Festivals in Age of AI: Smarter Crowds, Happier Fans
Abstract
:1. Introduction
2. Literature Review
2.1. Theoretical Framework
2.2. Artificial Intelligence in Music Festivals
2.3. The Quality of Artificial Intelligence and Customer Engagement with the Brand
2.4. Artificial Intelligence and Trust
2.5. Artificial Intelligence and eWOM
2.6. Memorable Experiences in Tourism with Artificial Intelligence
3. Material and Methods
3.1. Sample Procedures
3.2. Scales
3.3. Data Analysis
4. Results
4.1. Sample Profile
4.2. Statistical Analysis
5. Discussion and Implications
5.1. Discussion of Results
5.2. Theoretical Implications
5.3. Practical Implications
6. Conclusions
6.1. Main Conclusions
6.2. Limitations of the Study and Future Lines of Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Aldboush, H. H. H., & Ferdous, M. (2023). Building trust in fintech: An analysis of ethical and privacy considerations in the intersection of big data, ai, and customer trust. International Journal of Financial Studies, 11(3), 90. [Google Scholar] [CrossRef]
- Al-Romeedy, B. S. (2024). Tomorrow’s travel companion: The role of artificial intelligence in shaping the future of tourism. In Marketing and big data analytics in tourism and events (pp. 162–182). IGI Global. [Google Scholar] [CrossRef]
- Al-Tarawneh, J. (2019). Technology acceptance models and adoption of innovations: A literature review. International Journal of Scientific Research, 9(8), 833–857. [Google Scholar] [CrossRef]
- Andrade, I. M. D., & Tumelero, C. (2022). Increasing customer service efficiency through artificial intelligence chatbot. Revista de Gestão, 29(3), 238–251. [Google Scholar] [CrossRef]
- Aniba, Y., Bouhedda, M., Bachene, M., Rahim, M., Benyezza, H., & Tobbal, A. (2024). Digital twin-enabled quality control through deep learning in industry 4.0: A framework for enhancing manufacturing performance. International Journal of Modelling and Simulation, 1–21. [Google Scholar] [CrossRef]
- Ao, L., Bansal, R., Pruthi, N., & Khaskheli, M. B. (2023). Impact of social media influencers on customer engagement and purchase intention: A meta-analysis. Sustainability, 15(3), 2744. [Google Scholar] [CrossRef]
- Arzt, A., Frostel, H., Gadermaier, T., Gasser, M., Grachten, M., & Widmer, G. (2015, July 25–31). Artificial intelligence in the concertgebouw. Twenty-Fourth International Joint Conference on Artificial Intelligence, Buenos Aires, Argentina. [Google Scholar]
- Arzt, A., & Widmer, G. (2015, October 26–30). Real-time music tracking using multiple performances as a reference. 16th International Society for Music Information Retrieval Conference, ISMIR 2015, Malaga, Spain. [Google Scholar]
- Avdeeff, M. (2019). Artificial intelligence & popular music: Skygge, flow machines, and the audio uncanny valley. Arts, 8(4), 130. [Google Scholar] [CrossRef]
- Bayram, F., Ahmed, B. S., & Hallin, E. (2024). Adaptive data quality scoring operations framework using drift-aware mechanism for industrial applications. Journal of Systems and Software, 217, 112184. [Google Scholar] [CrossRef]
- Bervell, B., & Umar, I. N. (2017). Validation of the UTAUT model: Re-considering non-linear relationships of exogeneous variables in higher education technology acceptance research. Eurasia Journal of Mathematics, Science and Technology Education, 13(10), 6471–6490. [Google Scholar] [CrossRef]
- Binsaeed, R. H., Yousaf, Z., Grigorescu, A., Chitescu, R. I., Nassani, A. A., & Samoila, A. (2023). Customer engagement and customer relationship management capabilities’ effects on innovation performance and customer distrust’s moderating role. Sustainability, 15(12), 9475. [Google Scholar] [CrossRef]
- Budnik, C. (2012, July 16–20). Software testing, software quality and trust in software-based systems. 2012 IEEE 36th Annual Computer Software and Applications Conference, Izmir, Turkey. [Google Scholar]
- Buhalis, D., & Sinarta, Y. (2019). Real-time co-creation and nowness service: Lessons from tourism and hospitality. Journal of Travel & Tourism Marketing, 36(5), 563–582. [Google Scholar] [CrossRef]
- Butt, A., Ahmad, H., Ali, F., Muzaffar, A., & Shafique, M. N. (2023). Engaging the customer with augmented reality and employee services to enhance equity and loyalty. International Journal of Retail & Distribution Management, 51(5), 629–652. [Google Scholar] [CrossRef]
- Camilleri, M. A. (2024). Factors affecting performance expectancy and intentions to use ChatGPT: Using SmartPLS to advance an information technology acceptance framework. Technological Forecasting and Social Change, 201, 123247. [Google Scholar] [CrossRef]
- Camilleri, M. A., & Troise, C. (2023). Live support by chatbots with artificial intelligence: A future research agenda. Service Business, 17(1), 61–80. [Google Scholar] [CrossRef]
- Chen, F. F. (2008). What happens if we compare chopsticks with forks? The impact of making inappropriate comparisons in cross-cultural research. Journal of Personality and Social Psychology, 95(5), 1005–1018. [Google Scholar] [CrossRef] [PubMed]
- Chen, X., Luo, X., & Gao, J. (2025). Exploring the impact of artificial intelligence technologies on tourists’ smart experiences: The moderating role of emotional arousal level. Asia Pacific Journal of Tourism Research, 30(1), 57–71. [Google Scholar] [CrossRef]
- Chen, Z. (2023). Ethics and discrimination in artificial intelligence-enabled recruitment practices. Humanities and Social Sciences Communications, 10(1), 567. [Google Scholar] [CrossRef]
- Cheng, M. (2022). The creativity of artificial intelligence in art. Proceedings, 81(1), 110. [Google Scholar] [CrossRef]
- Chi, O. H., Gursoy, D., & Chi, C. G. (2022). Tourists’ attitudes toward the use of artificially intelligent (AI) devices in tourism service delivery: Moderating role of service value seeking. Journal of Travel Research, 61(1), 170–185. [Google Scholar] [CrossRef]
- Colosimo, B. M., del Castillo, E., Jones-Farmer, L. A., & Paynabar, K. (2021). Artificial intelligence and statistics for quality technology: An introduction to the special issue. Journal of Quality Technology, 53(5), 443–453. [Google Scholar] [CrossRef]
- Dabić, M., Ferreira, J. J., Lopes, J. M., & Gomes, S. (2025). Consumer preferences and barriers in the adoption of drone delivery services: A comprehensive analysis. IEEE Transactions on Engineering Management, 72, 47–61. [Google Scholar] [CrossRef]
- Doborjeh, Z., Hemmington, N., Doborjeh, M., & Kasabov, N. (2022). Artificial intelligence: A systematic review of methods and applications in hospitality and tourism. International Journal of Contemporary Hospitality Management, 34(3), 1154–1176. [Google Scholar] [CrossRef]
- Dobre, C., Milovan, A.-M., Duțu, C., Preda, G., & Agapie, A. (2021). The common values of social media marketing and luxury brands. The millennials and generation Z perspective. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 2532–2553. [Google Scholar] [CrossRef]
- Duan, Y., Edwards, J. S., & Dwivedi, Y. K. (2019). Artificial intelligence for decision making in the era of Big Data–evolution, challenges and research agenda. International Journal of Information Management, 48, 63–71. [Google Scholar] [CrossRef]
- Elnur, A. (2024). The investigation of live streaming experience as a digital leisure activity through the case of hellfest. Romaya Journal: Researches on Multidisciplinary Approaches, 4(2), 69–87. [Google Scholar] [CrossRef]
- Fattah, A., Gunawan, A. A., Taufik, R. B., & Pranoto, H. (2021). Effect of the implementation attractive augmented reality for museums visit. ICIC Express Letters, Part B: Applications, 12(6), 541–548. [Google Scholar] [CrossRef]
- Fernandes, J. V., & Krolikowska, E. (2023). The festival customer experience: A conceptual framework. International Journal of Event and Festival Management, 14(1), 23–40. [Google Scholar] [CrossRef]
- Ferrario, A., Loi, M., & Viganò, E. (2020). In AI we trust incrementally: A multi-layer model of trust to analyze human-artificial intelligence interactions. Philosophy & Technology, 33(3), 523–539. [Google Scholar] [CrossRef]
- Freitas, J., Agarwal, S., Schmitt, B., & Haslam, N. (2023). Psychological factors underlying attitudes toward AI tools. Nature Human Behaviour, 7(11), 1845–1854. [Google Scholar] [CrossRef] [PubMed]
- Gajić, T., Ranjbaran, A., Vukolić, D., Bugarčić, J., Spasojević, A., Đorđević Boljanović, J., Vujačić, D., Mandarić, M., Kostić, M., Sekulić, D., & Bugarčić, M. (2024). Tourists’ willingness to adopt AI in hospitality—Assumption of sustainability in developing countries. Sustainability, 16(9), 3663. [Google Scholar] [CrossRef]
- Garima, & Bansal, R. (2024). Unveiling the potential of ChatGPT for enhancing customer engagement. In R. Bansal, A. H. Ngah, A. Chakir, & N. Pruthi (Eds.), Leveraging ChatGPT and artificial intelligence for effective customer engagement (pp. 111–128). IGI Global. [Google Scholar] [CrossRef]
- Gerlich, M. (2023). The power of virtual influencers: Impact on consumer behaviour and attitudes in the age of AI. Administrative Sciences, 13(8), 178. [Google Scholar] [CrossRef]
- Gomes, S., & Lopes, J. M. (2024). Diagnosing the implementation of digital technologies by European Union manufacturing multinationals. In Digital transformation and enterprise information systems (pp. 113–137). CRC Press. [Google Scholar]
- Gregoire, J. (2018). ITC guidelines for translating and adapting tests. International Journal of Testing, 18(2), 101–134. [Google Scholar]
- Grewal, D., Roggeveen, A. L., & Nordfält, J. (2017). The future of retailing. Journal of Retailing, 93(1), 1–6. [Google Scholar] [CrossRef]
- Gupta, V. (2024). An empirical evaluation of a generative artificial intelligence technology adoption model from entrepreneurs’ perspectives. Systems, 12(3), 103. [Google Scholar] [CrossRef]
- Gvili, Y., & Levy, S. (2018). Consumer engagement with eWOM on social media: The role of social capital. Online Information Review, 42(4), 482–505. [Google Scholar] [CrossRef]
- Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2019). Multivariate data analysis. Cengage. Available online: https://books.google.pt/books?id=0R9ZswEACAAJ (accessed on 2 November 2024).
- Han, L., Ma, Y., Addo, P. C., Liao, M., & Fang, J. (2023). The role of platform quality on consumer purchase intention in the context of cross-border E-Commerce: The evidence from Africa. Behavioral Sciences, 13(5), 385. [Google Scholar] [CrossRef]
- Hassan, R. R., Abu Talib, M., Dweiri, F., & Roman, J. (2024). An artificial intelligence (AI) framework to predict operational excellence: UAE case study. Applied Sciences, 14(6), 2569. [Google Scholar] [CrossRef]
- Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407–434. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, R., & Reich, C. (2023). A systematic literature review on artificial intelligence and explainable artificial intelligence for visual quality assurance in manufacturing. Electronics, 12(22), 4572. [Google Scholar] [CrossRef]
- Hossain, M. A., Jahan, N., Fang, Y., Hoque, S., & Hossain, M. S. (2019). Nexus of electronic word-of-mouth to social networking sites: A sustainable chatter of new digital social media. Sustainability, 11(3), 759. [Google Scholar] [CrossRef]
- Hou, K., Hou, T., & Cai, L. (2023). Exploring trust in human–AI collaboration in the context of multiplayer online games. Systems, 11(5), 217. [Google Scholar] [CrossRef]
- Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. [Google Scholar] [CrossRef]
- Huang, M.-H., & Rust, R. T. (2018). Artificial intelligence in service. Journal of Service Research, 21(2), 155–172. [Google Scholar] [CrossRef]
- Huda, M. N., Ruroh, S. M., & Kurniasari, E. N. (2022). An analysis the critical successful factors on information adoption during the pandemic COVID-19 outbreak. Risenologi, 7(1), 54–63. [Google Scholar] [CrossRef]
- Hulsen, T. (2023). Explainable artificial intelligence (XAI): Concepts and challenges in healthcare. AI, 4(3), 652–666. [Google Scholar] [CrossRef]
- Ilapakurti, A., Vuppalapati, J. S., Kedari, S., Kedari, S., Vuppalapati, R., & Vuppalapati, C. (2018, January 7–9). AI infused fragrance systems for creating memorable customer experience and venue brand engagement. Intelligent Human Systems Integration: Proceedings of the 1st International Conference on Intelligent Human Systems Integration (IHSI 2018): Integrating People and Intelligent Systems, Dubai, United Arab Emirates. [Google Scholar]
- Ionescu, A.-M., & Sârbu, F. A. (2024). Exploring the impact of smart technologies on the tourism industry. Sustainability, 16(8), 3318. [Google Scholar] [CrossRef]
- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2014). An introduction to statistical learning: With applications in R. Springer. Available online: https://books.google.pt/books?id=at1bmAEACAAJ (accessed on 2 November 2024).
- Jeong, M., & Shin, H. H. (2020). Tourists’ experiences with smart tourism technology at smart destinations and their behavior intentions. Journal of Travel Research, 59(8), 1464–1477. [Google Scholar] [CrossRef]
- Jingchuan, J., & Wu, S. (2024). How trust in human-like AI-based service on social media will influence customer engagement: Exploratory research to develop the scale of trust in human-like AI-based service. Asia Marketing Journal, 26(2), 129–144. [Google Scholar] [CrossRef]
- Jogarao, M. (2024). AI in the hospitality industry: Revolutionizing guest experience. In Technology and luxury hospitality: AI, blockchain and the metaverse (pp. 199–210). Routledge. [Google Scholar] [CrossRef]
- Kelly, S., Kaye, S.-A., & Oviedo-Trespalacios, O. (2023). What factors contribute to the acceptance of artificial intelligence? A systematic review. Telematics and Informatics, 77, 101925. [Google Scholar] [CrossRef]
- Khrais, L. T. (2020). Role of artificial intelligence in shaping consumer demand in e-commerce. Future Internet, 12(12), 226. [Google Scholar] [CrossRef]
- Kim, H. L., & Hyun, S. S. (2019). The relationships among perceived value, intention to use hashtags, eWOM, and brand loyalty of air travelers. Sustainability, 11(22), 6523. [Google Scholar] [CrossRef]
- Kim, J.-H. (2018). The impact of memorable tourism experiences on loyalty behaviors: The mediating effects of destination image and satisfaction. Journal of Travel Research, 57(7), 856–870. [Google Scholar] [CrossRef]
- Kline, R. B. (2023). Principles and practice of structural equation modeling. Guilford Publications. [Google Scholar]
- Kulykovets, O. (2024). Building bridges: Trust and communication in contemporary work environments. In Trust in social and business relations: Theory and practice (pp. 143–153). Routledge. [Google Scholar] [CrossRef]
- Kumar, N., Panda, R. K., & Adhikari, K. (2022). Transforming tourists’ intentions through destination engagement: Insights from transformative learning theory. The Service Industries Journal, 42(9–10), 688–715. [Google Scholar] [CrossRef]
- Kumar, V., Rajan, B., Gupta, S., & Pozza, I. D. (2019). Customer engagement in service. Journal of the Academy of Marketing Science, 47(1), 138–160. [Google Scholar] [CrossRef]
- Lee, A. T., Ramasamy, R. K., & Subbarao, A. (2025). Understanding psychosocial barriers to healthcare technology adoption: A review of TAM technology acceptance model and unified theory of acceptance and use of technology and UTAUT frameworks. Healthcare, 13(3), 250. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.-J., & Shin, S. Y. (2014). When do consumers buy online product reviews? Effects of review quality, product type, and reviewer’s photo. Computers in Human Behavior, 31, 356–366. [Google Scholar] [CrossRef]
- Leite, Â., Rodrigues, A., & Lopes, S. (2024). Customer connections: A cross-cultural investigation of brand experience and brand love in the retail landscape. Administrative Sciences, 14(1), 11. [Google Scholar] [CrossRef]
- Leonardi, L., Di Giacomo, F., Fanini, B., Faccini, M., Gargano, M., Gasperini, A., Speziale, S., & Zanini, V. (2023). Augmented and virtual reality for the enhancement of cultural heritage. methodologies and good practices. Memorie della Societa Astronomica Italiana, 94(1), 59. [Google Scholar]
- Li, S., & Jiang, S. (2023). The technology acceptance on AR memorable tourism experience—The empirical evidence from china. Sustainability, 15(18), 13349. [Google Scholar] [CrossRef]
- Liu, W., Sparks, B., & Coghlan, A. (2017). Event experiences through the lens of attendees. Event Management, 21(4), 463–479. [Google Scholar] [CrossRef]
- Lopes, J. M., Gomes, S., Nogueira, E., & Trancoso, T. (2025). AI’s invisible touch: How effortless browsing shapes customer perception, experience and engagement in online retail. Cogent Business & Management, 12(1), 2440628. [Google Scholar] [CrossRef]
- Lopes, J. M., Silva, L. F., & Massano-Cardoso, I. (2024a). AI meets the shopper: Psychosocial factors in ease of use and their effect on E-commerce purchase intention. Behavioral Sciences, 14(7), 616. [Google Scholar] [CrossRef] [PubMed]
- Lopes, J. M., Silva, L. F., & Massano-Cardoso, I. (2024b). Management of consumers embraces drone delivery. Marketing and Management of Innovations, 15(4), 1–16. [Google Scholar] [CrossRef]
- Loureiro, S. M. C., Bilro, R. G., & Japutra, A. (2019). The effect of consumer-generated media stimuli on emotions and consumer brand engagement. Journal of Product & Brand Management, 29(3), 387–408. [Google Scholar] [CrossRef]
- Luhmann, N. (2018). Trust and power. John Wiley & Sons. [Google Scholar]
- Luo, X., Tong, S., Fang, Z., & Qu, Z. (2019). Frontiers: Machines vs. humans: The impact of artificial intelligence chatbot disclosure on customer purchases. Marketing Science, 38(6), 937–947. [Google Scholar] [CrossRef]
- Luxford, A., & Dickinson, J. E. (2015). The role of mobile applications in the consumer experience at music festivals. Event Management, 19(1), 33–46. [Google Scholar] [CrossRef]
- Lv, X., Luo, J., Liang, Y., Liu, Y., & Li, C. (2022). Is cuteness irresistible? The impact of cuteness on customers’ intentions to use AI applications. Tourism Management, 90, 104472. [Google Scholar] [CrossRef]
- MaeboodMojdehi, Z., Nasiripour, A., & Raeissi, P. (2018). The relationship between the quality of hospital information systems and user trust. Journal of Management and Accounting Studies, 6(4), 24–28. [Google Scholar] [CrossRef]
- Mariani, M., & Borghi, M. (2021). Customers’ evaluation of mechanical artificial intelligence in hospitality services: A study using online reviews analytics. International Journal of Contemporary Hospitality Management, 33(11), 3956–3976. [Google Scholar] [CrossRef]
- Marôco, J. (2014). Análise de equações estruturais: Fundamentos teóricos, software & aplicações. ReportNumber, Lda. [Google Scholar]
- Martínez-López, F. J., Aguilar-Illescas, R., Molinillo, S., Anaya-Sánchez, R., Coca-Stefaniak, J. A., & Esteban-Millat, I. (2021). The role of online brand community engagement on the consumer–brand relationship. Sustainability, 13(7), 3679. [Google Scholar] [CrossRef]
- Mayer, R. C., Davis, J. H., & Schoorman, F. D. (1995). An integrative model of organizational trust. Academy of Management Review, 20(3), 709–734. [Google Scholar] [CrossRef]
- Milicevic, N., Kalas, B., Djokic, N., Malcic, B., & Djokic, I. (2024). Students’ intention toward artificial intelligence in the context of digital transformation. Sustainability, 16(9), 3554. [Google Scholar] [CrossRef]
- Mim, K. B., Jai, T., & Lee, S. H. (2022). The influence of sustainable positioning on eWOM and brand loyalty: Analysis of credible sources and transparency practices based on the S-O-R model. Sustainability, 14(19), 12461. [Google Scholar] [CrossRef]
- Mishra, D., Das, S., & Patnaik, R. (2024). Application of AI technology for the development of destination tourism towards an intelligent information system. Economic Affairs, 69(2), 1083–1095. [Google Scholar] [CrossRef]
- Morgan, M. (2008). What makes a good festival? Understanding the event experience. Event Management, 12(2), 81–93. [Google Scholar] [CrossRef]
- Ms Tomi, R. S. S. E. (2022). Trust as a mediating variable between Electronic word of Mouth (E-Wom), influencer on consumer buying interest on instagram @Kokobuncit account in the COVID-19 pandemic. Sustainable Business and Society in Emerging Economies, 4(3), 735–742. [Google Scholar] [CrossRef]
- Nadda, V., Tyagi, P. K., Singh, A., & Singh, V. (2024). AI innovations in service and tourism marketing. IGI Global. [Google Scholar] [CrossRef]
- Nag, A. (2024). Local development and tourism competitiveness: Analyzing the economic impact of heritage tourism initiatives. In Gastronomic sustainability solutions for community and tourism resilience (pp. 160–190). IGI Global. [Google Scholar] [CrossRef]
- Nguyen, T.-M., Quach, S., & Thaichon, P. (2022). The effect of AI quality on customer experience and brand relationship. Journal of Consumer Behaviour, 21(3), 481–493. [Google Scholar] [CrossRef]
- Nicolaou, A. I., Ibrahim, M., & van Heck, E. (2013). Information quality, trust, and risk perceptions in electronic data exchanges. Decision Support Systems, 54(2), 986–996. [Google Scholar] [CrossRef]
- Nofal, R., Bayram, P., Emeagwali, O. L., & Al-Mu’ani, L. A. (2022). The effect of eWOM source on purchase intention: The moderation role of weak-Tie eWOM. Sustainability, 14(16), 9959. [Google Scholar] [CrossRef]
- Oliva, J. (2023). An emotional perspective of music festival experience evaluation: A new model of emotional analysis. International Journal of Event and Festival Management, 14(3), 310–325. [Google Scholar] [CrossRef]
- Pallant, J. (2020). SPSS survival manual: A step by step guide to data analysis using IBM SPSS. Routledge. [Google Scholar]
- Pantano, E., & Pizzi, G. (2020). Forecasting artificial intelligence on online customer assistance: Evidence from chatbot patents analysis. Journal of Retailing and Consumer Services, 55, 102096. [Google Scholar] [CrossRef]
- Park, H. H., & Jeon, J. O. (2018). The impact of mixed eWOM sequence on brand attitude change: Cross-cultural differences. International Marketing Review, 35(3), 390–411. [Google Scholar] [CrossRef]
- Park, J.-S., & Ha, S. (2021). From information experiences to consumer engagement on brand’s social media accounts. Fashion and Textiles, 8(1), 21. [Google Scholar] [CrossRef]
- Popovici, G. (2023). The need for artificial intellingence (AI) in tourism management. Robotica & Management, 28(1), 68–72. [Google Scholar]
- Purwanto, A., Zuiderwijk, A., & Janssen, M. (2020, June 15–19). Citizens’ trust in open government data: A quantitative study about the effects of data quality, system quality and service quality. 21st Annual International Conference on Digital Government Research, Seoul, Republic of Korea. [Google Scholar]
- Rachabathuni, P. K., Mazzanti, P., Principi, F., Ferracani, A., & Bertini, M. (2025). Computer vision and AI TOOLS for enhancing user experience in the cultural heritage domain. In International conference on human-computer interaction. Springer. [Google Scholar]
- Raffaghelli, J. E., Rodríguez, M. E., Guerrero-Roldán, A.-E., & Bañeres, D. (2022). Applying the UTAUT model to explain the students’ acceptance of an early warning system in Higher Education. Computers & Education, 182, 104468. [Google Scholar] [CrossRef]
- Rafiq, F., Dogra, N., Adil, M., & Wu, J.-Z. (2022). Examining consumer’s intention to adopt AI-chatbots in tourism using partial least squares structural equation modeling method. Mathematics, 10(13), 2190. [Google Scholar] [CrossRef]
- Rahimi, B., Nadri, H., Lotfnezhad Afshar, H., & Timpka, T. (2018). A systematic review of the technology acceptance model in health informatics. Applied Clinical Informatics, 9(3), 604–634. [Google Scholar] [CrossRef] [PubMed]
- Rao, K. S., & Rao, B. (2019). Examining eWOM credibility—Consumer purchase intention relationship in facebook: A mediation analysis. Indian Journal of Marketing, 49(8), 7–22. [Google Scholar] [CrossRef]
- Reza Jalilvand, M., & Samiei, N. (2012). The effect of electronic word of mouth on brand image and purchase intention. Marketing Intelligence & Planning, 30(4), 460–476. [Google Scholar] [CrossRef]
- Ridzuan, N. N., Masri, M., Anshari, M., Fitriyani, N. L., & Syafrudin, M. (2024). AI in the financial sector: The line between innovation, regulation and ethical responsibility. Information, 15(8), 432. [Google Scholar] [CrossRef]
- Rihova, I., Buhalis, D., Moital, M., & Gouthro, M.-B. (2015). Conceptualising customer-to-customer value co-creation in tourism. International Journal of Tourism Research, 17(4), 356–363. [Google Scholar] [CrossRef]
- Robertson, M., Yeoman, I., Smith, K. A., & McMahon-Beattie, U. (2015). Technology, society, and visioning the future of music festivals. Event Management, 19(4), 567–587. [Google Scholar] [CrossRef]
- Rodrigues, I., Lopes, J. M., Borges, A., Oliveira, J., & Oliveira, M. (2021). How can gamified applications drive engagement and brand attitude? The case of Nike run club application. Administrative Sciences, 11(3), 92. [Google Scholar] [CrossRef]
- Roy, R., Dixit, A. K., Chaturvedi, S. K., Saxena, S., Kaur, G., & Kant, R. (2024). A socio-legal perspective on gender-based discrimination in machine learning algorithm. In S. Dutta, A. Bhattacharya, C. Shahnaz, & S. Chakrabarti (Eds.), Cyber intelligence and information retrieval. Springer. [Google Scholar]
- Rusu, V., Rusu, C., Matus, N., & Botella, F. (2023). Tourist experience challenges: A holistic approach. Sustainability, 15(17), 12765. [Google Scholar] [CrossRef]
- Ryan, M. (2020). In AI we trust: Ethics, artificial intelligence, and reliability. Science and Engineering Ethics, 26(5), 2749–2767. [Google Scholar] [CrossRef]
- Saragih, H. S., & Amelia, N. (2020). Segmentation of music festival visitors by values of hedonia, life satisfaction and eudaimonia. International Journal of Event and Festival Management, 11(4), 453–472. [Google Scholar] [CrossRef]
- Sebata, E., & Mollah, M. R. A. (2022). Technology application in tourism festivals in Asia: Theoretical discussions. In Technology application in tourism fairs, festivals and events in asia (pp. 25–39). Springer. [Google Scholar] [CrossRef]
- Semwal, R., Tripathi, N., Singh, A., & Saxena, S. R. (2024). Reviving narratives virtual reality and historical reconstruction in tourism. In Dimensions of regenerative practices in tourism and hospitality (pp. 269–284). IGI Global. [Google Scholar] [CrossRef]
- Seo, E. J., Park, J.-W., & Choi, Y. J. (2020). The effect of social media usage characteristics on e-WOM, trust, and brand equity: Focusing on users of airline social media. Sustainability, 12(4), 1691. [Google Scholar] [CrossRef]
- Seo, K. H., & Lee, J. H. (2021). The emergence of service robots at restaurants: Integrating trust, perceived risk, and satisfaction. Sustainability, 13(8), 4431. [Google Scholar] [CrossRef]
- Shabankareh, M., Hamzavi, J., Ranjbaran, A., Jelvehgaran Esfahani, S., & Izadi, G. (2024). The COVID-19 pandemic and repurchase intention in building brand engagement in the airline industry. Journal of Hospitality and Tourism Insights, 7(1), 626–650. [Google Scholar] [CrossRef]
- Sharma, V. (2024). AI in hospitality and tourism promotion: Opportunities and challenges. In M. B. Talukder, S. Kumar, & P. K. Tyagi (Eds.), Impact of AI and tech-driven solutions in hospitality and tourism (pp. 43–65). IGI Global. [Google Scholar] [CrossRef]
- Shulner-Tal, A., Kuflik, T., Kliger, D., & Mancini, A. (2024). Who made that decision and why? Users’ perceptions of human versus AI decision-making and the power of explainable-AI. International Journal of Human–Computer Interaction, 1–18. [Google Scholar] [CrossRef]
- Siau, K., & Wang, W. (2018). Building trust in artificial intelligence, machine learning, and robotics. Cutter Business Technology Journal, 31(2), 47–53. [Google Scholar]
- Sisson, A. D., & Alcorn, M. R. (2022). How was your music festival experience? Impacts on loyalty, word-of-mouth, and sustainability behaviors. Event Management, 26(3), 565–585. [Google Scholar] [CrossRef]
- Starkey, A., Steenhauer, K., & Caven, J. (2020). Painting music: Using artificial intelligence to create music from live painted drawings. Drawing: Research, Theory, Practice, 5(2), 209–224. [Google Scholar] [CrossRef]
- Talukder, M. B. (2024). Implementing artificial intelligence and virtual experiences in hospitality. In Innovative technologies for increasing service productivity (pp. 145–160). IGI Global. [Google Scholar] [CrossRef]
- Tanzaretha, C., & Rodhiah, R. (2022). Experience quality, customer brand engagement, brand performance and brand loyalty to purchase intention. Budapest International Research and Critics Institute-Journal (BIRCI-Journal), 5(1), 2396–2405. [Google Scholar] [CrossRef]
- Tassiello, V., Amatulli, C., Tillotson, J. S., & Laker, B. (2024). aiWOM: Artificial intelligence word-of-mouth. conceptualizing consumer-to-AI communication. International Journal of Human-Computer Interaction, 1–13. [Google Scholar] [CrossRef]
- Thomas, G. (2023). Demystifying the relationship between restaurant innovativeness, customer engagement, and customer willingness to pay a higher price. Sustainability, 15(10), 7795. [Google Scholar] [CrossRef]
- Toff, B., & Simon, F. M. (2025). “Or they could just not use it?”: The dilemma of AI disclosure for audience trust in news. International Journal of Press/Politics, 1–23. [Google Scholar] [CrossRef]
- Topsakal, Y. (2024). How familiarity, ease of use, usefulness, and trust influence the acceptance of generative artificial intelligence (AI)-assisted travel planning. International Journal of Human-Computer Interaction, 1–14. [Google Scholar] [CrossRef]
- Toubes, D. R., Araújo-Vila, N., & Fraiz-Brea, J. A. (2024). Best practices in technology usage for promotion of music festivals in Spain. In International conference on tourism and information and communication technologies. Springer. [Google Scholar]
- Um, T.-W., Kim, J., Lim, S., & Lee, G. M. (2022). Trust management for artificial intelligence: A standardization perspective. Applied Sciences, 12(12), 6022. [Google Scholar] [CrossRef]
- Vinerean, S., & Opreana, A. (2021). Measuring customer engagement in social media marketing: A higher-order model. Journal of Theoretical and Applied Electronic Commerce Research, 16(7), 2633–2654. [Google Scholar] [CrossRef]
- Vinuesa, R., Azizpour, H., Leite, I., Balaam, M., Dignum, V., Domisch, S., Felländer, A., Langhans, S. D., Tegmark, M., & Fuso Nerini, F. (2020). The role of artificial intelligence in achieving the sustainable development goals. Nature Communications, 11(1), 233. [Google Scholar] [CrossRef]
- Wang, Y. (2024). Plot dynamic adaptation and character interaction design of artificial intelligence in musical theater performing arts. Applied Mathematics and Nonlinear Sciences, 9, 1–13. [Google Scholar] [CrossRef]
- Whig, P., Bhatia, A. B., & Yathiraju, N. (2024). AI-driven innovations in service marketing transforming customer engagement and experience. In AI innovations in service and tourism marketing (pp. 17–34). IGI Global. [Google Scholar] [CrossRef]
- Williams, N. L., Ferdinand, N., & Bustard, J. (2020). From WOM to aWOM—The evolution of unpaid influence: A perspective article. Tourism Review, 75(1), 314–318. [Google Scholar] [CrossRef]
- Williamson, S. M., & Prybutok, V. (2024). Balancing privacy and progress: A review of privacy challenges, systemic oversight, and patient perceptions in AI-driven healthcare. Applied Sciences, 14(2), 675. [Google Scholar] [CrossRef]
- Wirtz, J., & Chew, P. (2002). The effects of incentives, deal proneness, satisfaction and tie strength on word-of-mouth behaviour. International Journal of Service Industry Management, 13(2), 141–162. [Google Scholar] [CrossRef]
- Wirtz, J., Patterson, P. G., Kunz, W. H., Gruber, T., Lu, V. N., Paluch, S., & Martins, A. (2018). Brave new world: Service robots in the frontline. Journal of Service Management, 29(5), 907–931. [Google Scholar] [CrossRef]
- Wu, W., Zhang, B., Li, S., & Liu, H. (2022). Exploring factors of the willingness to accept AI-assisted learning environments: An empirical investigation based on the utaut model and perceived risk theory. Frontiers in Psychology, 13, 1–7. [Google Scholar] [CrossRef]
- Yang, X. (2023). The effects of AI service quality and AI function-customer ability fit on customer’s overall co-creation experience. Industrial Management & Data Systems, 123(6), 1717–1735. [Google Scholar] [CrossRef]
- Yin, J., & Qiu, X. (2021). AI technology and online purchase intention: Structural equation model based on perceived value. Sustainability, 13(10), 5671. [Google Scholar] [CrossRef]
- Yu, L., & Li, Y. (2022). Artificial intelligence decision-making transparency and employees’ trust: The parallel multiple mediating effect of effectiveness and discomfort. Behavioral Sciences, 12(5), 127. [Google Scholar] [CrossRef]
- Zhang, Y., Sotiriadis, M., & Shen, S. (2022). Investigating the impact of smart tourism technologies on tourists’ experiences. Sustainability, 14(5), 3048. [Google Scholar] [CrossRef]
- Zhao, Y., Liu, Y., Lai, I. K. W., Zhang, H., & Zhang, Y. (2016). The Impacts of attitudes and engagement on electronic word of mouth (eWOM) of mobile sensor computing applications. Sensors, 16(3), 391. [Google Scholar] [CrossRef] [PubMed]
- Ziakis, C., & Vlachopoulou, M. (2023). Artificial intelligence in digital marketing: Insights from a comprehensive review. Information, 14(12), 664. [Google Scholar] [CrossRef]
Variables | Frequencies | (%) | Variables | Frequencies | (%) |
---|---|---|---|---|---|
Gender | Residence in Portugal | ||||
Men | 188 | 47.0 | North | 20 | 5.0 |
Women | 212 | 53.0 | Lisbon | 268 | 67.0 |
Mean Age | 23.75 ± 3.60 | Centre | 74 | 18.5 | |
Years of education | Alentejo | 14 | 3.5 | ||
12th grade | 34 | 8.5 | Algarve | 18 | 4.5 |
Graduate degree | 258 | 64.5 | Madeira | 6 | 1.5 |
Master’s degree | 100 | 25.0 | Monthly net income | ||
PhD | 8 | 2.0 | 0 | 84 | 21.0 |
Professional situation | EUR 1–EUR 824 | 178 | 44.5 | ||
Student | 112 | 28.0 | EUR 1001–EUR 1500 | 114 | 28.5 |
Student Worker | 148 | 37.0 | EUR 1501–EUR 2000 | 16 | 4.5 |
Employee | 120 | 30.0 | >2000 | 8 | 2.0 |
Independent worker | 18 | 4.50 | |||
Retired | 2 | 0.5 |
Construct and Items | α | CR | AVE | Factor Loadings | M | SD |
---|---|---|---|---|---|---|
AI Information Quality (AIIQ) (Variance explained = 47.74%) | 0.92 | 0.92 | 0.68 | 4.93 | 0.69 | |
QI1 | 0.822 | |||||
QI2 | 0.841 | |||||
QI3 | 0.887 | |||||
QI4 | 0.825 | |||||
QI5 | 0.749 | |||||
QI6 | 0.830 | |||||
AI System Quality (AISQ) (Variance explained = 11.37%) | 0.95 | 0.95 | 0.68 | |||
QS1 | 0.720 | 4.81 | 0.71 | |||
QS2 | 0.867 | |||||
QS3 | 0.813 | |||||
QS4 | 0.893 | |||||
QS5 | 0.819 | |||||
QS6 | 0.803 | |||||
QS7 | 0.791 | |||||
QS8 | 0.814 | |||||
QS9 | 0.902 | |||||
customer brand engagement (CBE) (Variance explained = 5.47%) | 0.95 | 0.70 | 0.49 | |||
EMC1 | 0.429 | 4.39 | 1.06 | |||
EMC2 | 0.530 | |||||
EMC3 | 0.503 | |||||
EMC4 | 0.512 | |||||
EMC5 | 0.549 | |||||
EMC6 | 0.616 | |||||
electronic word-wf-mouth (eWOM) (Variance explained = 5.05%) | 0.94 | 0.96 | 0.88 | |||
eW1 | 0.924 | 3.94 | 1.35 | |||
eW2 | 0.957 | |||||
eW3 | 0.929 | |||||
Trust (T) (Variance explained = 3.27%) | 0.90 | 0.85 | 0.55 | |||
CNF1 | 0.530 | 4.64 | 0.84 | |||
CNF2 | 0.513 | |||||
CNF3 | 0.881 | |||||
CNF4 | 0.843 | |||||
CNF5 | 0.862 | |||||
memorable experiences in tourism (MET) (Variance explained = 2.61%) | 0.89 | 0.92 | 0.65 | |||
MTE1 | 0.782 | 4.87 | 0.73 | |||
MTE2 | 0.841 | |||||
MTE3 | 0.711 | |||||
MTE4 | 0.857 | |||||
MTE5 | 0.839 | |||||
MTE6 | 0.782 | |||||
willingness to use artificial intelligence (WUAI) (Variance explained = 2.23%) | 0.90 | 0.89 | 0.73 | |||
DUIA1 | 0.830 | 4.54 | 0.95 | |||
DUIA2 | 0.871 | |||||
DUIA3 | 0.864 |
AIIQ | AISQ | CBE | eWOM | T | MET | WUAI | |
---|---|---|---|---|---|---|---|
AIIQ | |||||||
AISQ | 0.788 ** | ||||||
CBE | 0.456 ** | 0.592 ** | |||||
eWOM | 0.392 ** | 0.380 ** | 0.535 ** | ||||
T | 0.616 ** | 0.691 ** | 0.792 ** | 0.491 ** | |||
MET | 0.580 ** | 0.646 ** | 0.459 ** | 0.296 ** | 0.481 ** | ||
WUAI | 0.394 ** | 0.517 ** | 0.788 ** | 0.472 ** | 0.766 ** | 0.401 ** |
β | t | p | |||||
---|---|---|---|---|---|---|---|
AI Information Quality (AIIQ) | H1a | → | customer brand engagement (CBE) | 0.456 | 10.215 | <0.001 | Sig |
AI System Quality (AISQ) | H1b | → | customer brand engagement (CBE) | 0.592 | 14.650 | <0.001 | Sig |
customer brand engagement (CBE) | H2a | → | electronic word-of-mouth (eWOM) | 0.535 | 12.633 | <0.001 | Sig |
customer brand engagement (CBE) | H2b | → | willingness to use artificial intelligence (WUAI) | 0.788 | 25.553 | <0.001 | Sig |
AI Information Quality (AIIQ) | H3a | → | Trust (T) | 0.616 | 15.587 | <0.001 | Sig |
AI System Quality (AISQ) | H3b | → | Trust (T) | 0.691 | 19.080 | <0.001 | Sig |
Trust (T) | H4a | → | electronic-word-of-mouth (eWOM) | 0.491 | 11.233 | <0.001 | Sig |
Trust (T) | H4b | → | willingness to use artificial intelligence (WUAI) | 0.766 | 23.773 | <0.001 | Sig |
electronic word-of-mouth (eWOM) | H5 | → | willingness to use artificial intelligence (WUAI) | 0.472 | 10.670 | <0.001 | Sig |
memorable experiences in tourism (MET) | H6 | → | willingness to use artificial intelligence (WUAI) | 0.401 | 8.744 | <0.001 | Sig |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lopes, J.M.; Massano-Cardoso, I.; Granadeiro, C. Festivals in Age of AI: Smarter Crowds, Happier Fans. Tour. Hosp. 2025, 6, 35. https://doi.org/10.3390/tourhosp6010035
Lopes JM, Massano-Cardoso I, Granadeiro C. Festivals in Age of AI: Smarter Crowds, Happier Fans. Tourism and Hospitality. 2025; 6(1):35. https://doi.org/10.3390/tourhosp6010035
Chicago/Turabian StyleLopes, João M., Ilda Massano-Cardoso, and Camila Granadeiro. 2025. "Festivals in Age of AI: Smarter Crowds, Happier Fans" Tourism and Hospitality 6, no. 1: 35. https://doi.org/10.3390/tourhosp6010035
APA StyleLopes, J. M., Massano-Cardoso, I., & Granadeiro, C. (2025). Festivals in Age of AI: Smarter Crowds, Happier Fans. Tourism and Hospitality, 6(1), 35. https://doi.org/10.3390/tourhosp6010035