilla barbadensis) | Cognitive Flexibility | [259] |
Canary (Serinus canaria) | Working Memory | [225] | |
Ground Finch (Geospiza sp.) | Cognitive Flexibility | [262] | |
Greenfinch (Carduelis choris) | Working Memory | [217] | |
Small Tree Finch (Camarhynchus parvulus) | Cognitive Flexibility | [289] | |
Tree Finch (Camarhynchus sp.) | Cognitive Flexibility | [262] | |
Woodpecker Finch (Cactospiza pallida) | Cognitive Flexibility | [262,263,288,289] | |
Zebra Finch (Taeniopygia guttata) | Inhibition | [30] | |
Gamebirds (Galliformes) | Bobwhite Quail (Colinus virginianus) | Cognitive Flexibility | [26,158] |
Common Pheasant (Phasianus colchicus) | Inhibition | [38,56,109,131] | |
Cognitive Flexibility | [37,140] | ||
Domestic Chicken (Gallus gallus domesticus) | Inhibition | [6,7,24,25,165,177,295,296,297,298,299] | |
Working Memory | [98,222,223,224,243] | ||
Cognitive Flexibility | [26,158,280] | ||
Guinea Fowl (Numididae) | Cognitive Flexibility | [158] | |
Japanese Quail (Coturnix japonica) | Working Memory | [130] | |
Quail (Coturnix sp.) | Working Memory | [225] | |
Partridge (Alectoris sp.) | Cognitive Flexibility | [158] | |
Gulls (Laridae) | Herring Gull (Larus cachinnans) | Working memory | [225] |
Honeyeaters and Australian Chats (Meliphagidae) | Noisy Miner (Manorina melanocephala) | Working memory | [218,220] |
New World Blackbirds (Icteridae) | Carib Grackle (Quiscalus lugubris) | Cognitive Flexibility | [246] |
Great-tailed Grackle (Quiscalus mexicanus) | Cognitive Flexibility | [273] | |
Shiny Cowbird (Molothrus bonariensis) | Cognitive Flexibility | [276] | |
Parrots (Psittacidae) | African Grey Parrot (Psittacus erithacus) | Inhibition | [55,154,163,172,175] |
Working Memory | [114] | ||
Black-headed Caique (Pionites melanocephalus) | Cognitive Flexibility | [270] | |
Blue-and-gold Macaw (Ara ararauna) | Inhibition | [154] | |
Blue-headed Macaw (Primolius couloni) | Inhibition | [55,154] | |
Blue-throated Macaw (Ara glaucogularis) | Inhibition | [55,154] | |
Budgerigar (Melopsittacus undulatus) | Inhibition | [291,294] | |
Working Memory | [291] | ||
Cognitive Flexibility | [302] | ||
Goffin’s Cockatoo (Cacatua goffiniana) | Inhibition | [142,172] | |
Great Green Macaw (Ara ambiguus) | Inhibition | [55,154] | |
Kea (Nestor notabilis) | Inhibition | [171] | |
Cognitive Flexibility | [231,275] | ||
Orange-winged Amazon (Amazona amazonica) | Inhibition | [30] | |
Cognitive Flexibility | [30] | ||
Rainbow Lorikeet (Trichoglossus haemotodus) | Working memory | [219,220] | |
Red-shouldered Macaw (Diopsittaca nobilis) | Cognitive Flexibility | [270] | |
Sulphur-crested Cockatoo (Cacatua galerita) | Inhibition | [6] | |
Yellow-headed Parrot (Amazona ochrocephala) | Cognitive Flexibility | [26,158] | |
Pigeons and Doves (Columbidae) | Domestic Pigeon (Columba livia) | Inhibition | [30,167,174,301] |
Working memory | [42,72,80,124,126,128,129,159,162,191,193,194,197,201,202,205,206,207,209,210,211,226,227,228,229,230,232,233,234,235,236,237,238,239,240,241,242,248,249,250,251,255,301] | ||
Cognitive Flexibility | [28,30,41,115,116,117,119,148,149,161,178,185,213,279,280,281,282,283] | ||
Ring-necked Dove (Streptopelia capicola) | Cognitive Flexibility | [158] | |
Zenaida Dove (Zenaida aurita) | Cognitive Flexibility | [260] | |
Sparrows (Passeridae) | Dark-eyed Junco (Junco hyemalis) | Working memory | [125,244] |
Cognitive Flexibility | [245] | ||
Song Sparrow (Melospiza melodia) | Inhibition | [135,261] | |
Cognitive Flexibility | [135,261,274] | ||
Swamp Sparrow (Melospiza georgiana) | Inhibition | [30] | |
Starlings and Mynas (Sturnidae) | European Starling (Sturnus vulgaris) | Working memory | [199,253,254] |
Greater Hill Myna (Gracula religiosa) | Cognitive Flexibility | [27,158] | |
Indian Myna (Acridotheres tristis) | Cognitive Flexibility | [256] | |
Swans, Geese, and Ducks (Anatidae) | Trumpeter (Psophia sp.) | Cognitive Flexibility | [158] |
Tits and Chickadees (Paridae) | Black-capped Chickadee (Parus atricapillus) | Working Memory | [127,198,244] |
Cognitive Flexibility | [245] | ||
Blue Tit (Parus caeruleus) | Working memory | [218] | |
Cognitive Flexibility | [277] | ||
Coal Tit (Parus ater) | Working memory | [217] | |
Great Tit (Parus major) | Inhibition | [133,134] | |
Working memory | [217] | ||
Cognitive Flexibility | [134,277] | ||
Mountain Chickadee (Poecile gambeli) | Cognitive Flexibility | [265,266] | |
Marsh Tit (Parus palustris) | Working memory | [217] | |
Wood Swallows (Artamidae) | Australian Magpie (Cracticus tibicen dorsalis/Gymnorhina tibicen dorsalis) | Inhibition | [267] |
Cognitive Flexibility | [267] |
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Diamond, A. Executive functions. Annu. Rev. Psychol. 2013, 64, 135–168. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miyake, A.; Friedman, N.P.; Emerson, M.J.; Witzki, A.H.; Howerter, A.; Wager, T.D. The unity and diversity of executive functions and their contributions to complex "Frontal Lobe" tasks: A latent variable analysis. Cogn. Psychol. 2000, 41, 49–100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puig, V.M.; Rose, J.; Schmidt, R.; Freund, N. Dopamine modulation of learning and memory in the prefrontal cortex: Insights from studies in primates, rodents, and birds. Front. Neural Circuits 2014, 8, 93. [Google Scholar] [CrossRef]
- Tello-Ramos, M.C.; Branch, C.; Kozlovsky, D.; Pitera, A.; Pravosudov, V. Spatial memory and cognitive flexibility trade-offs: To be or not to be flexible, that is the question. Anim. Behav. 2019, 147, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Bobrowicz, K. Memory for Problem Solving: Comparative Studies in Attention, Working and Long-Term Memory. Ph.D. Thesis, Lund University, Lund, Sweden, 2019. [Google Scholar]
- Köhler, W. The Mentality of Apes, 2nd ed.; Trubner & Co., Ltd.: London, UK, 1925. [Google Scholar]
- Thorndike, E.L. Animal Intelligence: Experimental Studies; The Macmillan Company: New York, NY, USA, 1911. [Google Scholar]
- Kabadayi, C.; Bobrowicz, K.; Osvath, M. The detour paradigm in animal cognition. Anim. Cogn. 2018, 21, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Dewsbury, D.A. Comparative cognition in the 1930s. Psychon. Bull. Rev. 2000, 7, 267–283. [Google Scholar] [CrossRef] [Green Version]
- Hunter, W.S. Delayed reaction in animals and children. Behav. Monogr. 1913, 2, 1889–1954. [Google Scholar]
- Roberts, W.A.; Santi, A. The Comparative Study of Working Memory. In APA Handbook of Comparative Psychology (Vol. 2. Perception, Learning, and Cognition; Call, J., Ed.; American Psychological Association: Washington, WA, USA, 2017. [Google Scholar]
- Clarke, R.; Heron, W.; Fetherstonhaugh, M.; Forgays, D.; Hebb, D. Individual differences in dogs: Preliminary report on the effects of early experience. Can. J. Exp. Psychol. 1951, 5, 150–156. [Google Scholar] [CrossRef]
- Sarris, E.G. Die individuellen Unterschiede bei Hunden. Z. Angew. Psychol. Charakterkd. 1937, 52, 257–309. [Google Scholar]
- Thompson, W.R.; Heron, W. The effects of restricting early experience on the problem-solving capacity of dogs. Can. J. Exp. Psychol. 1954, 8, 17–31. [Google Scholar] [CrossRef]
- Wyrwicka, W. Studies on detour behaviour. Behaviour 1959, 14, 240–264. [Google Scholar] [CrossRef]
- Harlow, H.F. Comparative behavior of primates III. Complicated delayed reaction tests on primates. J. Comp. Psychol. 1932, 14, 241–252. [Google Scholar] [CrossRef]
- Harlow, H.F.; Bromer, J.A. The capacity of platyrrhine monkeys to solve delayed reaction tests. J. Comp. Psychol. 1939, 28, 299–304. [Google Scholar] [CrossRef]
- Harlow, H.F.; Uehling, H.; Maslow, A.H. Comparative behavior of primates I. Delayed reaction test on primates from the lemur to the orangutan. J. Comp. Psychol. 1932, 13, 313–343. [Google Scholar] [CrossRef]
- Maslow, A.H.; Harlow, H.F. Comparative behavior of primates II. Delayed reaction tests on primates at Bronx Park Zoo. J. Comp. Psychol. 1932, 14, 97–107. [Google Scholar] [CrossRef]
- McAllister, W.G. A further study of the delayed reaction in the albino rat. Comp. Psychol. Monogr. 1932, 8, 29–49. [Google Scholar]
- Tinklepaugh, O.L. Multiple delayed reactions with chimpanzees and monkeys. J. Comp. Psychol. 1932, 13, 207–243. [Google Scholar] [CrossRef]
- Yudin, H.C.; Harlow, H.F. Comparative behavior of primates V. Delayed reactions in primates in horizontal and vertical planes. J. Comp. Psychol. 1933, 16, 143–146. [Google Scholar] [CrossRef]
- Lorenz, K. Betrachtungen über das Erkennen der arteigenen Triebhandlungen der Vögel. J. Ornithol. 1932, 80, 50–98. [Google Scholar] [CrossRef]
- Scholes, N.W. Detour learning and development in the domestic chick. J. Comp. Physiol. Psychol. 1965, 60, 114–116. [Google Scholar] [CrossRef]
- Scholes, N.W.; Wheaton, L.G. Critical period for detour learning in developing chicks. Life Sci. 1966, 5, 1859–1865. [Google Scholar] [CrossRef]
- Gossette, R.L.; Gossette, M.F.; Riddell, W. Comparisons of successive discrimination reversal performances among closely and remotely related avian species. Anim. Behav. 1966, 14, 560–564. [Google Scholar] [CrossRef]
- Gossette, R.; Gossette, M.; Inman, N. Successive discrimination reversal performance by the Greater Hill Myna. Anim. Behav. 1966, 14, 50–53. [Google Scholar] [CrossRef]
- Gonzalez, R.C.; Behrend, E.R.; Bitterman, M.E. Reversal learning and forgetting in bird and fish. Science 1967, 158, 519–521. [Google Scholar] [CrossRef] [PubMed]
- Warren, J.M.; Brookshire, R.H.; Ball, G.G.; Reynolds, D.V. Reversal learning by white Leghorn chicks. J. Comp. Physiol. Psychol. 1960, 53, 371–375. [Google Scholar] [CrossRef] [PubMed]
- MacLean, E.L.; Hare, B.; Nunn, C.L.; Addessi, E.; Amici, F.; Anderson, R.C.; Aureli, F.; Baker, J.M.; Bania, A.E.; Barnard, A.M.; et al. The evolution of self-control. Proc. Natl. Acad. Sci. USA 2014, 111, E2140–E2148. [Google Scholar] [CrossRef] [Green Version]
- Kabadayi, C. Planning and Inhibition in Corvids. Ph.D. Thesis, Lund University, Lund, Sweden, 2017. [Google Scholar]
- Lambert, M.; Jacobs, I.; Osvath, M.; von Bayern, A. Birds of a feather? Parrot and corvid cognition compared. Behaviour 2019, 156, 505–594. [Google Scholar] [CrossRef]
- Güntürkün, O.; Bugnyar, T. Cognition without cortex. Trends Cogn. Sci. 2016, 20, 291–303. [Google Scholar] [CrossRef]
- Clayton, N.S.; Emery, N.J. Avian Models for Human Cognitive Neuroscience: A Proposal. Neuron 2015, 86, 1330–1342. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.S.; Guez, D. Innovation and problem solving: A review of common mechanisms. Behav. Processes 2014, 109, 121–134. [Google Scholar] [CrossRef]
- van Horik, J.O.; Clayton, N.S.; Emery, N.J. Convergent Evolution of Cognition in Corvids, Apes and Other Animals. In The Oxford Handbook of Comparative Evolutionary Psychology; Vonk, J., Shackelford, J.T.K., Eds.; Oxford University Press: Oxford, UK, 2012; pp. 80–101. [Google Scholar]
- Madden, J.; Langley, E.J.; Whiteside, M.; Beardsworth, C.E.; Horik, J.V. The quick are the dead: Pheasants that are slow to reverse a learned association survive for longer in the wild. Phil. Trans. Royal Soc. B Biol. Sci. 2018, 373, 20170297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Horik, J.O.; Langley, E.; Whiteside, M.A.; Laker, P.R.; Madden, J.R. Intra-individual variation in performance on novel variants of similar tasks influences single factor explanations of general cognitive processes. Royal Soc. Open Sci. 2018, 5, 171919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Güntürkün, O. Cognitive impairments after lesions of the neostriatum caudolaterale and its thalamic afferent in pigeons: Functional similarities to the mammalian prefrontal system? J. Hirnforsch. 1997, 38, 133–143. [Google Scholar] [PubMed]
- Güntürkün, O. The avian ‘prefrontal cortex’ and cognition. Curr. Opin. Neurobiol. 2005, 15, 686–693. [Google Scholar] [CrossRef]
- Hartmann, B.; Güntürkün, O. Selective deficits in reversal learning after neostriatum caudolaterale lesions in pigeons: Possible behavioral equivalencies to the mammalian prefrontal system. Behav. Brain Res. 1998, 96, 125–133. [Google Scholar] [CrossRef]
- Mogensen, J.; Divac, I. The prefrontal ‘cortex’ in the pigeon. Behavioral evidence. Brain Behav. Evol. 1982, 21, 60–66. [Google Scholar] [CrossRef]
- Waldmann, C.; Güntürkün, O. The dopaminergic innervation of the pigeon caudolateral forebrain: Immunocytochemical evidence for a ‘prefrontal cortex’ in birds? Brain Res. 1993, 600, 225–234. [Google Scholar] [CrossRef]
- Babb, S.J.; Crystal, J.D. Episodic-like memory in the rat. Curr. Biol. 2006, 16, 1317–1321. [Google Scholar] [CrossRef] [Green Version]
- Clayton, N.S.; Dickinson, A. Episodic-like memory during cache recovery by scrub jays. Nature 1998, 395, 272–274. [Google Scholar] [CrossRef]
- Clayton, N.S.; Dickinson, A. Scrub jays (Aphelocoma coerulescens) remember the relative time of caching as well as the location and content of their caches. J. Comp. Psychol. 1999, 113, 403–416. [Google Scholar] [CrossRef]
- Clayton, N.S.; Griffiths, D.P.; Emery, N.J.; Dickinson, A. Elements of episodic-like memory in animals. Phil. Trans. R. Soc. B Biol. Sci. 2001, 356, 1483–1491. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.A. Animal memory: Episodic-like memory in rats. Curr. Biol. 2006, 16, R601–R603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, B.L.; Hoffman, M.L.; Evans, S. Episodic-like memory in a gorilla: A review and new findings. Learn. Motiv. 2005, 36, 226–244. [Google Scholar] [CrossRef]
- Schwartz, B.L.; Evans, S. Episodic memory in primates. Am. J. Primatol. 2001, 55, 71–85. [Google Scholar] [CrossRef] [PubMed]
- Correia, S.P.; Dickinson, A.; Clayton, N.S. Western scrub-jays anticipate future needs independently of their current motivational state. Curr. Biol. 2007, 17, 856–861. [Google Scholar] [CrossRef] [Green Version]
- Raby, C.R.; Alexis, D.M.; Dickinson, A.; Clayton, N.S. Planning for the future by western scrub-jays. Nature 2007, 445, 919–921. [Google Scholar] [CrossRef]
- Osvath, M.; Osvath, H. Chimpanzee (Pan troglodytes) and orangutan (Pongo abelii) forethought: Self-control and pre-experience in the face of future tool use. Anim. Cogn. 2008, 11, 661–674. [Google Scholar] [CrossRef]
- Kabadayi, C.; Taylor, L.A.; von Bayern, A.M.; Osvath, M. Ravens, new caledonian crows and jackdaws parallel great apes in motor self-regulation despite smaller brains. R. Soc. Open Sci. 2016, 3, 160104. [Google Scholar] [CrossRef] [Green Version]
- Kabadayi, C.; Krasheninnikova, A.; O’Neill, L.; Weijer, J.V.; Osvath, M.; Bayern, A.V. Are parrots poor at motor self-regulation or is the cylinder task poor at measuring it? Anim. Cogn. 2017, 20, 1137–1146. [Google Scholar] [CrossRef]
- van Horik, J.O.; Langley, E.J.; Whiteside, M.A.; Laker, P.R.; Beardsworth, C.E.; Madden, J.R. Do detour tasks provide accurate assays of inhibitory control? Proc. R. Soc. B 2018, 285, 20180150. [Google Scholar] [CrossRef] [Green Version]
- Bobrowicz, K.; Osvath, M. Cats parallel great apes and corvids in motor self-regulation—Not brain but material size matters. Front. Psychol. 2018, 9, 1995. [Google Scholar] [CrossRef] [PubMed]
- Boogert, N.J.; Madden, J.R.; Morand-Ferron, J.; Thornton, A. Measuring and understanding individual differences in cognition. Phil. Trans. R. Soc. B Biol. Sci. 2018, 373, 20170280. [Google Scholar] [CrossRef] [PubMed]
- Seed, A.; Emery, N.; Clayton, N. Intelligence in corvids and apes: A case of convergent evolution? Ethology 2009, 115, 401–420. [Google Scholar] [CrossRef]
- Benton, M.J.; Donoghue, P.C.J. Paleontological evidence to date the tree of life. Mol. Biol. Evol. 2006, 24, 26–53. [Google Scholar] [CrossRef] [PubMed]
- Güntürkün, O. The convergent evolution of neural substrates for cognition. Psychol. Res. 2012, 76, 212–219. [Google Scholar] [CrossRef]
- Rose, J.; Güntürkün, O.; Kirsch, J. Evolution of Association Pallial Areas: In Birds. In Encyclopedia of Neuroscience; Binder, M.D., Hirokawa, N., Windhorst, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Jarvis, E.D.; Güntürkün, O.; Bruce, L.; Csillag, A.; Karten, H.; Kuenzel, W.; Medina, L.; Paxinos, G.; Perkel, D.J.; Shimizu, T.; et al. Avian brain nomenclature consortium avian brains and a new understanding of vertebrate brain evolution. Nat. Rev. Neurosci. 2005, 6, 151–159. [Google Scholar] [CrossRef] [Green Version]
- Herculano-Houzel, S. Birds do have a brain cortex-and think. Science 2020, 369, 1567–1568. [Google Scholar] [CrossRef]
- Stacho, M.; Herold, C.; Rook, N.; Wagner, H.; Axer, M.; Amunts, K.; Güntürkün, O. A cortex-like canonical circuit in the avian forebrain. Science 2020, 369, eabc5534. [Google Scholar] [CrossRef]
- Edinger, L.; Wallenberg, A.; Holmes, G.M. Untersuchungen Über die Vergleichende Anatomie des Gehirns. 3. Das Vorderhirn der Vogel; Abhandlungen der Senkenbergischen Gesellschaft: Frankfurt am Main, Germany, 1903; Volume 20, pp. 343–426. [Google Scholar]
- Karten, H.J. The ascending auditory pathway in the pigeon (Columba livia). II. Telencephalic projections of the nucleus ovoidalis thalami. Brain Res. 1969, 11, 134–153. [Google Scholar] [CrossRef]
- Herold, C.; Palomero-Gallagher, N.; Hellmann, B.; Kröner, S.; Theiss, C.; Güntürkün, O.; Zilles, K. The receptor architecture of the pigeons’ nidopallium caudolaterale: An avian analogue to the mammalian prefrontal cortex. Brain Struct. Funct. 2011, 216, 239–254. [Google Scholar] [CrossRef]
- Reiner, A.; Yamamoto, K.; Karten, H.J. Organization and evolution of the avian forebrain. Anat. Rec. A Discov. Mol. Cell. Evol. Biol. 2005, 287A, 1080–1102. [Google Scholar] [CrossRef] [PubMed]
- Shanahan, M.; Bingman, V.P.; Shimizu, T.; Wild, M.; Güntürkün, O. Large-scale network organization in the avian forebrain: A connectivity matrix and theoretical analysis. Front Comput. Neurosci. 2013, 7, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shanahan, M. The brain’s connective core and its role in animal cognition. Phil. Trans. Royal Soc. B Biol. Sci. 2012, 367, 2704–2714. [Google Scholar] [CrossRef]
- Rose, J.; Colombo, M. Neural correlates of executive control in the avian brain. PLoS Biol. 2005, 3, e190. [Google Scholar] [CrossRef] [Green Version]
- Kröner, S.; Güntürkün, O. Afferent and efferent connections of the caudolateral neostriatum in the pigeon (Columba livia): A retro- and anterograde pathway tracing study. J. Comp. Neurol. 1999, 407, 228–260. [Google Scholar] [CrossRef]
- Jones, E.G.; Powell, T.P.S. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain 1970, 93, 793–820. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Cox, K.; Karten, H.J. Intratelencephalic projections of the visual wulst in pigeons (Columba livia). J. Comp. Neurol. 1995, 359, 551–572. [Google Scholar] [CrossRef]
- Wild, J.M.; Karten, H.J.; Frost, B.J. Connections of the auditory forebrain in the pigeon (Columba livia). J. Comp. Neurol. 1993, 337, 32–62. [Google Scholar] [CrossRef]
- Divac, I.; Mogensen, J. The prefrontal ‘cortex’ in the pigeon-catecholamine histofluorescence. Neuroscience 1985, 15, 677–682. [Google Scholar] [CrossRef]
- Divac, I.; Thibault, J.; Skageberg, G.; Palacois, M.; Dietl, M.M. Dopaminergic innervation of the brain in pigeons. The presumed ‘prefrontal cortex’. Acta Neurobiol. Exp. 1994, 54, 227–234. [Google Scholar]
- Wynne, B.; Güntürkün, O. The dopaminergic innervation of the forebrain of the pigeon (Columba livia): A study with antibodies against tyrosine hydroxylase and dopamine. J. Comp. Neurol. 1995, 358, 446–464. [Google Scholar] [CrossRef] [PubMed]
- Gagliardo, A.; Bonadonna, F.; Divac, I. Behavioral effects of ablations of the presumed ‘prefrontal cortex’ or the corticoid in pigeons. Behav. Brain Res. 1996, 78, 155–162. [Google Scholar] [CrossRef]
- Güntürkün, O. Avian and mammalian “prefrontal cortices”: Limited degrees of freedom in the evolution of the neural mechanisms of goal-state maintenance. Brain Res. Bull. 2005, 66, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Kirsch, J.A.; Güntürkün, O.; Rose, J. Insight without cortex: Lessons from the avian brain. Conscious. Cogn. 2008, 17, 475–483. [Google Scholar] [CrossRef]
- Herculano-Houzel, S. Numbers of neurons as biological correlates of cognitive capability. Curr. Opin. Behav. Sci. 2017, 16, 1–7. [Google Scholar] [CrossRef]
- Fuster, J.M. The Prefrontal Cortex: Anatomy, Physiology, and Neuropsychology of The Frontal Lobe, 3rd ed.; Lippincott-Raven: Philadelphia, PA, USA, 1997. [Google Scholar]
- Rose, J.; Schiffer, A.M.; Dittrich, L.; Güntürkün, O. The role of dopamine in maintenance and distractability of attention in the "prefrontal cortex" of pigeons. Neuroscience 2010, 167, 232–237. [Google Scholar] [CrossRef]
- Schnabel, R.; Metzger, M.; Jiang, S.; Hemmings, H.C., Jr.; Greengard, P.; Braun, K. Localization of dopamine D1 receptors and dopaminoceptive neurons in the chick forebrain. J. Comp. Neurol. 1997, 388, 146–168. [Google Scholar] [CrossRef]
- Durstewitz, D.; Kröner, S.; Hemmings, H.C., Jr.; Güntürkün, O. The dopaminergic innervation of the pigeon telencephalon: Distribution of DARPP-32 and cooccurrence with glutamate decarboxylase and tyrosine hydroxylase. Neuroscience 1998, 83, 763–779. [Google Scholar] [CrossRef]
- Metzger, M.; Jiang, S.; Braun, K. A quantitative immunoelectron microscopic study of dopamine terminals in forebrain regions of the domestic chick involved in filial imprinting. Neuroscience 2002, 111, 611–623. [Google Scholar] [CrossRef]
- Durstewitz, D.; Seamans, J.K.; Sejnowski, T.J. Dopamine-mediated stabilization of delay-period activity in a network model of prefrontal cortex. J. Neurophysiol. 2000, 83, 1733–1750. [Google Scholar] [CrossRef]
- Schultz, W. Multiple dopamine functions at different time courses. Annu. Rev. Neurosci. 2007, 30, 259–288. [Google Scholar] [CrossRef] [Green Version]
- Emery, N.J.; Clayton, N.S. The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science 2004, 306, 1903–1907. [Google Scholar] [CrossRef] [PubMed]
- Von Eugen, K.; Tabrik, S.; Güntürkün, O.; Ströckens, F. A comparative analysis of the dopaminergic innervation of the executive caudal nidopallium in pigeon, chicken, zebra finch, and carrion crow. J. Comp. Neurol. 2020, 528, 2929–2955. [Google Scholar] [CrossRef] [PubMed]
- Iwaniuk, A.N.; Hurd, P.L. The evolution of cerebrotypes in birds. Brain Behav. Evol. 2005, 65, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Olkowicz, S.; Kocourek, M.; Lučan, R.K.; Porteš, M.; Fitch, W.T.; Herculano-Houzel, S.; Němec, P. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl. Acad. Sci. USA 2016, 113, 7255–7260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mello, C.V.; Kaser, T.; Buckner, A.A.; Wirthlin, M.; Lovell, P.V. Molecular architecture of the zebra finch arcopallium. J. Comp. Neurol. 2019, 527, 2512–2556. [Google Scholar] [CrossRef]
- Prum, R.O.; Berv, J.S.; Dornburg, A.; Field, D.J.; Townsend, J.P.; Lemmon, E.M.; Lemmon, A.R. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 2015, 526, 569–573. [Google Scholar] [CrossRef]
- Goto, K.; Watanabe, S. Visual working memory of jungle crows (Corvus macrorhynchos) in operant delayed matching-to-sample. Jpn. Psychol. Res. 2009, 51, 122–131. [Google Scholar] [CrossRef]
- Lipp, H.P.; Pleskacheva, M.G.; Gossweiler, H.; Ricceri, L.; Smirnova, A.A.; Garin, N.N.; Perepiolkina, O.P.; Voronkov, D.N.; Kuptsov, P.A.; Dell’Omo, G. A large outdoor radial maze for comparative studies in birds and mammals. Neurosci. Biobehav. Rev. 2001, 25, 83–99. [Google Scholar] [CrossRef]
- Fongaro, E.; Rose, J. Crows control working memory before and after stimulus encoding. Sci. Rep. 2020, 10, 3253. [Google Scholar] [CrossRef]
- Ditz, H.M.; Nieder, A. Sensory and working memory representations of small and large numerosities in the crow endbrain. J. Neurosci. 2016, 36, 12044–12052. [Google Scholar] [CrossRef] [PubMed]
- Rinnert, P.; Kirschhock, M.E.; Nieder, A. Neuronal correlates of spatial working memory in the endbrain of crows. Curr. Biol. 2019, 29, 2616–2624.e4. [Google Scholar] [CrossRef] [PubMed]
- Moll, F.W.; Nieder, A. Cross-modal associative mnemonic signals in crow endbrain neurons. Curr. Biol. 2015, 25, 2196–2201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gould-Beierle, K. A comparison of four corvid species in a working and reference memory task using a radial maze. J. Comp. Psychol. 2000, 114, 347–356. [Google Scholar] [CrossRef]
- Balakhonov, D.; Rose, J. Crows rival monkeys in cognitive capacity. Sci. Rep. 2017, 7, 8809. [Google Scholar] [CrossRef] [Green Version]
- Burgoyne, A.P.; Engle, R.W. Attention control: A cornerstone of higher-order cognition. Curr. Dir. Psychol. Sci. 2020, 29, 624–630. [Google Scholar] [CrossRef]
- Garon, N.; Bryson, S.E.; Smith, I.M. Executive function in preschoolers: A review using an integrative framework. Psychol. Bull. 2008, 134, 31–60. [Google Scholar] [CrossRef] [Green Version]
- Friedman, N.P.; Miyake, A. Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex 2017, 86, 186–204. [Google Scholar] [CrossRef] [Green Version]
- Miller, R.; Boeckle, M.; Jelbert, S.A.; Frohnwieser, A.; Wascher, C.; Clayton, N.S. Self-control in crows, parrots and nonhuman primates. Wiley Interdiscip. Rev. Cogn. Sci. 2019, 10, e1504. [Google Scholar] [CrossRef] [Green Version]
- van Horik, J.O.; Beardsworth, C.E.; Laker, P.R.; Langley, E.; Whiteside, M.A.; Madden, J.R. Unpredictable environments enhance inhibitory control in pheasants. Anim. Cogn. 2019, 22, 1105–1114. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A. Developmental time course in human infants and infant monkeys, and the neural bases of, inhibitory control in reaching. Ann. N. Y. Acad. Sci. 1990, 608, 637–669; discussion 669–676. [Google Scholar] [CrossRef] [PubMed]
- Carlson, S.M. Developmentally sensitive measures of executive function in preschool children. Dev. Neuropsychol. 2005, 28, 595–616. [Google Scholar] [CrossRef] [PubMed]
- Mathy, F.; Chekaf, M.; Cowan, N. Simple and complex working memory tasks allow similar benefits of information compression. J. Cogn. 2018, 1, 31. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.L.; Engle, R.W. Is working memory capacity task dependent? J. Mem. Lang. 1989, 28, 127–154. [Google Scholar] [CrossRef]
- Pailian, H.; Carey, S.E.; Halberda, J.; Pepperberg, I.M. Age and Species comparisons of visual mental manipulation ability as evidence for its development and evolution. Sci. Rep. 2020, 10, 7689. [Google Scholar] [CrossRef]
- Watanabe, S. The Neural Basis of Cognitive Flexibility in Birds. In Comparative Cognition: Experimental Explorations of Animal Intelligence; Wasserman, E.A., Zentall, T.R., Eds.; Oxford University Press: Oxford, UK, 2009; pp. 619–636. [Google Scholar]
- Husband, S.; Shimizu, T. Reversal learning after lesions in the presumptive nucleus accumbens in pigeons. Proc. Int. Conf. Comp. Cogn. 2003, 10, 25. [Google Scholar]
- Watanabe, S. Effects of wulst and ectostriatum lesions on repeated acquisition of spatial learning in pigeons. Cogn. Brain Res. 2003, 17, 286–292. [Google Scholar] [CrossRef]
- Cohn, J.; Paule, M.G. Repeated acquisition of response sequences: The analysis of behavior in transition. Neurosci. Biobehav. Rev. 1995, 19, 397–406. [Google Scholar] [CrossRef]
- Watanabe, S. Effects of lobus parolfactorius lesions on repeated acquisition of spatial discrimination in pigeons. Brain Behav. Evol. 2002, 58, 333–342. [Google Scholar] [CrossRef]
- Benowitz, L.I.; Karten, H.J. The tractus infundibulli and other afferents to the parahippocampal region of the pigeon. Brain Res. 1976, 102, 174–180. [Google Scholar] [CrossRef]
- Bingman, V.P.; Casini, G.; Nocjar, C.; Jones, T.-J. Connections of the piriform cortex in homing pigeons (Columba livia) studies with fast blue and WGA-HRP. Brain Behav. Evol. 1994, 43, 206–218. [Google Scholar] [CrossRef]
- Kahn, M.C.; Hough, G.E.; Ten Eyck, G.R.; Bingman, V.P. Internal connectivity of the homing pigeon (Columba livia) hippocampal formation: An anterograde and retrograde tracer study. J. Comp. Neurol. 2003, 459, 127–141. [Google Scholar] [CrossRef]
- Krebs, J.R.; Erichsen, J.T.; Bingman, V.P. The distribution of neurotransmitters and neurotransmitter-related enzymes in the dorsomedial telencephalon of the pigeon (Columba livia). J. Comp. Neurol. 1991, 314, 467–477. [Google Scholar] [CrossRef]
- Good, M.; Macphail, E.M. The avian hippocampus and short-term memory for spatial and non-spatial information. Q. J. Exp. Psychol. B 1994, 47, 293–317. [Google Scholar]
- Hampton, R.; Shettleworth, S. Hippocampal lesions impair memory for location but not color in passerine birds. Behav. Neurosci. 1996, 110, 831–835. [Google Scholar] [CrossRef]
- Colombo, M.; Broadbent, N.J.; Taylor, C.S.R.; Frost, N. The role of the avian hippocampus in orientation in space and time. Brain Res. 2001, 919, 292–301. [Google Scholar] [CrossRef]
- Colombo, M.; Broadbent, N.J. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci. Biobehav. Rev. 2000, 24, 465–484. [Google Scholar] [CrossRef]
- Kahn, M.C.; Bingman, V.P. Avian hippocampal role in space and content memory. Eur. J. Neurosci. 2009, 30, 1900–1908. [Google Scholar] [CrossRef]
- Johnston, M.; Scarf, D.; Wilson, A.; Millar, J.; Bartonicek, A.; Colombo, M. The effects of hippocampal and area parahippocampalis lesions on the processing and retention of serial-order behavior, autoshaping, and spatial behavior in pigeons. Hippocampus 2021, 31, 261–280. [Google Scholar] [CrossRef]
- Damphousse, C.C.; Miller, N.; Marrone, D.F. Dissociation of spatial and object memory in the hippocampal formation of Japanese quail. iScience 2022, 25, 103805. [Google Scholar] [CrossRef]
- Griffin, K.R.; Beardsworth, C.E.; Laker, P.R.; van Horik, J.O.; Whiteside, M.A.; Madden, J.R. The inhibitory control of pheasants (Phasianus colchicus) weakens when previously learned environmental information becomes unpredictable. Anim. Cogn. 2019, 23, 189–202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duque, J.F.; Stevens, J.R. Cylinder Task; Springer: New York, NY, USA, 2017. [Google Scholar]
- Isaksson, E.; Utku Urhan, A.; Brodin, A. High level of self-control ability in a small passerine bird. Behav. Ecol. Sociobiol. 2018, 72, 118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Troisi, C.A.; Cooke, A.C.; Davidson, G.L.; de la Hera, I.; Reichert, M.S.; Quinn, J.L. No evidence for cross-contextual consistency in spatial cognition or behavioral flexibility in a passerine. Anim. Behav. Cogn. 2021, 8, 446–461. [Google Scholar] [CrossRef]
- Boogert, N.J.; Anderson, R.C.; Peters, S.; Searcy, W.A.; Nowicki, S. Song repertoire size in male song sparrows correlates with detour reaching, but not with other cognitive measures. Anim. Behav. 2011, 81, 1209–1216. [Google Scholar] [CrossRef]
- Vernouillet, A.; Anderson, J.; Clary, D.; Kelly, D.M. Inhibition in Clark’s nutcrackers (Nucifraga columbiana): Results of a detour-reaching test. Anim. Cogn. 2016, 19, 661–665. [Google Scholar] [CrossRef]
- Verbruggen, F.; McAndrew, A.; Weidemann, G.; Stevens, T.; McLaren, I.P. Limits of executive control: Sequential effects in predictable environments. Psychol. Sci. 2016, 27, 748–757. [Google Scholar] [CrossRef] [Green Version]
- Beran, M.J. The comparative science of ‘self-control’: What are we talking about? Front. Psychol. 2015, 6, 51. [Google Scholar] [CrossRef] [Green Version]
- Audet, J.-N.; Lefebvre, L. What’s flexible in behavioral flexibility? Behav. Ecol. 2017, 28, 943–947. [Google Scholar] [CrossRef]
- Meier, C.; Pant, S.R.; van Horik, J.O.; Laker, P.R.; Langley, E.; Whiteside, M.A.; Verbruggen, F.; Madden, J.R. A novel continuous inhibitory-control task: Variation in individual performance by young pheasants (Phasianus colchicus). Anim. Cogn. 2017, 20, 1035–1047. [Google Scholar] [CrossRef]
- Anderson, M.C.; Levy, B. Suppressing unwanted memories. Curr. Dir. Psychol. Sci. 2009, 18, 189–194. [Google Scholar] [CrossRef]
- Bobrowicz, K.; O’Hara, M.; Carminito, C.; Auersperg, A.; Osvath, M. Goffin’s Cockatoos (Cacatua goffiniana) can solve a novel problem after conflicting past experiences. Front. Psychol. 2021, 12, 694719. [Google Scholar] [CrossRef]
- Engelhardt, P.E.; Nigg, J.T.; Carr, L.A.; Ferreira, F. Cognitive inhibition and working memory in attentiondeficit/hyperactivity disorder. J. Abnorm. Psychol. 2008, 117, 591–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Friedman, N.P.; Miyake, A. The relations among inhibition and interference control functions: A latentvariable analysis. J. Exp. Psychol. Gen. 2004, 133, 101–135. [Google Scholar] [CrossRef] [Green Version]
- Diamond, A.; Lee, K. Interventions and programs demonstrated to aid executive function development in children 4–12 years of age. Science 2011, 333, 959–964. [Google Scholar] [CrossRef] [Green Version]
- Duckworth, A.L.; Kern, M.L. A meta-analysis of the convergent validity of self-control measures. J. Res. Personal. 2011, 45, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Muraven, M.; Baumeister, R.F. Self-regulation and depletion of limited resources: Does self-control resemble a muscle? Psychol. Bull. 2000, 126, 247–259. [Google Scholar] [CrossRef]
- Meier, C.; Lea, S.E.G.; McLaren, I.P.L. Pigeons in control of their actions: Learning and Performance in stop-signal and change-signal tasks. J. Exp. Psychol. Anim. Learn. Cogn. 2018, 33, 82–94. [Google Scholar] [CrossRef]
- Lea, S.E.G.; Chow, P.K.Y.; Meier, C.; McLaren, I.P.L.; Verbruggen, F. Pigeons’ performance in a tracking change-signal procedure is consistent with the independent horse-race model. J. Exp. Psychol. Anim. Learn. Cogn. 2009, 45, 464–473. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Li, B.; Lages, M.; Stoet, G. Commentary: Task-switching in pigeons: Associative learning or executive control? Front. Psychol. 2017, 8, 1420. [Google Scholar] [CrossRef] [Green Version]
- Miller, D.B.; Tallarico, R.B. On the correlation of brain size and problem-solving behavior of ring doves and pigeons. Brain Behav. Evol. 1974, 10, 265–273. [Google Scholar] [CrossRef]
- Kabadayi, C.; Jacobs, I.; Osvath, M. The development of motor self-regulation in ravens. Front. Psychology. 2017, 8, 2100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stow, M.K.; Vernouillet, A.; Kelly, D.M. Neophobia does not account for motoric self-regulation performance as measured during the detour-reaching cylinder task. Anim. Cogn. 2018, 21, 565–574. [Google Scholar] [CrossRef]
- Morales Picard, A. Relationship Quality and Cognition in Orange-Winged Amazons (Amazona amazonica) and Blue and Gold Macaws (Ara ararauna). Ph.D. Thesis, University of York, York, UK, 2016. [Google Scholar]
- Shaw, R.C. Testing cognition in the wild: Factors affecting performance and individual consistency in two measures of avian cognition. Behav. Process. 2017, 134, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Piaget, J. The Construction of Reality in the Child; Basic Books: New York, NY, USA, 1954. [Google Scholar]
- Bond, A.B.; Kamil, A.C.; Balda, R.P. Serial reversal learning and the evolution of behavioral flexibility in three species of North American corvids (Gymnorhinus cyanocephalus, Nucifraga columbiana, Aphelocoma californica). J. Comp. Psychol. 2007, 121, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Gossette, R.L. Examination of retention decrement explanation of comparative successive discrimination reversal learning by birds and mammals. Percept. Mot. Skills 1968, 27, 1147–1152. [Google Scholar] [CrossRef]
- Diekamp, B.; Kalt, T.; Güntürkün, O. Working memory neurons in pigeons. J. Neurosci. 2002, 22, RC210. [Google Scholar] [CrossRef]
- Verbruggen, F.; Logan, G.D. Automatic and controlled response inhibition: Associative learning in the go/no-go and stop-signal paradigms. J. Exp. Psychol. Gen. 2008, 137, 649–672. [Google Scholar] [CrossRef] [Green Version]
- Boecker, M.; Gauggel, S.; Drueke, B. Stop or stop-change—Does it make any difference for the inhibition process? Int. J. Psychophysiol. 2013, 87, 234–243. [Google Scholar] [CrossRef]
- Kalt, T.; Diekamp, B.; Güntürkün, O. Single unit activity during a go/nogo task in the “prefrontal cortex” of the pigeon. Brain Res. 1999, 839, 263–278. [Google Scholar] [CrossRef]
- Vick, S.J.; Bovet, D.; Anderson, J.R. How do African Grey parrots (Psittacus erithacus) perform on a delay of gratification task? Anim. Cogn. 2010, 13, 351–358. [Google Scholar] [CrossRef]
- Hillemann, F.; Bugnyar, T.; Kotrschal, K.; Wascher, C.A.F. Waiting for better, not for more: Corvids respond to quality in two delay maintenance tasks. Anim. Behav. 2014, 90, 1–10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abeyesinghe, S.M.; Nicol, C.J.; Hartnell, S.J.; Wathes, C.M. Can domestic fowl, Gallus gallus domesticus, show self-control. Anim. Behav. 2005, 70, 1–11. [Google Scholar] [CrossRef]
- Grosch, J.; Neuringer, A. Self-control in pigeons under the Mischel paradigm. J. Exp. Anal. Behav. 1981, 35, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Logue, A.W.; Chavarro, A.; Rachlin, H.; Reeder, R.W. Impulsiveness in pigeons living in the experimental chamber. Anim. Learn. Behav. 1988, 16, 31–39. [Google Scholar] [CrossRef]
- Clayton, N.S.; Dally, J.; Gilbert, J.; Dickinson, A. Food caching by western scrub-jays (Aphelocoma californica) is sensitive to the conditions at recovery. J. Exp. Psychol. Anim. Behav. Process. 2005, 31, 115–124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thom, J.M.; Clayton, N.S. No evidence of temporal preferences in caching by Western scrub-jays (Aphelocoma californica). Behav. Proc. 2014, 103, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Dufour, V.; Wascher, C.A.F.; Braun, A.; Miller, R.; Bugnyar, T. Corvids can decide if a future exchange is worth waiting for. Biol. Lett. 2012, 8, 201–204. [Google Scholar] [CrossRef]
- Koepke, A.E.; Gray, S.L.; Pepperberg, I.M. Delayed gratification: A grey parrot (Psittacus erithacus) will wait for a better reward. J. Comp. Psychol. 2015, 129, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Auersperg, A.M.; Laumer, I.; Bugnyar, T. Goffin cockatoos wait for qualitative and quantitative gains but prefer ‘better’ to ‘more’. Biol. Lett. 2013, 9, 20121092. [Google Scholar] [CrossRef] [Green Version]
- Pepperberg, I.M.; Rosenberger, V.A. Delayed gratification: A grey parrot (Psittacus erithacus) will wait for more tokens. J. Comp. Psychol. 2022, 136, 79–89. [Google Scholar] [CrossRef]
- Ainslie, G.W. Impulse control in pigeons. J. Exp. Anal. Behav. 1974, 21, 485–489. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwing, R.; Weber, S.; Bugnyar, T. Kea (Nestor notabilis) decide early when to wait in food exchange task. J. Comp. Psychol. 2017, 131, 269–276. [Google Scholar] [CrossRef] [PubMed]
- Cibulski, L.; Wascher, C.A.F.; Weiß, B.M.; Kotrschal, K. Familiarity with the experimenter influences the performance of common ravens (Corvus corax) and carrion crows (Corvus corone corone) in cognitive tasks. Behav. Process. 2014, 103, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Amita, H.; Kawamori, A.; Matsushima, T. Social influences of competition on impulsive choices in domestic chicks. Biol. Lett. 2010, 6, 183–186. [Google Scholar] [CrossRef]
- Stephens, D.W.; Anderson, D. The adaptive value of preference for immediacy: When shortsighted rules have farsighted consequences. Behav. Ecol. 2001, 12, 330–339. [Google Scholar] [CrossRef]
- Stephens, D.W.; Dunlap, A.S. Why do animals make better choices in patch-leaving problems? Behav. Process. 2009, 80, 252–260. [Google Scholar] [CrossRef]
- Stevens, J.R.; Kennedy, B.A.; Morales, D.; Burks, M. The domain specificity of intertemporal choice in pinyon jays. Psychon. Bull. Rev. 2016, 23, 915–921. [Google Scholar] [CrossRef] [Green Version]
- Baddeley, A.D.; Hitch, G. Working Memory. In The Psychology of Learning and Motivation: Advances in Research and Theory; Bower, G.H., Ed.; Academic Press: New York, NY, USA, 1974; pp. 47–89. [Google Scholar]
- Smith, E.E.; Jonides, J. Storage and executive processes in the frontal lobes. Science 1999, 283, 1657–1661. [Google Scholar] [CrossRef] [Green Version]
- Honig, W.K. Studies of Working Memory in the Pigeon. In Cognitive Processes in Animal Cognition; Hulse, S.H., Fowler, H., Honig, W.K., Eds.; Lawrence Erlbaum Associates, Inc.: New Jersey, NJ, USA, 1978; pp. 211–248. [Google Scholar]
- Veit, L.; Nieder, A. Abstract rule neurons in the endbrain support intelligent behaviour in corvid songbirds. Nat. Commun. 2013, 4, 2878. [Google Scholar] [CrossRef]
- Veit, L.; Hartmann, K.; Nieder, A. Neuronal correlates of visual working memory in the corvid endbrain. J. Neurosci. 2014, 34, 7778–7786. [Google Scholar] [CrossRef]
- Ditz, H.M.; Nieder, A. Neurons selective to the number of visual items in the corvid songbird endbrain. Proc. Natl. Acad. Sci. USA 2015, 112, 7827–7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hahn, L.A.; Rose, J. Working memory as an indicator for comparative cognition—Detecting qualitative and quantitative differences. Front. Psychol. 2020, 11, 1954. [Google Scholar] [CrossRef] [PubMed]
- Bobrowicz, K.; Osvath, M. Social context hinders humans but not ravens in a short-term memory task. Ethology 2020, 126, 125–139. [Google Scholar] [CrossRef] [Green Version]
- Scheid, C.; Bugnyar, T. Short-term observational spatial memory in Jackdaws (Corvus monedula) and Ravens (Corvus corax). Anim. Cogn. 2008, 11, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Becker, J.T.; Morris, R.G. Working memory(s). Brain Cogn. 1999, 41, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, A.A.; Elmore, L.C. Pigeon visual short-term memory directly compared to primates. Behav. Process. 2016, 123, 84–89. [Google Scholar] [CrossRef]
- Güntürkün, O.; Ströckens, F.; Scarf, D.; Colombo, M. Apes, feathered apes, and pigeons: Differences and similarities. Curr. Opin. Behav. Sci. 2017, 16, 35–40. [Google Scholar] [CrossRef]
- Terrace, H.S. Chunking by a pigeon in a serial learning task. Nature 1987, 325, 149–151. [Google Scholar] [CrossRef]
- Terrace, H. Chunking during serial learning by a pigeon: I. Basic evidence. J. Exp. Psychol. 1991, 17, 81–93. [Google Scholar] [CrossRef]
- Conway, A.R.A.; Engle, R.W. Working memory and retrieval: A resource-dependent inhibition model. J. Exp. Psychol. Gen. 1994, 123, 354–373. [Google Scholar] [CrossRef]
- Wass, C.; Pizzo, A.; Sauce, B.; Kawasumi, Y.; Sturzoiu, T.; Ree, F.; Matzel, L.D. Dopamine D1 sensitivity in the prefrontal cortex predicts general cognitive abilities and is modulated by working memory training. Learn. Mem. 2013, 20, 617–627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santiago, H.C.; Wright, A.A. Pigeon memory: Same/different concept learning, serial probe recognition acquisition, and probe delay effects on the serial position function. J. Exp. Psychol. Anim. Behav. Process. 1984, 10, 498–512. [Google Scholar] [CrossRef] [PubMed]
- Crystal, J.D.; Shettleworth, S.J. Spatial list learning in black-capped chickadees. Anim. Learn. Behav. 1994, 22, 77–83. [Google Scholar] [CrossRef]
- Comins, J.A.; Gentner, T.Q. Working memory for patterned sequences of auditory objects in a songbird. Cognition 2010, 117, 38–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lewis, J.L.; Kamil, A.C. Interference effects in the memory for serially presented locations in Clark’s nutcrackers, Nucifraga columbiana. J. Exp. Psychol. Anim. Behav. Process. 2006, 32, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.A.; Santiago, H.C.; Sands, S.F.; Kendrick, D.F.; Cook, R.G. Memory processing of serial lists by pigeons, monkeys, and people. Science 1985, 229, 287–289. [Google Scholar] [CrossRef]
- Maki, W.S. Pigeons’ short-term memories for surprising vs. expected reinforcement. Anim. Learn. Behav. 1979, 7, 31–37. [Google Scholar] [CrossRef] [Green Version]
- Tulving, E.; Markowitsch, H.J.; Craik, F.I.; Habib, R.; Houle, S. Novelty and familiarity activations in PET studies of memory encoding and retrieval. Cereb. Cortex 1996, 6, 71–79. [Google Scholar] [CrossRef] [Green Version]
- Habib, R.; McIntosh, A.R.; Wheeler, M.A.; Tulving, E. Memory encoding and hippocampally-based novelty/familiarity discrimination networks. Neuropsychologia 2003, 41, 271–279. [Google Scholar] [CrossRef]
- Grant, D.S.; Roberts, W.A. Sources of retroactive inhibition in pigeon short-term memory. J. Exp. Psychol. Anim. Behav. Process. 1976, 2, 1–16. [Google Scholar] [CrossRef]
- Roberts, W.A.; Grant, D.S. Studies of Short Term Memory in the Pigeon Using the Delayed Matching-to-Sample Procedure. In Processes of Animal Memory; Medin, D.L., Roberts, W.A., Davis, R.T., Eds.; Erlbaum: Hillsdale, NJ, USA, 1976; pp. 79–112. [Google Scholar]
- Roberts, W.A.; Grant, D.S. An analysis of light-induced retroactive inhibition in pigeon short-term memory. J. Exp. Psychol. Anim. Behav. Proc. 1978, 4, 219–236. [Google Scholar] [CrossRef]
- Mogensen, J.; Divac, I. Behavioural effects of ablation of the pigeon-equivalent of the mammalian prefrontal cortex. Behav. Brain Res. 1993, 55, 101–107. [Google Scholar] [CrossRef]
- Honig, W.K.; James, P.H.R. Animal Memory; Academic Press: San Diego, CA, USA, 1971. [Google Scholar]
- Roberts, W.A.; Van Veldhuizen, N. Spatial memory in pigeons on the radial maze. J. Exp. Psychol. Anim. Behav. Process. 1985, 11, 241–260. [Google Scholar] [CrossRef]
- Bond, A.B.; Cook, R.G.; Lamb, M.R. Spatial memory and the performance of rats and pigeons in the radial-arm maze. Anim. Learn. Behav. 1981, 9, 575–580. [Google Scholar] [CrossRef] [Green Version]
- Spetch, M.L.; Edwards, C.A. Spatial memory in pigeons in an open-field feeding environment. J. Comp. Psychol. 1986, 100, 266–278. [Google Scholar] [CrossRef]
- Prior, H.; Güntürkün, O. Parallel working memory for spatial location and food-related object cues in foraging pigeons: Binocular and lateralized monocular performance. Learn. Mem. 2001, 8, 44–51. [Google Scholar] [CrossRef] [Green Version]
- Kamil, A.C.; Balda, R.P.; Olson, D.J. Performance of four seed-caching corvid species in the radial-arm maze analog. J. Comp. Psychol. 1994, 108, 385–393. [Google Scholar] [CrossRef] [Green Version]
- Balda, R.P.; Kamil, A.C.; Bednekoff, P.A.; Hile, A.G. Species differences in spatial memory performance on a three-dimensional task. Ethology 1997, 103, 47–55. [Google Scholar] [CrossRef]
- Balda, R.P.; Kamil, A.C. The spatial memory of Clark’s nutcrackers (Nucifraga columbiana) in an analogue of the radial arm maze. Anim. Learn. Behav. 1988, 16, 116–122. [Google Scholar]
- Hilton, S.C.; Krebs, J.R. Spatial memory of four species of Parus: Performance in an open-field analogue of a radial maze. Q. J. Exp. Psychol. B 1991, 42B, 345–368. [Google Scholar]
- Sulikowski, D.; Burke, D. Food-specific spatial memory biases in an omnivorous bird. Biol. Lett. 2007, 3, 245–248. [Google Scholar] [CrossRef] [PubMed]
- Sulikowski, D.; Burke, D. Win-shift and win-stay learning in the rainbow lorikeet (Trichoglossus haemotodus). J. Comp. Psychol. 2011, 125, 143–149. [Google Scholar] [CrossRef] [PubMed]
- Sulikowski, D.; Burke, D. Win shifting in nectarivorous birds: Selective inhibition of the learned win-stay response. Anim. Behav. 2012, 83, 519–524. [Google Scholar] [CrossRef]
- Kamil, A.C.; Jones, T.B.; Pietrewicz, A.; Mauldin, J.E. Positive transfer from successive reversal training to learning set in blue jays (Cyanocitta cristata). J. Comp. Physiol. Psychol. 1977, 91, 79–86. [Google Scholar] [CrossRef]
- Vallortigara, G.; Reglon, L.; Rigoni, M.; Zanforlin, M. Delayed search for a concealed imprinted object in the domestic chick. Anim. Cogn. 1998, 1, 17–24. [Google Scholar] [CrossRef]
- Regolin, L.; Rugani, R.; Pagni, P.; Vallortigara, G. Delayed search for a social and a non-social goal object by the young domestic chick (Gallus gallus). Anim. Behav. 2005, 70, 855–864. [Google Scholar] [CrossRef]
- Regolin, L.; Vallortigara, G.; Zanforlin, M. Object and spatial representations in detour problems by chicks. Anim. Behav. 1995, 49, 195–199. [Google Scholar] [CrossRef]
- Zucca, P.; Antonelli, F.; Vallortigara, G. Detour behaviour in three species of birds: Quails (Coturnix sp.), herring gulls (Larus cachinnans) and canaries (Serinus canaria). Anim. Cogn. 2005, 8, 122–128. [Google Scholar] [CrossRef]
- Kalenscher, T.; Güntürkün, O.; Calabrese, P.; Gehlen, W.; Kalt, T.; Diekamp, B. Neural correlates of a default response in a delayed go/no-go task. J. Exp. Anal. Behav. 2005, 84, 521–535. [Google Scholar] [CrossRef] [Green Version]
- Zentall, T.R.; Urcuioli, P.J.; Jagielo, J.A.; Jackson-Smith, P. Interaction of sample dimension and sample comparison mapping on pigeons’ performance of delayed conditional discriminations. Anim. Learn. Behav. 1989, 17, 172–178. [Google Scholar] [CrossRef] [Green Version]
- Grant, D.S. Symmetrical and asymmetrical coding of food and no-food samples in delayed matching in pigeons. J. Exp. Psychol. Anim. Behav. Process. 1991, 17, 186–193. [Google Scholar] [CrossRef]
- Sherburne, L.M.; Zentall, T.R. Coding of feature and no-feature events by pigeons performing a delayed conditional discrimination. Anim. Learn. Behav. 1993, 21, 92–100. [Google Scholar] [CrossRef]
- Milmine, M.; Watanabe, A.; Colombo, M. Neural correlates of directed forgetting in the avian prefrontal cortex. Behav. Neurosci. 2008, 122, 199–209. [Google Scholar] [CrossRef] [Green Version]
- O’Hara, M.; Huber, L.; Gajdon, G.K. The advantage of objects over images in discrimination and reversal learning by kea, Nestor notabilis. Anim. Behav. 2015, 101, 51–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blough, D.S. Delayed matching in the pigeon. J. Exp. Anal. Behav. 1959, 2, 151–160. [Google Scholar] [CrossRef] [Green Version]
- Skov-Rackette, S.I.; Miller, N.Y.; Shettleworth, S.J. What-where-when memory in pigeons. J. Exp. Psychol. Anim. Behav. Proc. 2006, 32, 345–358. [Google Scholar] [CrossRef] [Green Version]
- Smith, L. Delayed discrimination and delayed matching in pigeons. J. Exp. Anal. Behav. 1967, 10, 529–533. [Google Scholar] [CrossRef] [Green Version]
- White, K.G. Characteristics of forgetting functions in delayed matching to sample. J. Exp. Anal. Behav. 1985, 44, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Roberts, W.A. Distribution of trials and intertrial retention in delayed matching to sample with pigeons. J. Exp. Psychol. Anim. Behav. Process. 1980, 6, 217–237. [Google Scholar] [CrossRef]
- Zentall, T.; Hogan, D.E.; Howard, M.M.; Moore, B.S. Delayed matching in the pigeon: Effect on performance of sample-specific observing responses and differential delay behavior. Learn. Motiv. 1978, 9, 202–218. [Google Scholar] [CrossRef]
- Zentall, T.R.; Smith, A.P. Delayed matching-to-sample: A tool to assess memory and other cognitive processes in pigeons. Behav. Process. 2016, 123, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Roberts, W.A.; Strang, C.; Macpherson, K. Memory systems interaction in the pigeon: Working and reference memory. J. Exp. Psychol. Anim. Learn. Cogn. 2015, 41, 152–162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colombo, M.; Swain, N.; Harper, D.; Alsop, B. The effects of hippocampal and area parahippocampalis lesions in pigeons: I. Delayed matching to sample. Q. J. Exp. Psychol. B Comp. Physiol. Psychol. 1997, 50, 149–171. [Google Scholar]
- Browning, R.; Overmier, J.B.; Colombo, M. Delay activity in avian prefrontal cortex—Sample code or reward code? Eur. J. Neurosci. 2011, 33, 726–735. [Google Scholar] [CrossRef]
- Johnston, M.; Anderson, C.; Colombo, M. Neural correlates of sample-coding and reward-coding in the delay activity of neurons in the entopallium and nidopallium caudolaterale of pigeons (Columba livia). Behav. Brain Res. 2017, 317, 382–392. [Google Scholar] [CrossRef]
- Nakagawa, S.; Etheredge, R.J.; Foster, T.M.; Sumpter, C.E.; Temple, W. The effects of changes in consequences on hens performance’ in delayed-matching-to-sample tasks. Behav. Proc. 2004, 67, 441–451. [Google Scholar] [CrossRef]
- Brodbeck, D.R.; Shettleworth, S.J. Matching location and color of a compound stimulus: Comparison of a food-storing and a nonstoring bird species. J. Exp. Psychol. Anim. Behav. Proc. 1995, 21, 64–77. [Google Scholar] [CrossRef]
- Hampton, R.R.; Shettleworth, S.J.; Westwood, R.P. Proactive interference, recency, and associative strength: Comparisons of black-capped chickadees and dark-eyed juncos. Anim. Learn. Behav. 1998, 26, 475–485. [Google Scholar] [CrossRef]
- Ducatez, S.; Audet, J.N.; Lefebvre, L. Problem-solving and learning in Carib grackles: Individuals show a consistent speed–accuracy trade-off. Anim. Cogn. 2015, 18, 485–496. [Google Scholar] [CrossRef]
- Hartmann, K.; Veit, L.; Nieder, A. Neurons in the crow nidopallium caudolaterale encode varying durations of visual working memory periods. Exp. Brain Res. 2017, 30, 215–226. [Google Scholar] [CrossRef]
- Olson, D.J. Species differences in spatial memory among Clark’s nutcrackers, scrub jays, and pigeons. J. Exp. Psychol. Anim. Behav. Process. 1991, 17, 363–376. [Google Scholar] [CrossRef] [PubMed]
- Johnston, M.; Anderson, C.; Colombo, M. Pigeon NCL and NFL neuronal activity represents neural correlates of the sample. Behav. Neurosci. 2017, 131, 213–219. [Google Scholar] [CrossRef] [PubMed]
- Riters, L.V.; Bingman, V.P. The effects of lesions to the caudolateral neostriatum on sun compass based spatial learning in homing pigeons. Behav. Brain. Res. 1999, 98, 1–15. [Google Scholar] [CrossRef]
- Johnston, M.; Porter, B.; Colombo, M. Delay activity in pigeon nidopallium caudolaterale during a variable-delay memory task. Behav. Neurosci. 2019, 133, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Olson, D.J.; Kamil, A.C.; Balda, R.P.; Nims, P.J. Performance of four-seed caching corvid species in operant tests of nonspatial and spatial memory. J. Comp. Psychol. 1995, 109, 173. [Google Scholar] [CrossRef]
- Zokoll, M.A.; Klump, G.M.; Langemann, U. Auditory short-term memory persistence for tonal signals in a songbird. J. Acoust. Soc. Am. Index. 2007, 121, 2842–2851. [Google Scholar] [CrossRef]
- Zokoll, M.A.; Naue, N.; Herrmann, C.S.; Langemann, U. Auditory memory: A comparison between humans and starlings. Brain Res. 2008, 1220, 33–46. [Google Scholar] [CrossRef]
- Straub, R.O.; Terrace, H.S. Generalization of serial learning in the pigeon. Anim. Learn. Behav. 1981, 9, 454–468. [Google Scholar] [CrossRef] [Green Version]
- Griffin, A.S.; Guez, D.; Lermite, F.; Patience, M. Tracking changing environments: Innovators are fast, but not flexible learners. PLoS ONE 2013, 8, e84907. [Google Scholar] [CrossRef]
- Jelbert, S.A.; Taylor, A.H.; Gray, R.D. Does absolute brain size really predict self-control? Hand-tracking training improves performance on the A-not-B task. Biol. Lett. 2016, 12, 20150871. [Google Scholar] [CrossRef]
- Shaw, R.C.; Boogert, N.J.; Clayton, N.S.; Burns, K.C. Wild psychometrics: Evidence for ‘general’ cognitive performance in wild New Zealand robins. Petroica longipes. Anim. Behav. 2015, 109, 101–111. [Google Scholar] [CrossRef] [Green Version]
- Audet, J.N.; Ducatez, S.; Lefebvre, L. The town bird and the country bird: Problem solving and immunocompetence vary with urbanization. Behav. Ecol. 2016, 27, 637–644. [Google Scholar] [CrossRef]
- Boogert, N.J.; Monceau, K.; Lefebvre, L. A field test of behavioural flexibility in Zenaida doves (Zenaida aurita). Behav. Process. 2010, 85, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Anderson, R.C.; Searcy, W.A.; Peters, S.; Hughes, M.; DuBois, A.L.; Nowicki, S. Song learning and cognitive ability are not consistently related in a songbird. Anim. Cogn. 2017, 20, 309–320. [Google Scholar] [CrossRef]
- Tebbich, S.; Sterelny, K.; Teschke, I. The tale of the finch: Adaptive radiation and behavioural flexibility. Phil. Trans. Royal Soc. B Biol. Sci. 2010, 365, 1099–1109. [Google Scholar] [CrossRef]
- Tebbich, S.; Teschke, I. Coping with uncertainty: Woodpecker finches (Cactospiza pallida) from an unpredictable habitat are more flexible than birds from a stable habitat. PLoS ONE 2014, 9, e91718. [Google Scholar] [CrossRef] [Green Version]
- Isden, J.; Panayi, C.; Dingle, C.; Madden, J. Performance in cognitive and problem-solving tasks in male spotted bowerbirds does not correlate with mating success. Anim. Behav. 2013, 86, 829–838. [Google Scholar] [CrossRef]
- Croston, R.; Branch, C.L.; Pitera, A.M.; Kozlovsky, D.Y.; Bridge, E.S.; Parchman, T.L.; Pravosudov, V.V. Predictably harsh environment is associated with reduced cognitive flexibility in wild food-caching mountain chickadees. Anim. Behav. 2017, 123, 139–149. [Google Scholar] [CrossRef] [Green Version]
- Tello-Ramos, M.C.; Branch, C.L.; Pitera, A.M.; Kozlovsky, D.Y.; Bridge, E.S.; Pravosudov, V.V. Memory in wild mountain chickadees from different elevations: Comparing first-year birds with older survivors. Anim. Behav. 2018, 137, 149–160. [Google Scholar] [CrossRef]
- Ashton, B.J.; Ridley, A.R.; Edwards, E.K.; Thornton, A. Cognitive performance is linked to group size and affects fitness in Australian magpies. Nature 2018, 554, 364–367. [Google Scholar] [CrossRef]
- Range, F.; Bugnyar, T.; Schlögl, C.; Kotrschal, K. Individual and sex differences in learning abilities of ravens. Behav. Process. 2006, 73, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Range, F.; Bugnyar, T.; Kotrschal, K. The performance of ravens on simple discrimination tasks: A preliminary study. Acta Ethol. 2008, 11, 34–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Horik, J.O.; Emery, N.J. Serial reversal learning and cognitive flexibility in two species of Neotropical parrots (Diopsittaca nobilis and Pionites melanocephala). Behav. Process. 2018, 157, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Hile, A.G. Comparative tests of general intelligence between social and asocial North American seed-caching corvids. Diss. Abstr. Int. B Sci. Eng. 1999, 59, 3287. [Google Scholar]
- Lissek, S.; Diekamp, B.; Güntürkün, O. Impaired learning of a colour reversal task after NMDA receptor blockade in the pigeon (Columba livia) associative forebrain (Neostriatum Caudolaterale). Behav. Neurosci. 2002, 116, 523–529. [Google Scholar] [CrossRef]
- Logan, C.J. Behavioral flexibility and problem solving in an invasive bird. PeerJ 2016, 4, e1975. [Google Scholar] [CrossRef] [Green Version]
- Soha, J.A.; Peters, S.; Anderson, R.C.; Searcy, W.A.; Nowicki, S. Performance on tests of cognitive ability is not repeatable across years in a songbird. Anim. Behav. 2019, 158, 281–288. [Google Scholar] [CrossRef]
- Laschober, M.; Mundry, R.; Huber, L.; Schwing, R. Kea (Nestor notabilis) show flexibility and individuality in within-session reversal learning tasks. Anim. Cogn. 2021, 24, 1339–1351. [Google Scholar] [CrossRef]
- Lois-Milevicich, J.; Cerrutti, M.; Kacelnik, A.; Reboreda, J.C. Sex differences in learning flexibility in an avian brood parasite, the shiny cowbird. Behav. Proc. 2021, 189, 104438. [Google Scholar] [CrossRef]
- Morand-Ferron, J.; Reichert, M.S.; Quinn, J.L. Cognitive flexibility in the wild: Individual differences in reversal learning are explained primarily by proactive interference, not by sampling strategies, in two passerine bird species. Learn. Behav. 2022. [Google Scholar] [CrossRef]
- Ryding, S.; Garnham, L.C.; Abbey-Lee, R.N.; Petkova, I.; Kreshchenko, A.; Løvlie, H. Impulsivity is affected by cognitive enrichment and links to brain gene expression in red junglefowl chicks. Anim. Behav. 2021, 178, 195–207. [Google Scholar] [CrossRef]
- Castro, L.; Wasserman, E.A. Executive control and task switching in pigeons. Cognition 2016, 146, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S. Effects of hippocampal lesions on repeated acquisition of spatial discrimination in pigeons. Behav. Brain Res. 2001, 120, 59–66. [Google Scholar] [CrossRef]
- Darby, K.P.; Castro, L.; Wasserman, E.A.; Sloutsky, V.M. Cognitive flexibility and memory in pigeons, human children, and adults. Cognition 2018, 177, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S. Lesions in the basal ganglion and hippocampus on performance in a Wisconsin Card Sorting Test-like task in pigeons. Physiol. Behav. 2005, 85, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Cook, R.G.; Rosen, H.A. Temporal control of internal states in pigeons. Psychon. Bull. Rev. 2010, 17, 915–922. [Google Scholar] [CrossRef]
- Meier, C.; Lea, S.E.; McLaren, I.P. Task-switching in pigeons: Associative learning or executive control? J. Exp. Psychol. Anim. Learn. Cogn. 2016, 42, 163–176. [Google Scholar] [CrossRef] [Green Version]
- Vandierendonck, A.; Liefooghe, B.; Verbruggen, F. Task switching: Interplay of reconfiguration and interference control. Psychol. Bull 2010, 136, 601–626. [Google Scholar] [CrossRef]
- Avdagic, E.; Jensen, G.; Altschul, D.; Terrace, H.S. Rapid cognitive flexibility of rhesus macaques performing psychophysical task-switching. Anim. Cogn. 2014, 17, 619–631. [Google Scholar] [CrossRef] [Green Version]
- Stoet, G.; Snyder, L.H. Executive control and task-switching in monkeys. Neuropsychologia 2003, 41, 1357–1364. [Google Scholar] [CrossRef]
- Teschke, I.; Cartmill, E.A.; Stankewitz, S.; Tebbich, S. Sometimes tool use is not the key: No evidence for cognitive adaptive specializations in toolusing woodpecker finches. Anim. Behav. 2001, 82, 945–956. [Google Scholar] [CrossRef]
- Tebbich, S.; Stankewitz, S.; Teschke, I. The relationship between foraging, learning abilities and neophobia in two species of Darwin’s finches. Ethology 2012, 118, 135–146. [Google Scholar] [CrossRef]
- Völter, C.; Tinklenberg, B.; Call, J.; Seed, A.M. Comparative psychometrics: Establishing what differs is central to understanding what evolves. Phil. Trans. Royal Soc. B 2018, 373, 20170283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medina-García, A.; Wright, T.F. An integrative measure of cognitive performance, but not individual task performance, is linked to male reproductive output in budgerigars. Sci. Rep. 2021, 11, 11775. [Google Scholar] [CrossRef] [PubMed]
- Shaw, R.C.; Schmelz, M. Cognitive test batteries in animal cognition research: Evaluating the past, present and future of comparative psychometrics. Anim. Cogn. 2017, 20, 1003–1018. [Google Scholar] [CrossRef]
- Lambert, M.; Farrar, B.G.; Garcia-Pelegrin, E.; Reber, S.A.; Miller, R. ManyBirds: A multi-site collaborative open science approach to avian cognition and behaviour research. Anim. Behav. Cogn. 2022, 9, 133–152. [Google Scholar] [CrossRef]
- Kemp, M.E. Cognition and problem solving using detour reaching and novel object tasks in the Budgerigar. Distinct. P. 2016, 29. Available online: https://digitalcommons.otterbein.edu/stu_dist/29 (accessed on 15 September 2021).
- Regolin, L.; Vallortigara, G.; Zanforlin, M. Perceptual and motivational aspects of detour behaviour in young chicks. Anim. Behav. 1994, 47, 123–131. [Google Scholar] [CrossRef] [Green Version]
- Regolin, L.; Vallortigara, G.; Zanforlin, M. Detour behaviour in the domestic chick: Searching for a disappearing prey or a disappearing social partner. Anim. Behav. 1995, 50, 203–211. [Google Scholar] [CrossRef] [Green Version]
- Vallortigara, G.; Regolin, L. Facing an Obstacle: Lateralization of Object and Spatial Cognition. In Comparative Vertebrate Lateralization; Andrew, R.J., Rogers, L.J., Eds.; Cambridge University Press: Cambridge, UK, 2002; pp. 383–444. [Google Scholar]
- Vallortigara, G. The Cognitive Chicken: Visual and Spatial Cognition in a Non-Mammalian Brain. In Comparative Cognition: Experimental Explorations of Animal Intelligence; Wasserman, E.A., Zentall, T.R., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 41–58. [Google Scholar]
- Garnham, L.C.; Boddington, R.; Løvlie, H. Variation in inhibitory control does not influence social rank, foraging efficiency, or risk taking, in red junglefowl females. Anim. Cogn. 2022. [Google Scholar] [CrossRef]
- Green, L.; Myerson, J.; Holt, D.D.; Slevin, J.R.; Estle, S.J. Discounting of delayed food rewards in pigeons and rats: Is there a magnitude effect? J. Exp. Anal. Behav. 2004, 81, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meier, C.; Sepehri, P.; Kelly, D.M. Age affects pigeons’ (Columba livia) memory capacity but not representation of serial order during a locomotor sequential-learning task. Sci. Rep. 2021, 11, 17162. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Chen, L.; Yan, C.; Yu, Z.; Zou, Y.; Sun, Y.-H. Are cognition and personality related in budgerigars? Curr. Zool. 2021, 1–9. [Google Scholar] [CrossRef]
- Teschke, I.; Wascher, C.A.F.; Scriba, M.F.; von Bayern, A.M.P.; Huml, V.; Siemers, B.; Tebbich, S. Did tool-use evolve with enhanced physical cognitive abilities? Philos. Trans. R. Soc. B Biol. Sci. 2013, 368, 20120418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bobrowicz, K.; Greiff, S. Executive Functions in Birds. Birds 2022, 3, 184-220. https://doi.org/10.3390/birds3020013
Bobrowicz K, Greiff S. Executive Functions in Birds. Birds. 2022; 3(2):184-220. https://doi.org/10.3390/birds3020013
Chicago/Turabian StyleBobrowicz, Katarzyna, and Samuel Greiff. 2022. "Executive Functions in Birds" Birds 3, no. 2: 184-220. https://doi.org/10.3390/birds3020013
APA StyleBobrowicz, K., & Greiff, S. (2022). Executive Functions in Birds. Birds, 3(2), 184-220. https://doi.org/10.3390/birds3020013