Efficiency of U.S. Oil and Gas Companies toward Energy Policies
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Stochastic Frontier Analysis Model
3.2. Inefficiency Modeling
4. Data
5. Empirical Results
5.1. Stochastic Frontier Analysis Results
5.2. Efficiency Analysis of Selected U.S. Oil and Gas Companies
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
U.S. Oil and Gas Companies | Mean | Standard Deviation | Minimum | Maximum | |
---|---|---|---|---|---|
1 | ABRAXAS PETROLEUM CORPORATION (AXAS) | 0.8155 | 0.0765 | 0.5968 | 0.9102 |
2 | ADAMS RESOURCES & ENERGY, INC. (AE) | 0.7803 | 0.0247 | 0.6515 | 0.8280 |
3 | ADINO ENERGY CORPORATION (ADNY) | 0.4835 | 0.2701 | 0.0395 | 0.9357 |
4 | AMERICAN EAGLE ENERGY CORPORATION (AMZG) | 0.4809 | 0.2617 | 0.0965 | 0.7803 |
5 | ANADARKO PETROLEUM CORPORATION (APC) | 0.8526 | 0.0705 | 0.6317 | 0.9389 |
6 | APCO OIL & GAS INTERNATIONAL, INC. (APAGF) | 0.8660 | 0.0317 | 0.7464 | 0.9160 |
7 | BLUE DOLPHIN ENERGY COMPANY (BDCO) | 0.6234 | 0.1607 | 0.2415 | 0.8406 |
8 | CHESAPEAKE ENERGY CORPORATION (CHK) | 0.8453 | 0.0569 | 0.6485 | 0.9278 |
9 | CHEVRON CORPORATION (CVX) | 0.7973 | 0.0458 | 0.6038 | 0.8472 |
10 | CLAYTON WILLIAMS ENERGY, INC. (CWEI) | 0.8162 | 0.0927 | 0.5135 | 0.9070 |
11 | CRIMSON EXPLORATION, INC. (CXPO) | 0.7492 | 0.1559 | 0.2503 | 0.8892 |
12 | DALECO RESOURCES CORPORATION (DLOV) | 0.4001 | 0.0969 | 0.1568 | 0.6452 |
13 | DOUBLE EAGLE PETROLEUM CO. (DBLE) | 0.7522 | 0.1168 | 0.4210 | 0.8826 |
14 | EARTHSTONE ENERGY, INC. (ESTE) | 0.8525 | 0.0561 | 0.6687 | 0.9217 |
15 | Energen Corporation (EGN) | 0.8143 | 0.0428 | 0.6440 | 0.8696 |
16 | EPL OIL & GAS, INC. (EPL) | 0.8106 | 0.0764 | 0.5685 | 0.8837 |
17 | EVOLUTION PETROLEUM CORPORATION (EPM) | 0.5306 | 0.2616 | 0.0671 | 0.9355 |
18 | FOREST OIL CORPORATION (FST) | 0.8445 | 0.0481 | 0.6541 | 0.9140 |
19 | FX ENERGY, INC. (FXEN) | 0.4597 | 0.1762 | 0.1755 | 0.7991 |
20 | GASCO ENERGY, INC. (GSXN) | 0.5081 | 0.2934 | 0.0072 | 0.8650 |
21 | GATEWAY ENERGY CORPORATION (GNRG) | 0.7367 | 0.0375 | 0.5782 | 0.7816 |
22 | GLEN ROSE PETROLEUM CORPORATION (GLRP) | 0.3999 | 0.2485 | 0.0130 | 0.7923 |
23 | GOODRICH PETROLEUM CORPORATION (GDP) | 0.7337 | 0.1297 | 0.3243 | 0.8737 |
24 | GULFPORT ENERGY CORPORATION (GPOR) | 0.8276 | 0.1172 | 0.3786 | 0.9316 |
25 | MARATHON OIL CORPORATION (MRO) | 0.7829 | 0.0646 | 0.5818 | 0.9103 |
26 | OASIS PETROLEUM, INC. (OAS) | 0.8332 | 0.0837 | 0.6185 | 0.9220 |
27 | PANHANDLE OIL & GAS, INC. (PHX) | 0.8605 | 0.0705 | 0.5923 | 0.9281 |
28 | PDC ENERGY, INC. (PDCE) | 0.7788 | 0.0754 | 0.4943 | 0.8871 |
29 | PETROQUEST ENERGY, INC. (PQ) | 0.7647 | 0.2109 | 0.1368 | 0.9010 |
30 | PYRAMID OIL COMPANY (PDO) | 0.7921 | 0.1020 | 0.3972 | 0.8894 |
31 | ROYALE ENERGY, INC. (ROYL) | 0.7563 | 0.0971 | 0.4206 | 0.8899 |
32 | SM ENERGY COMPANY (SM) | 0.8301 | 0.0825 | 0.5685 | 0.9090 |
33 | SOUTHWESTERN ENERGY COMPANY (SWN) | 0.8256 | 0.0474 | 0.6590 | 0.8869 |
34 | SPINDLETOP OIL & GAS CO. (SPND) | 0.8116 | 0.0958 | 0.5517 | 0.9202 |
35 | STONE ENERGY CORPORATION (SGY) | 0.8625 | 0.0516 | 0.6501 | 0.9360 |
36 | STRAT PETROLEUM, LTD. | 0.6253 | 0.2429 | 0.1911 | 0.9697 |
37 | SWIFT ENERGY COMPANY (SFY) | 0.8695 | 0.0503 | 0.6798 | 0.9429 |
38 | TEXAS VANGUARD OIL COMPANY (TVOC) | 0.8215 | 0.0465 | 0.6384 | 0.9072 |
39 | THE RESERVE PETROLEUM COMPANY (RSRV) | 0.9940 | 0.0286 | 0.8257 | 0.9998 |
40 | VAALCO ENERGY, INC. (EGY) | 0.7725 | 0.2910 | 0.1561 | 0.9932 |
41 | ALTEX INDUSTRIES, INC. (ALTX) | 0.5030 | 0.2636 | 0.0413 | 0.8182 |
42 | APACHE CORPORATION (APA) | 0.8822 | 0.0657 | 0.6686 | 0.9485 |
43 | CHINA NORTH EAST PETROLEUM HOLDINGS LIMITED (CNEP) | 0.8768 | 0.0827 | 0.6075 | 0.9325 |
44 | CONOCOPHILLIPS (COP) | 0.8024 | 0.0550 | 0.5999 | 0.8623 |
45 | CHEVRON CORPORATION (CVX) | 0.7975 | 0.0459 | 0.6038 | 0.8472 |
46 | DEVON ENERGY CORPORATION (DVN) | 0.8648 | 0.0425 | 0.7087 | 0.9187 |
47 | EOG RESOURCES, INC. (EOG) | 0.8626 | 0.0677 | 0.6597 | 0.9407 |
48 | EXXON MOBIL CORPORATION (XOM) | 0.8135 | 0.0408 | 0.6402 | 0.8607 |
49 | MURPHY OIL CORPORATION (MUR) | 0.7809 | 0.0267 | 0.6439 | 0.8192 |
50 | NEWFIELD EXPLORATION COMPANY (NFX) | 0.8616 | 0.0460 | 0.6995 | 0.9227 |
51 | NOBLE ENERGY, INC. (NBL) | 0.8486 | 0.0628 | 0.6388 | 0.9180 |
52 | OCCIDENTAL PETROLEUM CORPORATION (OXY) | 0.8513 | 0.0593 | 0.6268 | 0.9189 |
53 | ZAZA ENERGY CORPORATION (ZAZA) | 0.7313 | 0.1470 | 0.3695 | 0.9263 |
References
- Jarboui, S. Renewable energies and operational and environmental efficiencies of the US oil and gas companies: A True Fixed Effect model. Energy Rep. 2021, 7, 8667–8676. [Google Scholar] [CrossRef]
- Jarboui, S. Operational and environmental efficiency of U.S. oil and gas companies towards energy transition policies: A comparative empirical analysis. Aust. Econ. Pap. 2021, 1–24. [Google Scholar] [CrossRef]
- Kazemitash, N.; Fazlollahtabar, H.; Abbaspour, M. Rough Best-Worst Method for Supplier Selection in Biofuel Companies based on Green criteria. Oper. Res. Eng. Sci. Theory Appl. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Atris, A.M.; Goto, M. Vertical structure and efficiency assessment of the US oil & gas companies. Resour. Policy 2019, 63, 101437. [Google Scholar]
- Larsen, P.H.; Goldman, C.A.; Satchwell, A. Evolution of the U.S. energy service company industry: Market size and project performance from 1990–2008. Energy Policy 2012, 50, 802–820. [Google Scholar] [CrossRef]
- Jarboui, S.; Forget, P.; Boujelbene, Y. Efficiency evaluation in public road transport: A stochastic frontier analysis. Transport 2015, 30, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Jarboui, S.; Guetat, H.; Boujelbene, Y. Evaluation of hotels performance and corporate governance mechanisms: Empirical evidence from the Tunisian context. J. Hosp. Tour. Manag. 2015, 25, 30–37. [Google Scholar] [CrossRef]
- Kashani, H.A. Regulation and efficiency: An empirical analysis of the United Kingdom continental shelf petroleum industry. Energy Policy 2005, 33, 915–925. [Google Scholar] [CrossRef]
- Kashani, H.A. State intervention causing inefficiency: An empirical analysis of the Norwegian Continental Shelf. Energy Policy 2005, 33, 1998–2009. [Google Scholar] [CrossRef]
- Al-Obaidan, A.M.; Scully, G.W. Efficiency differences between private and state-owned enterprises in the international petroleum industry. Appl. Econ. 1991, 23, 237–246. [Google Scholar] [CrossRef]
- Eller, S.L.; Hartley, P.R.; Medlock, K.B. Empirical evidence on the operational efficiency of national oil companies. Empir. Econ. 2011, 40, 623–643. [Google Scholar] [CrossRef]
- Wolf, C. Does ownership matter? The performance and efficiency of State Oil vs. Private Oil (1987–2006). Energy Policy 2009, 37, 2642–2652. [Google Scholar] [CrossRef] [Green Version]
- Jarboui, S.; Forget, P.; Boujelbene, Y. Public road transport efficiency: A literature review via the classification scheme. Public Transp. 2012, 4, 101–128. [Google Scholar] [CrossRef]
- Farrell, M.J. The measurement of productive efficiency. J. R. Stat. Soc. 1957, 120, 253–290. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- Boame, A.K. The technical efficiency of Canadian urban transit systems. Transp. Res. Part E Logist. Transp. Rev. 2004, 40, 401–416. [Google Scholar] [CrossRef]
- Aigner, D.J.; Chu, S.F. On estimating the industry production function. Am. Econ. Rev. 1968, 58, 826–839. [Google Scholar]
- Aigner, D.; Lovell, C.A.K.; Schmidt, P. Formulation and estimation of stochastic frontier production function models. J. Econom. 1977, 6, 21–37. [Google Scholar] [CrossRef]
- Mrabet, A.; Jarboui, S. Do institutional factors affect the efficiency of GDP and CO2 emission? Evidence from Gulf and Maghreb countries. Int. J. Glob. Energy Issues 2017, 40, 259–276. [Google Scholar] [CrossRef]
- Ben Mohamed, E.; Jarboui, S. Do corporate governance mechanisms affect public transport firm value? J. Knowl. Econ. 2017, 8, 916–928. [Google Scholar]
- Battese, G.E.; Coelli, T.J. A model for technical inefficiency effects in a stochastic frontier production function for panel data. Empir. Econ. 1995, 20, 325–332. [Google Scholar] [CrossRef] [Green Version]
- Jarboui, S. Managerial psychology and transport firms efficiency: A stochastic frontier analysis. Rev. Manag. Sci. 2016, 10, 365–379. [Google Scholar] [CrossRef]
Variables | Mean | S.D. | Min. | Max. |
---|---|---|---|---|
Panel A | ||||
Net revenues (million USD) | 18.6540 | 3.7934 | 5.7071 | 26.7952 |
Total assets (million USD) | 18.6008 | 3.4909 | 11.9516 | 26.6616 |
Number of employee (persons) | 5.0372 | 2.9561 | 0.0000 | 11.4917 |
(OperExp)2 | 179.0797 | 67.7074 | 71.4198 | 355.4196 |
(NmbreEmp)2 | 17.0501 | 17.4421 | 0.0000 | 66.0296 |
Exp × Emp | 103.5572 | 77.6241 | 0.0000 | 301.6941 |
Panel B | ||||
Petroleum price | 3.8592 | 0.5970 | 2.6686 | 4.6019 |
Petroleum reserves (trillion tons) | 9.9941 | 0.0691 | 9.8585 | 10.1866 |
Petroleum consumption (trillion tons) | 9.8878 | 0.0374 | 9.8285 | 9.9428 |
Petroleum production (trillion tons) | 9.1131 | 0.0760 | 9.0261 | 9.3160 |
Natural gas price | 1.5170 | 0.4284 | 0.7372 | 2.1815 |
Natural gas consumption (trillion tons) | 3.1578 | 0.0411 | 3.1018 | 3.2605 |
Natural gas production (trillion tons) | 3.0135 | 0.0776 | 2.9208 | 3.2024 |
Natural gas reserves (trillion tons) | 2.1904 | 0.0219 | 2.1668 | 2.2385 |
Nuclear production (trillion Btu) | 2.0913 | 0.0454 | 1.9556 | 2.1348 |
Renewable energy production (trillion Btu) | 1.8938 | 0.1448 | 1.6417 | 2.2231 |
Nuclear consumption (trillion Btu) | 2.0913 | 0.0454 | 1.9556 | 2.1348 |
Renewable energy consumption (trillion Btu) | 1.8932 | 0.1420 | 1.6415 | 2.2121 |
Variable | Parameters | Estimated MLE Coefficients | ||
---|---|---|---|---|
Model 1 | Model 2 | Model 3 | ||
Constant | −1.075 | −1.317 | −0.924 | |
(−1.027) | (−1.294) | (−0.891) | ||
Ln total assets | 1.190 | 1.207 | 1.165 | |
(7.659) *** | (8.079) *** | (7.555) *** | ||
Ln number of employees | 0.033 | 0.071 | 0.0718 | |
(2.091) ** | (2.057) ** | (2.084) ** | ||
(Ln total assets)2 | −0.011 | −0.010 | −0.0089 | |
(−1.931) ** | (−1.945) ** | (−1.728) * | ||
(Ln number of employees)2 | −0.016 | −0.028 | −0.0223 | |
(0.738) | (−1.360) | (−0.858) | ||
(Ln total assets) × (Ln number of employees) | 0.973 | 0.885 | 0.869 | |
(2.024) ** | (2.097) ** | (2.030) ** | ||
Constant | 5.913 | 4.301 | 3.685 | |
(4.033) *** | (2.222) ** | (2.121) ** | ||
Petroleum price | −0.048 | - | - | |
(6.071) *** | - | - | ||
Petroleum reserves | 0.022 | - | - | |
(6.214) *** | - | - | ||
Petroleum consumption | −0.017 | - | - | |
(−2.285) ** | - | - | ||
Petroleum production | −0.032 | - | - | |
(−6.332) *** | - | - | ||
Natural gas price | - | −5.928 | - | |
- | (2.655) *** | - | ||
Natural gas consumption | - | −7.198 | - | |
- | (−2.023) ** | - | ||
Natural gas production | - | −21.683 | - | |
- | (2.257) ** | - | ||
Natural gas reserves | - | 28.131 | - | |
- | (2.171) ** | - | ||
Nuclear production | - | - | 15.068 | |
- | - | (4.360) *** | ||
Renewable energy production | - | - | 6.929 | |
- | - | (5.277) *** | ||
Nuclear consumption | - | - | 15.068 | |
- | - | (4.360) *** | ||
Renewable energy consumption | - | - | 9.657 | |
- | - | (4.776) *** | ||
Sigma-squared | 11.172 | 12.999 | 15.142 | |
(6.616) *** | (2.600) *** | (4.087) *** | ||
Gamma | 0.989 | 0.990 | 0.991 | |
(472.586) *** | (251.092) *** | (549.088) *** | ||
Log likelihood function | −664.944 | −666.967 | −628.307 |
Period | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
1998 | 0.6484 | 0.1586 | 0.1368 | 0.8257 |
1999 | 0.7064 | 0.1696 | 0.0351 | 0.9207 |
2000 | 0.7969 | 0.1820 | 0.0428 | 0.9419 |
2001 | 0.7767 | 0.1603 | 0.0072 | 0.9191 |
2002 | 0.7326 | 0.1706 | 0.0258 | 0.9432 |
2003 | 0.7971 | 0.1587 | 0.1176 | 0.9351 |
2004 | 0.7810 | 0.1861 | 0.0395 | 0.9392 |
2005 | 0.8440 | 0.1779 | 0.3138 | 0.9357 |
2006 | 0.7763 | 0.1958 | 0.0054 | 0.9228 |
2007 | 0.7357 | 0.2150 | 0.0413 | 0.9325 |
2008 | 0.6216 | 0.1812 | 0.0680 | 0.9301 |
2009 | 0.5760 | 0.1967 | 0.0130 | 0.9206 |
2010 | 0.7154 | 0.2095 | 0.0438 | 0.9354 |
2011 | 0.7816 | 0.1822 | 0.0466 | 0.9180 |
2012 | 0.7746 | 0.1550 | 0.1729 | 0.9406 |
2013 | 0.7457 | 0.2050 | 0.0403 | 0.9225 |
2014 | 0.8571 | 0.1812 | 0.0680 | 0.9321 |
2015 | 0.9010 | 0.1861 | 0.0395 | 0.9592 |
2016 | 0.8246 | 0.1958 | 0.0054 | 0.9228 |
2017 | 0.7664 | 0.1696 | 0.0351 | 0.9107 |
2018 | 0.7536 | 0.1586 | 0.1368 | 0.8057 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jarboui, S.; Ghorbel, A.; Jeribi, A. Efficiency of U.S. Oil and Gas Companies toward Energy Policies. Gases 2022, 2, 61-73. https://doi.org/10.3390/gases2020004
Jarboui S, Ghorbel A, Jeribi A. Efficiency of U.S. Oil and Gas Companies toward Energy Policies. Gases. 2022; 2(2):61-73. https://doi.org/10.3390/gases2020004
Chicago/Turabian StyleJarboui, Sami, Achraf Ghorbel, and Ahmed Jeribi. 2022. "Efficiency of U.S. Oil and Gas Companies toward Energy Policies" Gases 2, no. 2: 61-73. https://doi.org/10.3390/gases2020004