Combustion Diagnosis in a Spark-Ignition Engine Fueled with Syngas at Different CO/H2 and Diluent Ratios
Abstract
:1. Introduction
2. Materials and Methods
2.1. Engine Setup
2.2. Thermodynamic Analysis
2.3. Optical Setup
2.4. Data Acquisition and Experimental Errors
3. Results
3.1. Combustion Diagnosis
Thermodynamic Results
3.2. Optical Results
4. Conclusions
- The analysis of flame propagation dynamics under varying combustion conditions highlights the influence of fuel composition on luminosity and flame advancement. Syngas 3 (highest CO and partially diluted) exhibits accelerated combustion kinetics attributed to its elevated CO/H2 ratio, underscoring the importance of chemical kinetics in determining flame characteristics.
- The examination of the mean diameter and propagation speed of the flame reinforces the influence of fuel composition on combustion dynamics. Syngas 3 consistently demonstrates faster flame propagation compared to methane, indicating the pivotal role of the hydrogen content in enhancing burning speed, particularly under lean conditions.
- Propagation was found to be quite symmetric in all directions, and similar for all fuels, suggesting that fluid motion had the most important effect in this sense. These results were also confirmed through the evolution of flame centroid displacement.
- The investigation into the effect of fuels on initial flame propagation reveals intriguing insights into cycle-by-cycle variability induced via the air–fuel ratio and fuel composition. Syngas 3 consistently exhibits the largest flame kernel diameter across all conditions, emphasizing the impact of fuel composition on flame development.
- The assessment of cyclic variability of the flame front shape underscores the influence of air dilution on flame morphology. Syngas mixtures exhibit a preferential propagation towards intake valves, attributed to flow field dynamics, highlighting the importance of understanding fluid motion in shaping flame behavior.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Agarwal, A.; Pandey, A.; Singh, A. Combustion for Power Generation and Transportation: Technology, Challenges and Prospects; Springer: Singapore, 2017. [Google Scholar]
- Pudasainee, D.; Paur, H.R.; Fleck, S.; Seifert, H. Trace Metals Emission in Syngas from Biomass Gasification. Fuel Process. Technol. 2014, 120, 54–60. [Google Scholar] [CrossRef]
- Plath, M.; Moser, C.; Bailis, R.; Brandt, P.; Hirsch, H.; Klein, A.M.; Walmsley, D.; von Wehrden, H. A Novel Bioenergy Feedstock in Latin America? Cultivation Potential of Acrocomia Aculeata under Current and Future Climate Conditions. Biomass Bioenergy 2016, 91, 186–195. [Google Scholar] [CrossRef]
- Jha, S.; Nanda, S.; Acharya, B.; Dalai, A.K. A Review of Thermochemical Conversion of Waste Biomass to Biofuels. Energies 2022, 15, 6352. [Google Scholar] [CrossRef]
- Kumar, G.; Dharmaraja, J.; Arvindnarayan, S.; Shoban, S.; Bakonyi, P.; Saratale, G.D.; Nemestóthy, N.; Bélafi-Bakó, K.; Yoon, J.J.; Kim, S.H. A Comprehensive Review on Thermochemical, Biological, Biochemical and Hybrid Conversion Methods of Bio-Derived Lignocellulosic Molecules into Renewable Fuels. Fuel 2019, 251, 352–367. [Google Scholar] [CrossRef]
- El-Emam, R.S.; Özcan, H. Comprehensive Review on the Techno-Economics of Sustainable Large-Scale Clean Hydrogen Production. J. Clean. Prod. 2019, 220, 593–609. [Google Scholar] [CrossRef]
- Susastriawan, A.A.P.; Purwanto, Y. Purnomo Biomass Gasifier–Internal Combustion Engine System: Review of Literature. Int. J. Sustain. Eng. 2021, 14, 1090–1100. [Google Scholar] [CrossRef]
- Hagos, F.Y.; Aziz, A.R.A.; Sulaiman, S.A. Trends of Syngas as a Fuel in Internal Combustion Engines. Adv. Mech. Eng. 2014, 6. [Google Scholar] [CrossRef]
- Paykani, A.; Chehrmonavari, H.; Tsolakis, A.; Alger, T.; Northrop, W.F.; Reitz, R.D. Synthesis Gas as a Fuel for Internal Combustion Engines in Transportation. Prog. Energy Combust. Sci. 2022, 90, 100995. [Google Scholar] [CrossRef]
- Sansaniwal, S.K.; Pal, K.; Rosen, M.A.; Tyagi, S.K. Recent Advances in the Development of Biomass Gasification Technology: A Comprehensive Review. Renew. Sustain. Energy Rev. 2017, 72, 363–384. [Google Scholar] [CrossRef]
- Hai, I.U.; Sher, F.; Zarren, G.; Liu, H. Experimental Investigation of Tar Arresting Techniques and Their Evaluation for Product Syngas Cleaning from Bubbling Fluidized Bed Gasifier. J. Clean. Prod. 2019, 240, 118239. [Google Scholar] [CrossRef]
- Basu, P. Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory, 2nd ed.; Elsevier: New York, NY, USA, 2013; ISBN 9780123964885. [Google Scholar]
- Martínez, J.D.; Mahkamov, K.; Andrade, R.V.; Silva Lora, E.E. Syngas Production in Downdraft Biomass Gasifiers and Its Application Using Internal Combustion Engines. Renew. Energy 2012, 38, 1–9. [Google Scholar] [CrossRef]
- Fiore, M.; Magi, V.; Viggiano, A. Internal Combustion Engines Powered by Syngas: A Review. Appl. Energy 2020, 276, 115415. [Google Scholar] [CrossRef]
- Solferini de Carvalho, F.; Peñaranda Mendoza, A.; Ribeiro dos Santos, L.; Henrique Rufino, C.; Malheiro de Oliveira, E.; Ferreira Silva, M.; Blanco Machin, E.; Travieso Pedroso, D.; Teixeira Lacava, P. Experimental Study of the Methane and Producer Gas Blends in an Optical Spark Ignition Engine: Combustion Characteristics, Thermodynamics and Emissions. Int. J. Engine Res. 2022, 24, 2708–2726. [Google Scholar] [CrossRef]
- Solferini, F.; Carvalho, D.; Henrique, C.; Malheiro, E.; Oliveira, D.; Ribeiro, L.; Blanco, E.; Pen, A.; Travieso, D.; Teixeira, P. Experimental Investigation of Hydrogen-Producer Gas Mixtures in an Optically Accessible SI Engine. Int. J. Hydrog. Energy 2024, 58, 500–513. [Google Scholar] [CrossRef]
- Dhole, A.E.; Yarasu, R.B.; Lata, D.B.; Priyam, A. Effect on Performance and Emissions of a Dual Fuel Diesel Engine Using Hydrogen and Producer Gas as Secondary Fuels. Int. J. Hydrogen Energy 2014, 39, 8087–8097. [Google Scholar] [CrossRef]
- Rabello de Castro, R.; Brequigny, P.; Mounaïm-Rousselle, C. A Multiparameter Investigation of Syngas/Diesel Dual-Fuel Engine Performance and Emissions with Various Syngas Compositions. Fuel 2022, 318, 123736. [Google Scholar] [CrossRef]
- Irimescu, A.; Merola, S.; Vaglieco, B. Towards Better Correlation between Optical and Commercial Spark Ignition Engines through Quasi-Dimensional Modeling of Cycle-to-Cycle Variability. Therm. Sci. 2022, 26, 1685–1694. [Google Scholar] [CrossRef]
- Merola, S.S.; Marchitto, L.; Tornatore, C.; Valentino, G.; Irimescu, A. Optical Characterization of Combustion Processes in a DISI Engine Equipped with Plasma-Assisted Ignition System. Appl. Therm. Eng. 2014, 69, 177–187. [Google Scholar] [CrossRef]
- Martinez-Boggio, S.D.; Merola, S.S.; Teixeira Lacava, P.; Irimescu, A.; Curto-Risso, P.L. Effect of Fuel and Air Dilution on Syngas Combustion in an Optical SI Engine. Energies 2019, 12, 1566. [Google Scholar] [CrossRef]
- Martínez-Boggio, S.D.; Curto-Risso, P.L.; Medina, A.; Hernández, A.C. Simulation of Cycle-to-Cycle Variations on Spark Ignition Engines Fueled with Gasoline-Hydrogen Blends. Int. J. Hydrogen Energy 2016, 41, 9087–9099. [Google Scholar] [CrossRef]
- Irimescu, A. Comparison of Combustion Characteristics and Heat Loss for Gasoline and Methane Fueling of a Spark Ignition Engine. Proc. Rom. Acad. Ser. A-Math. Phys. Tech. Sci. Inf. Sci. 2013, 14, 161–168. [Google Scholar]
- Martinez, S.; Irimescu, A.; Merola, S.S.; Lacava, P.; Curto-Riso, P. Flame Front Propagation in an Optical GDI Engine under Stoichiometric and Lean Burn Conditions. Energies 2017, 10, 1337. [Google Scholar] [CrossRef]
- Merola, S.S.; Tornatore, C.; Irimescu, A. Cycle-Resolved Visualization of Pre-Ignition and Abnormal Combustion Phenomena in a GDI Engine. Energy Convers. Manag. 2016, 127, 380–391. [Google Scholar] [CrossRef]
- Parker, J. Algorithms for Image Processing and Computer Vision; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Wu, F.; Kelley, A.P.; Tang, C.; Zhu, D.; Law, C.K. Measurement and Correlation of Laminar Flame Speeds of CO and C2 Hydrocarbons with Hydrogen Addition at Atmospheric and Elevated Pressures. Int. J. Hydrogen Energy 2011, 36, 13171–13180. [Google Scholar] [CrossRef]
- Fu, J.; Deng, B.; Wang, Y.; Yang, J.; Zhang, D.; Xu, Z.; Liu, J. Numerical Study and Correlation Development on Laminar Burning Velocities of N-Butanol, Iso-Octane and Their Blends: Focusing on Diluent and Blend Ratio Effects. Fuel 2014, 124, 102–112. [Google Scholar] [CrossRef]
- Heywood, J.B. Internal Combustion Engine Fundamentals; McGraw-Hill Education: New York, NY, USA, 1988; 930p. [Google Scholar]
- Park, C.; Lee, S.; Kim, C.; Choi, Y. A Comparative Study of Lean Burn and Exhaust Gas Recirculation in an HCNG-Fueled Heavy-Duty Engine. Int. J. Hydrogen Energy 2017, 42, 26094–26101. [Google Scholar] [CrossRef]
- Shivapuji, A.M.; Dasappa, S. Quasi Dimensional Numerical Investigation of Syngas Fuelled Engine Operation: MBT Operation and Parametric Sensitivity Analysis. Appl. Therm. Eng. 2017, 124, 911–928. [Google Scholar] [CrossRef]
- Aleiferis, P.G.; Behringer, M.K. Modulation of Integral Length Scales of Turbulence in an Optical SI Engine by Direct Injection of Gasoline, Iso-Octane, Ethanol and Butanol Fuels. Fuel 2017, 189, 238–259. [Google Scholar] [CrossRef]
- Papagiannakis, R.G.; Zannis, T.C. Thermodynamic Analysis of Combustion and Pollutants Formation in a Wood-Gas Spark-Ignited Heavy-Duty Engine. Int. J. Hydrogen Energy 2013, 38, 12446–12464. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, X.; Kong, W.; Chen, Z. Laminar Flame Speeds of Lean High-Hydrogen Syngas at Normal and Elevated Pressures. Fuel 2016, 181, 958–963. [Google Scholar] [CrossRef]
- Irimescu, A.; Merola, S.S.; Tornatore, C.; Valentino, G. Development of a Semi-Empirical Convective Heat Transfer Correlation Based on Thermodynamic and Optical Measurements in a Spark Ignition Engine. Appl. Energy 2015, 157, 777–788. [Google Scholar] [CrossRef]
- Irimescu, A.; Di Iorio, S.; Merola, S.S.; Sementa, P.; Vaglieco, B.M. Evaluation of Compression Ratio and Blow-by Rates for Spark Ignition Engines Based on in-Cylinder Pressure Trace Analysis. Energy Convers. Manag. 2018, 162, 98–108. [Google Scholar] [CrossRef]
- Irimescu, A.; Merola, S.S.; Tornatore, C.; Valentino, G. Effect of Coolant Temperature on Air–Fuel Mixture Formation and Combustion in an Optical Direct Injection Spark Ignition Engine Fueled with Gasoline and Butanol. J. Energy Inst. 2017, 90, 452–465. [Google Scholar] [CrossRef]
- Merola, S.S.; Tornatore, C.; Irimescu, A.; Marchitto, L.; Valentino, G. Optical Diagnostics of Early Flame Development in a DISI (Direct Injection Spark Ignition) Engine Fueled with n-Butanol and Gasoline. Energy 2016, 108, 50–62. [Google Scholar] [CrossRef]
Component | Size | Unit |
---|---|---|
Total volume | 475 | cm3 |
Piston bore | 90 | mm |
Crevice volume | 9.3 | cm3 |
Stroke | 82 | mm |
Compression ratio | 9.68:1 | - |
Number of valves | 4 | 2 int, 2 exh |
Connecting rod | 144 | mm |
Intake valve diameter | 34 | mm |
Exhaust valve diameter | 26 | mm |
Open intake valve | 718 | CAD |
Close intake valve | 204 | CAD |
Open exhaust valve | 480 | CAD |
Close exhaust valve | 716 | CAD |
Intake valves lift | 10.5 | mm |
Exhaust valves lift | 9.3 | mm |
Fuel | CH4 (%) | H2 (%) | CO (%) | CO2 (%) | N2 (%) | CO/H2 (%) | DOD (%) | CH4/H2 (%) | LHV (MJ/kg) |
---|---|---|---|---|---|---|---|---|---|
Baseline | 100 | 0 | 0 | 0 | 0 | - | 0 | - | 50.18 |
Syngas 1 | 10 | 20 | 10 | 15 | 45 | 0.5 | 0.6 | 0.5 | 6.54 |
Syngas 2 | 15 | 30 | 15 | 30 | 10 | 0.5 | 0.4 | 0.5 | 10.15 |
Syngas 3 | 8.6 | 17.1 | 34.3 | 20 | 20 | 2.0 | 0.4 | 0.5 | 8.07 |
Instrument | Parameter | Measurement Technique | Accuracy | Maximum Uncertainty [%] |
---|---|---|---|---|
AVL 365C | Angle | Reflection light principle | 0.14 | |
HBM T40 | Torque | Strain gauge principle | 0.10 | |
Bosch LS44107 | Nernst principle | 1 | ||
AVL GU22C | Cylinder pressure | Principle of piezoelectricity | 1 | |
AVL Flowsonix FSA100 | Airflow | Ultrasonic transit-time difference method | 0.25 | |
ETU 427 | Camera trigger | Electric Pulse | 0.14 | |
PCO Dimax S1 | Pixel size | Referenced to the calibration image | 0.06 |
Parameter | Value |
---|---|
Engine speed [RPM] | 900 |
Lambda [λ] | 1.0/1.2/1.4 |
Injection pressure [bar] | 7.0 |
Spark advance [CAD BTDC] | 7.0 |
Fire cycles [-] | 200 |
Engine coolant temperature [K] | 330 |
Fuels | MFB 5% | MFB 10% | MFB 50% | |
---|---|---|---|---|
Methane | 1.0 | 11.3 | 13.7 | 26.7 |
1.2 | 13.2 | 16.0 | 29.7 | |
1.4 | 17.8 | 21.4 | 40.3 | |
Syngas 1 | 1.0 | 14.4 | 17.4 | 33.4 |
1.2 | 14.1 | 17.1 | 34.0 | |
1.4 | 17.3 | 20.9 | 41.4 | |
Syngas 2 | 1.0 | 11.8 | 14.5 | 29.1 |
1.2 | 11.7 | 14.4 | 29.3 | |
1.4 | 14.0 | 17.0 | 34.1 | |
Syngas 3 | 1.0 | 10.3 | 12.6 | 25.5 |
1.2 | 11.6 | 14.1 | 28.6 | |
1.4 | 14.0 | 17.1 | 34.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez-Boggio, S.; Lacava, P.T.; de Carvalho, F.S.; Curto-Risso, P. Combustion Diagnosis in a Spark-Ignition Engine Fueled with Syngas at Different CO/H2 and Diluent Ratios. Gases 2024, 4, 97-116. https://doi.org/10.3390/gases4020006
Martinez-Boggio S, Lacava PT, de Carvalho FS, Curto-Risso P. Combustion Diagnosis in a Spark-Ignition Engine Fueled with Syngas at Different CO/H2 and Diluent Ratios. Gases. 2024; 4(2):97-116. https://doi.org/10.3390/gases4020006
Chicago/Turabian StyleMartinez-Boggio, Santiago, Pedro Teixeira Lacava, Felipe Solferini de Carvalho, and Pedro Curto-Risso. 2024. "Combustion Diagnosis in a Spark-Ignition Engine Fueled with Syngas at Different CO/H2 and Diluent Ratios" Gases 4, no. 2: 97-116. https://doi.org/10.3390/gases4020006
APA StyleMartinez-Boggio, S., Lacava, P. T., de Carvalho, F. S., & Curto-Risso, P. (2024). Combustion Diagnosis in a Spark-Ignition Engine Fueled with Syngas at Different CO/H2 and Diluent Ratios. Gases, 4(2), 97-116. https://doi.org/10.3390/gases4020006