Molecular and Cellular Responses to Ionization Radiation in Untransformed Fibroblasts from the Rothmund–Thomson Syndrome: Influence of the Nucleo-Shuttling of the ATM Protein Kinase
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Cell Lines
2.2. X-ray Irradiation
2.3. Zoledronate and Pravastatin Treatment (ZOPRA)
2.4. Clonogenic Cell Survival Assay
2.5. Immunofluorescence
2.6. Micronuclei Assay
2.7. Proximity Ligation Assay
2.8. Cell Extracts and Immunoblots
2.9. Statistical Analysis
3. Results
3.1. Cellular Radiosensitivity of RTS Fibroblasts
3.2. Abnormally High Levels of Micronuclei in RTS Fibroblasts
3.3. Abnormal Number of γH2AX Foci in RTS Fibroblasts after Irradiation
3.4. Abnormal Number of pATM Foci after Irradiation in RTS Fibroblasts
3.5. Abnormal Number of MRE11 Foci after Irradiation in RTS Fibroblasts
3.6. Subcellular Localization and Expression of the RECQL4 Protein in RTS Fibroblasts
3.7. Statin and Bisphosphonate Treatment Protects RTS Fibroblasts from Radiation
4. Discussion
4.1. RTS, a Rare Disease Associated with Moderate Radiosensitivity
4.2. The Radiosensitivity Associated with the RTS and the RIANS Model
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rothmund, A. Uber cataracten in Verbindung mit einer eigentumlichen Hautdegeneration. Arch. Klin. Ophthalmol. 1868, 14, 4159–4182. [Google Scholar]
- Thomson, M.S. Poikiloderma Congenitale. Br. J. Dermatol. 1936, 48, 4221–4234. [Google Scholar] [CrossRef]
- Taylor, W.B. Rothmund’s syndrome—Thomson’s syndrome. Arch. Dermatol. 1957, 75, 75236–75244. [Google Scholar] [CrossRef] [PubMed]
- Larizza, L.; Roversi, G.; Volpi, L. Rothmund-Thomson syndrome. Orphanet J. Rare Dis. 2010, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, L.L.; Levy, M.L.; Lewis, R.A.; Chintagumpala, M.M.; Lev, D.; Rogers, M.; Plon, S.E. Clinical manifestations in a cohort of 41 Rothmund-Thomson syndrome patients. Am. J. Med. Genet. 2001, 102, 11–17. [Google Scholar] [CrossRef]
- De Oliveira, K.M.; Silva, R.A.; Carvalho, F.K.; Silva, L.A.; Nelson-Filho, P.; Queiroz, A.M. Clinical findings, dental treatment, and improvement in quality of life for a child with Rothmund-Thomson syndrome. Contemp. Clin. Dent. 2016, 7, 240–242. [Google Scholar] [CrossRef]
- Miranda, A.F.; Rivera-Monge, M.D.; Farias, C.C. Rothmund-Thomson syndrome and ocular surface findings: Case reports and review of the literature. Arq. Bras. Oftalmol. 2016, 79, 186–188. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Jin, W.; Wang, L.L. Aging in Rothmund-Thomson syndrome and related RECQL4 genetic disorders. Ageing Res. Rev. 2017, 33, 30–35. [Google Scholar] [CrossRef]
- Hussain, M.; Krishnamurthy, S.; Patel, J.; Kim, E.; Baptiste, B.A.; Croteau, D.L.; Bohr, V.A. Skin Abnormalities in Disorders with DNA Repair Defects, Premature Aging, and Mitochondrial Dysfunction. J. Investig. Dermatol. 2021, 141 (Suppl. 4), 968–975. [Google Scholar] [CrossRef]
- Kitao, S.; Shimamoto, A.; Goto, M.; Miller, R.W.; Smithson, W.A.; Lindor, N.M.; Furuichi, Y. Mutations in RECQL4 cause a subset of cases of Rothmund-Thomson syndrome. Nat. Genet. 1999, 22, 82–84. [Google Scholar] [CrossRef]
- Xu, X.; Chang, C.W.; Li, M.; Liu, C.; Liu, Y. Molecular Mechanisms of the RECQ4 Pathogenic Mutations. Front. Mol. Biosci. 2021, 8, 791194. [Google Scholar] [CrossRef] [PubMed]
- Zirn, B.; Bernbeck, U.; Alt, K.; Oeffner, F.; Gerhardinger, A.; Has, C. Rothmund-Thomson syndrome type 1 caused by biallelic ANAPC1 gene mutations. Ski. Health Dis. 2021, 1, e122021. [Google Scholar] [CrossRef] [PubMed]
- Siitonen, H.A.; Kopra, O.; Kaariainen, H.; Haravuori, H.; Winter, R.M.; Saamanen, A.M.; Peltonen, L.; Kestila, M. Molecular defect of RAPADILINO syndrome expands the phenotype spectrum of RECQL diseases. Hum. Mol. Genet. 2003, 12, 2837–2844. [Google Scholar] [CrossRef] [Green Version]
- Van Maldergem, L.; Siitonen, H.A.; Jalkh, N.; Chouery, E.; De Roy, M.; Delague, V.; Muenke, M.; Jabs, E.W.; Cai, J.; Wang, L.L.; et al. Revisiting the craniosynostosis-radial ray hypoplasia association: Baller-Gerold syndrome caused by mutations in the RECQL4 gene. J. Med. Genet. 2006, 43, 148–152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brosh, R.M., Jr.; Bohr, V.A. Human premature aging, DNA repair and RecQ helicases. Nucleic Acids Res. 2007, 35, 7527–7544. [Google Scholar] [CrossRef] [Green Version]
- Mohaghegh, P.; Hickson, I.D. Premature aging in RecQ helicase-deficient human syndromes. Int. J. Biochem. Cell Biol. 2002, 34, 1496–1501. [Google Scholar] [CrossRef]
- Arora, H.; Chacon, A.H.; Choudhary, S.; McLeod, M.P.; Meshkov, L.; Nouri, K.; Izakovic, J. Bloom syndrome. Int. J. Derm. 2014, 53, 798–802. [Google Scholar] [CrossRef]
- Ozgenc, A.; Loeb, L.A. Werner Syndrome, aging and cancer. Genome Dyn. 2006, 1, 206–217. [Google Scholar]
- Kaneko, H.; Takemoto, M.; Murakami, H.; Ihara, K.; Kosaki, R.; Motegi, S.I.; Taniguchi, A.; Matsuo, M.; Yamazaki, N.; Nishigori, C.; et al. Rothmund-Thomson syndrome investigated by two nationwide surveys in Japan. Pediatr. Int. 2022, 64, e15120. [Google Scholar] [CrossRef]
- Mo, D.; Zhao, Y.; Balajee, A.S. Human RecQL4 helicase plays multifaceted roles in the genomic stability of normal and cancer cells. Cancer Lett. 2018, 413, 1–10. [Google Scholar] [CrossRef]
- Shamanna, R.A.; Singh, D.K.; Lu, H.; Mirey, G.; Keijzers, G.; Salles, B.; Croteau, D.L.; Bohr, V.A. RECQ helicase RECQL4 participates in non-homologous end joining and interacts with the Ku complex. Carcinogenesis 2014, 35, 2415–2424. [Google Scholar] [CrossRef] [Green Version]
- Lu, H.; Shamanna, R.A.; de Freitas, J.K.; Okur, M.; Khadka, P.; Kulikowicz, T.; Holland, P.P.; Tian, J.; Croteau, D.L.; Davis, A.J.; et al. Cell cycle-dependent phosphorylation regulates RECQL4 pathway choice and ubiquitination in DNA double-strand break repair. Nat. Commun. 2017, 8, 2039. [Google Scholar] [CrossRef]
- Lu, H.; Shamanna, R.A.; Keijzers, G.; Anand, R.; Rasmussen, L.J.; Cejka, P.; Croteau, D.L.; Bohr, V.A. RECQL4 Promotes DNA End Resection in Repair of DNA Double-Strand Breaks. Cell Rep. 2016, 16, 161–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Guan, J.; Wang, S.Y.; Li, G.M.; Bohr, V.A.; Davis, A.J. DNA-PKcs-dependent phosphorylation of RECQL4 promotes NHEJ by stabilizing the NHEJ machinery at DNA double-strand breaks. Nucleic Acids Res. 2022, 50, 5635–5651. [Google Scholar] [CrossRef]
- Foray, N.; Bourguignon, M.; Hamada, N. Individual response to ionizing radiation. Mutat. Res. Rev. 2016, 770, 369–386. [Google Scholar] [CrossRef] [PubMed]
- ASN. Arrêté du 8 février 2019 portant homologation de la décision n° 2019-DC-0660 de l’Autorité de sûreté nucléaire du 15 janvier 2019 fixant les obligations d’assurance de la qualité en imagerie médicale mettant en œuvre des rayonnements ionisants. JORF 2019. Available online: https://www.legifrance.gouv.fr/jorf/id/JORFTEXT000038121063 (accessed on 12 November 2022).
- Smith, P.J.; Paterson, M.C. Enhanced radiosensitivity and defective DNA repair in cultured fibroblasts derived from Rothmund Thomson syndrome patients. Mutat. Res. 1982, 94, 213–228. [Google Scholar] [CrossRef]
- Shinya, A.; Nishigori, C.; Moriwaki, S.; Takebe, H.; Kubota, M.; Ogino, A.; Imamura, S. A case of Rothmund-Thomson syndrome with reduced DNA repair capacity. Arch. Derm. 1993, 129, 332–336. [Google Scholar] [CrossRef]
- Varughese, M.; Leavey, P.; Smith, P.; Sneath, R.; Breatnach, F.; O’Meara, A. Osteogenic sarcoma and Rothmund Thomson syndrome. J. Cancer Res. Clin. Oncol. 1992, 118, 389–390. [Google Scholar] [CrossRef]
- Jin, W.; Liu, H.; Zhang, Y.; Otta, S.K.; Plon, S.E.; Wang, L.L. Sensitivity of RECQL4-deficient fibroblasts from Rothmund-Thomson syndrome patients to genotoxic agents. Hum. Genet. 2008, 123, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Kerr, B.; Ashcroft, G.S.; Scott, D.; Horan, M.A.; Ferguson, M.W.; Donnai, D. Rothmund-Thomson syndrome: Two case reports show heterogeneous cutaneous abnormalities, an association with genetically programmed ageing changes, and increased chromosomal radiosensitivity. J. Med. Genet. 1996, 33, 928–934. [Google Scholar] [CrossRef] [PubMed]
- Borg, M.F.; Olver, I.N.; Hill, M.P. Rothmund-Thomson syndrome and tolerance of chemoradiotherapy. Australas. Radiol. 1998, 42, 216–218. [Google Scholar] [CrossRef] [PubMed]
- Dahele, M.R.; Benton, E.C.; Hennessy, A.; MacDougall, R.H.; Price, A.; Mitchell, R.; Watson, J. A patient with Rothmund-Thomson syndrome and tongue cancer--experience of radiation toxicity. Clin. Oncol. R. Coll. Radiol. 2004, 16, 371–372. [Google Scholar] [CrossRef] [PubMed]
- Averbeck, D.; Candeias, S.; Chandna, S.; Foray, N.; Friedl, A.A.; Haghdoost, S.; Jeggo, P.A.; Lumniczky, K.; Paris, F.; Quintens, R.; et al. Establishing mechanisms affecting the individual response to ionizing radiation. Int. J. Radiat. Biol. 2020, 96, 297–323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; Bodgi, L.; Lartin, O.; Devic, C.; Vogin, G.; Pereira, S.; Foray, N. Mutations of the Huntington’s Disease Protein Impact on the ATM-Dependent Signaling and Repair Pathways of the Radiation-Induced DNA Double-Strand Breaks: Corrective Effect of Statins and Bisphosphonates. Mol. Neurobiol. 2014, 49, 1200–1211. [Google Scholar] [CrossRef]
- Ferlazzo, M.L.; Bach-Tobdji, M.K.E.; Djerad, A.; Sonzogni, L.; Burlet, S.F.; Devic, C.; Granzotto, A.; Bodgi, L.; Djeffal-Kerrar, A.; Foray, N. Radiobiological characterization of tuberous sclerosis: A delay in the nucleo-shuttling of ATM may be responsible for radiosensitivity. Mol. Neurobiol. 2017, 55, 4973–4983. [Google Scholar] [CrossRef]
- Combemale, P.; Sonzogni, L.; Devic, C.; Bencokova, Z.; Ferlazzo, M.L.; Granzotto, A.; Burlet, S.F.; Pinson, S.; Amini-Adle, M.; Al-Choboq, J.; et al. Individual response to radiation of individuals with neurofibromatosis type I: Role of the ATM protein and influence of statins and bisphosphonates. Mol. Neurobiol. 2021, 59, 556–573. [Google Scholar] [CrossRef] [PubMed]
- Ferlazzo, M.; Berthel, E.; Granzotto, A.; Devic, C.; Sonzogni, L.; Bachelet, J.T.; Pereira, S.; Bourguignon, M.; Sarasin, A.; Mezzina, M.; et al. Some mutations in the xeroderma pigmentosum D gene may lead to moderate but significant radiosensitivity associated with a delayed radiation-induced ATM nuclear localization. Int. J. Radiat. Biol. 2019, 96, 394–410. [Google Scholar] [CrossRef]
- Granzotto, A.; Benadjaoud, M.A.; Vogin, G.; Devic, C.; Ferlazzo, M.L.; Bodgi, L.; Pereira, S.; Sonzogni, L.; Forcheron, F.; Viau, M.; et al. Influence of Nucleoshuttling of the ATM Protein in the Healthy Tissues Response to Radiation Therapy: Toward a Molecular Classification of Human Radiosensitivity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 94, 450–460. [Google Scholar] [CrossRef]
- Belkacemi, Y.; Colson-Durand, L.; Granzotto, A.; Husheng, S.; To, N.H.; Majdoul, S.; Guet, S.; Herve, M.L.; Fonteneau, G.; Diana, C.; et al. The Henri Mondor Procedure of Morbidity and Mortality Review Meetings: Prospective Registration of Clinical, Dosimetric, and Individual Radiosensitivity Data of Patients with Severe Radiation Toxicity. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 629–636. [Google Scholar] [CrossRef]
- Pereira, S.; Bodgi, L.; Duclos, M.; Canet, A.; Ferlazzo, M.L.; Devic, C.; Granzotto, A.; Deneuve, S.; Vogin, G.; Foray, N. Fast and binary assay for predicting radiosensitivity based on the nucleoshuttling of ATM protein: Development, validation and performances. Int. J. Radiat. Oncol. Biol. Phys. 2018, 100, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Vogin, G.; Bastogne, T.; Bodgi, L.; Gillet-Daubin, J.; Canet, A.; Pereira, S.; Foray, N. The Phosphorylated ATM Immunofluorescence Assay: A High-performance Radiosensitivity Assay to Predict Postradiation Therapy Overreactions. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Berthel, E.; Foray, N.; Ferlazzo, M.L. The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation? Cancers 2019, 11, 905. [Google Scholar] [CrossRef] [PubMed]
- Bodgi, L.; Foray, N. The nucleo-shuttling of the ATM protein as a basis for a novel theory of radiation response: Resolution of the linear-quadratic model. Int. J. Radiat. Biol. 2016, 92, 117–131. [Google Scholar] [CrossRef] [PubMed]
- Le Reun, E.; Bodgi, L.; Granzotto, A.; Sonzogni, L.; Ferlazzo, M.L.; Al-Choboq, J.; El-Nachef, L.; Restier-Verlet, J.; Berthel, E.; Devic, C.; et al. Quantitative correlations between radiosensitivity biomarkers show that the ATM protein kinase is strongly involved in the radiotoxicities observed after radiotherapy. Int. J. Mol. Sci. 2022, 23, 10434. [Google Scholar] [CrossRef] [PubMed]
- Moulay Lakhdar, I.; Ferlazzo, M.L.; Al Choboq, J.; Berthel, E.; Sonzogni, L.; Devic, C.; Granzotto, A.; Thariat, J.; Foray, N. Fibroblasts from Retinoblastoma Patients Show Radiosensitivity Linked to Abnormal Localization of the ATM Protein. Curr. Eye Res. 2020, 46, 546–557. [Google Scholar] [CrossRef] [PubMed]
- Joubert, A.; Zimmerman, K.M.; Bencokova, Z.; Gastaldo, J.; Rénier, W.; Chavaudra, N.; Favaudon, V.; Arlett, C.; Foray, N. DNA double-strand break repair defects in syndromes associated with acute radiation response: At least two different assays to predict intrinsic radiosensitivity? Int. J. Radiat. Biol. 2008, 84, 107–125. [Google Scholar] [CrossRef]
- Al-Choboq, J.; Ferlazzo, M.L.; Sonzogni, L.; Granzotto, A.; El-Nachef, L.; Maalouf, M.; Berthel, E.; Foray, N. Usher Syndrome Belongs to the Genetic Diseases Associated with Radiosensitivity: Influence of the ATM Protein Kinase. Int. J. Mol. Sci. 2022, 23, 1570. [Google Scholar] [CrossRef]
- Bachelet, J.M.; Al-Choboq, J.; Granzotto, A.; Ferlazzo, M.L.; Sonzogni, L.; Berthel, E.; Devic, C.; Foray, N. Radiobiological characterization of skin fibroblasts from a young patient suffering from the Immunodeficiency Centromeric instability Facial anomalies type 1 (ICF1) syndrome. Arch. Med. Clin. Case Rep. 2022, in press. [Google Scholar]
- Bachelet, J.T.; Granzotto, A.; Ferlazzo, M.; Sonzogni, L.; Berthel, E.; Devic, C.; Foray, N. First Radiobiological Characterization of Skin and Bone Cells from A Patient Suffering from the PI3KCA-Related Overgrowth Spectrum (PROS) Syndrome. Arch. Med. Clin. Case Rep. 2020, 4, 1052–1066. [Google Scholar] [CrossRef]
- Bachelet, J.T.; Granzotto, A.; Ferlazzo, M.; Sonzogni, L.; Berthel, E.; Devic, C.; Foray, N. First radiobiological characterization of the McCune-Albright syndrome: Influence of the ATM protein and effect of statins + bisphosphonates treatment. Int. J. Radiat. Biol. 2021, 97, 317–328. [Google Scholar] [CrossRef]
- Foray, N.; Priestley, A.; Alsbeih, G.; Badie, C.; Capulas, E.P.; Arlett, C.F.; Malaise, E.P. Hypersensitivity of ataxia telangiectasia fibroblasts to ionizing radiation is associated with a repair deficiency of DNA double-strand breaks. Int. J. Radiat. Biol. 1997, 72, 271–283. [Google Scholar]
- Varela, I.; Pereira, S.; Ugalde, A.P.; Navarro, C.L.; Suarez, M.F.; Cau, P.; Cadinanos, J.; Osorio, F.G.; Foray, N.; Cobo, J.; et al. Combined treatment with statins and aminobisphosphonates extends longevity in a mouse model of human premature aging. Nat. Med. 2008, 14, 767–772. [Google Scholar] [CrossRef] [PubMed]
- Fertil, B.; Malaise, E.P. Inherent cellular radiosensitivity as a basic concept for human tumor radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1981, 7, 621–629. [Google Scholar] [CrossRef] [PubMed]
- Grote, S.J.; Joshi, G.P.; Revell, S.H.; Shaw, C.A. Observations of radiation-induced chromosome fragment loss in live mammalian cells in culture, and its effect on colony-forming ability. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med. 1981, 39, 395–408. [Google Scholar] [CrossRef]
- Fenech, M. The in vitro micronucleus technique. Mutat. Res. 2000, 455, 81–95. [Google Scholar] [CrossRef] [PubMed]
- Ristic, M.; Brockly, F.; Piechaczyk, M.; Bossis, G. Detection of Protein-Protein Interactions and Posttranslational Modifications Using the Proximity Ligation Assay: Application to the Study of the SUMO Pathway. Methods Mol. Biol. 2016, 1449, 279–290. [Google Scholar]
- Bodgi, L.; Granzotto, A.; Devic, C.; Vogin, G.; Lesne, A.; Bottollier-Depois, J.F.; Victor, J.M.; Maalouf, M.; Fares, G.; Foray, N. A single formula to describe radiation-induced protein relocalization: Towards a mathematical definition of individual radiosensitivity. J. Theor. Biol. 2013, 333, 135–145. [Google Scholar] [CrossRef]
- Deschavanne, P.J.; Fertil, B. A review of human cell radiosensitivity in vitro. Int. J. Radiat. Oncol. Biol. Phys. 1996, 34, 251–266. [Google Scholar] [CrossRef]
- El Nachef, L.; Berthel, E.; Ferlazzo, M.L.; Le Reun, E.; Al-Choboq, J.; Restier-Verlet, J.; Granzotto, A.; Sonzogni, L.; Bourguignon, M.; Foray, N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers 2022, 14, 6141. [Google Scholar] [CrossRef]
- Kim, S.T.; Lim, D.S.; Canman, C.E.; Kastan, M.B. Substrate specificities and identification of putative substrates of ATM kinase family members. J. Biol. Chem. 1999, 274(53), 37538–37543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, H.; Davis, A.J. Human RecQ Helicases in DNA Double-Strand Break Repair. Front. Cell Dev. Biol. 2021, 9, 640755. [Google Scholar] [CrossRef] [PubMed]
Syndrome | Gene Mutated | Protein | Clinical Features | References |
---|---|---|---|---|
Bloom | RECQL2/BLM | BLM helicase | Growth defect; Photosensitivity; Cancer predisposition | [17] |
Werner | RECQL3/WRN | WRN helicase | Growth defect; Loss of hair; Cataracts; Skin atrophy; diabetes mellitus; atherosclerosis | [18] |
Rothmund–Thomson | RECQL4 ANAPC1 | RECQL4 helicase ANAPC1 | Poikiloderma; Short stature Dental abnormalities; Cataracts Risk of osteosarcomas for RTS2 | [19] |
RAPADILINO | RECQL4 | RECQL4 helicase | RTS symptoms with Radial/Patellar hypoplasia; Cleft of Palate; Diarrhea; Dislocation joints; little size; Limb malformation; Slender Nose and Normal intelligence | [13] |
Baller-Gerold | RECQL4 | RECQL4 helicase | RTS symptoms with Craniosynostosis; Limb abnormality Thumb/radial hypoplasia | [14] |
RTS Cells/Donors | Techniques | Conclusions | Reference |
---|---|---|---|
4 fibroblasts cell lines | Cell survival DNA repair Repair replication | Significant radiosensitivity | [27] |
1 fibroblast cell line | Cell survival | Slight radiosensitivity | [28] |
1 fibroblast cell line | Colony formation | Enhanced Radiosensitivity But not toxicity to drugs | [29] |
6 fibroblast cell lines | Colony formation | 1.2 fold radiosensitivity | [30] |
2 lymphocytes | G2 assay | Chromosomal radiosensitivity | [31] |
1 patient | Clinical radiosensitivity after radiotherapy | [32] | |
1 patient | Clinical radiosensitivity after radiotherapy | [33] | |
3 fibroblast cell lines from RTS patients 2 fibroblast cell lines from RTS patients’ parents | Cell survival Micronuclei γH2AX, pATM, MRE11 foci ATM-RECQL4 complexes | Moderate radiosensitivity Delayed RIANS | This study |
Cell Lines | Origin | Syndrome | Genetic Features | Clinical Features |
---|---|---|---|---|
1BR3 | COPERNIC | Apparently healthy | Apparently healthy | Apparently healthy radioresistance |
MRC5 | COPERNIC | Apparently healthy | Apparently healthy | Apparently healthy radioresistance |
Hs27 | COPERNIC | Apparently healthy | Apparently healthy | Apparently healthy radioresistance |
AT4BI | COPERNIC | AT | ATM mutations | Hyper-radiosensitivity |
180BR | COPERNIC | LIG4 | LIG4 mutations | Hyper-radiosensitivity |
81CLB | COPERNIC | RTS | Compound heterozygous RTS mutation t1:c.1236G > A, g.7844del | Severe poikiloderma; small stature, dental and bone abnormalities and diagnosed with epidermoid carcinoma and osteosarcoma at 17 years; died at 18 |
AG17524 | Coriell Institute | RTS | Compound heterozygous RTS mutation g.2626(g.2626G > A) g.4644delAT | Skin rash at age 4 months; delayed tooth eruption; skin abnormalities; photosensitivity |
AG18371 | Coriell Institute | RTS | Homozygous RTS mutation g.2746(g.2746del11) g.2746(g.2746del11) | Diagnosed with osteosarcoma at age 11 years; died at 13; small stature; severe poikiloderma; sparse eyebrows and eyelashes |
AG18466 | Coriell Institute | RTS donor parent Clinically unaffected | Heterozygous RTS mutation g.4503(g.4503C > T) | Female; 32 y; Clinically unaffected |
AG18373 | Coriell Institute | RTS donor parent Clinically unaffected | Heterozygous RTS mutation g.2746(g.2746del11) | Female; 42 y; Mother of AG18371 donor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Choboq, J.; Nehal, M.; Sonzogni, L.; Granzotto, A.; El Nachef, L.; Restier-Verlet, J.; Maalouf, M.; Berthel, E.; Aral, B.; Corradini, N.; et al. Molecular and Cellular Responses to Ionization Radiation in Untransformed Fibroblasts from the Rothmund–Thomson Syndrome: Influence of the Nucleo-Shuttling of the ATM Protein Kinase. Radiation 2023, 3, 21-38. https://doi.org/10.3390/radiation3010002
Al-Choboq J, Nehal M, Sonzogni L, Granzotto A, El Nachef L, Restier-Verlet J, Maalouf M, Berthel E, Aral B, Corradini N, et al. Molecular and Cellular Responses to Ionization Radiation in Untransformed Fibroblasts from the Rothmund–Thomson Syndrome: Influence of the Nucleo-Shuttling of the ATM Protein Kinase. Radiation. 2023; 3(1):21-38. https://doi.org/10.3390/radiation3010002
Chicago/Turabian StyleAl-Choboq, Joëlle, Myriam Nehal, Laurène Sonzogni, Adeline Granzotto, Laura El Nachef, Juliette Restier-Verlet, Mira Maalouf, Elise Berthel, Bernard Aral, Nadège Corradini, and et al. 2023. "Molecular and Cellular Responses to Ionization Radiation in Untransformed Fibroblasts from the Rothmund–Thomson Syndrome: Influence of the Nucleo-Shuttling of the ATM Protein Kinase" Radiation 3, no. 1: 21-38. https://doi.org/10.3390/radiation3010002