Adsorption Factors in Enhanced Coal Bed Methane Recovery: A Review
Abstract
:1. Introduction
2. Methane in Coal
3. Gas Adsorption Characteristic of Coal
3.1. Effects of Sample Condition
3.2. Moisture Effects
3.3. Ash Yield Effects
3.4. Maceral Effects
3.5. Coal Pore Effects
4. Gas Injection for ECBM Recovery
4.1. CO2 Injection
4.2. N2 Injection
4.3. Mixed Gas (CO2-N2) Injection
5. Gas Adsorption
5.1. Adsorption Calculations
5.1.1. Volumetric Methods
5.1.2. Gravimetric Methods
5.2. Modeling for the Prediction of Coal Adsorption
5.3. Thermodynamic Parameters
5.4. Adsorption Isotherms
5.4.1. Langmuir Method
5.4.2. BET Method
5.4.3. Dubinin Method
5.5. Modeling for Predicting Gas Adsorption in Coal Pores
5.5.1. DFT
5.5.2. GCMC
5.6. Adsorption into the Coal Chemical Structure
6. Adsorption Effects
7. Discussion and Prospects for Future Research
8. Conclusions
- Moisture
- Maceral and pore size
- Gas characteristics
- Cutting-edge methods used to understand adsorption
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alexis, D.A.; Karpyn, Z.T.; Ertekin, T.; Crandall, D. Fracture permeability and relative permeability of coal and their dependence on stress conditions. J. Unconv. Oil Gas Resour. 2015, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Crosdale, P.J.; Beamish, B.; Valix, M. Coalbed methane sorption related to coal composition. Int. J. Coal Geol. 1998, 35, 147–158. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, N.; Liu, X.; Wu, X.; Chen, J.; Ma, L. Characteristics of Pore Volume Distribution and Methane Adsorption on Shales. Adsorpt. Sci. Technol. 2015, 33, 915–938. [Google Scholar] [CrossRef]
- Bae, J.-S.; Bhatia, S.K.; Rudolph, V.; Massarotto, P. Pore Accessibility of Methane and Carbon Dioxide in Coals. Energy Fuels 2009, 23, 3319–3327. [Google Scholar] [CrossRef]
- Lu, T.; Yu, H.; Zhou, T.; Mao, J.; Guo, B. Improvement of methane drainage in high gassy coal seam using waterjet technique. Int. J. Coal Geol. 2009, 79, 40–48. [Google Scholar] [CrossRef]
- Keshavarz, A.; Badalyan, A.; Carageorgos, T.; Bedrikovetsky, P.; Johnson, R. Stimulation of coal seam permeability by micro-sized graded proppant placement using selective fluid properties. Fuel 2015, 144, 228–236. [Google Scholar] [CrossRef]
- Umezaki, T.; Kawamura, T.; Okamoto, K.; Hattori, A.; Kobayashi, Y. Swelling properties and coefficient of permeability of friction-reducing polymer for pull-out of temporary sheet piles. Soils Found. 2018, 58, 797–807. [Google Scholar] [CrossRef]
- Ahamed, M.; Perera, M.; Dong-Yin, L.; Ranjith, P.; Matthai, S. Proppant damage mechanisms in coal seam reservoirs during the hydraulic fracturing process: A review. Fuel 2019, 253, 615–629. [Google Scholar] [CrossRef]
- Lyu, S.; Wang, S.; Chen, X.; Shah, S.; Li, R.; Xiao, Y.; Dong, Q.; Gu, Y. Experimental study of a degradable polymer drilling fluid system for coalbed methane well. J. Pet. Sci. Eng. 2019, 178, 678–690. [Google Scholar] [CrossRef]
- Li, Z.; Wei, G.; Liang, R.; Shi, P.; Wen, H.; Zhou, W. LCO2-ECBM technology for preventing coal and gas outburst: Integrated effect of permeability improvement and gas displacement. Fuel 2021, 285, 119219. [Google Scholar] [CrossRef]
- Zarrouk, S.J.; Moore, T. Preliminary reservoir model of enhanced coalbed methane (ECBM) in a subbituminous coal seam, Huntly Coalfield, New Zealand. Int. J. Coal Geol. 2009, 77, 153–161. [Google Scholar] [CrossRef]
- Shimada, S.; Li, H.; Oshima, Y.; Adachi, K. Displacement behavior of CH4 adsorbed on coals by injecting pure CO2, N2, and CO2–N2 mixture. Environ. Earth Sci. 2005, 49, 44–52. [Google Scholar] [CrossRef]
- Seomoon, H.; Lee, M.; Sung, W. Analysis of methane recovery through CO 2 –N 2 mixed gas injection considering gas diffusion phenomenon in coal seam. Energy Explor. Exploit. 2016, 34, 661–675. [Google Scholar] [CrossRef] [Green Version]
- Oudinot, A.Y.; Riestenberg, D.E.; Koperna, G.J. Enhanced Gas Recovery and CO2 Storage in Coal Bed Methane Reservoirs with N2 Co-Injection. Energy Procedia 2017, 114, 5356–5376. [Google Scholar] [CrossRef]
- Cho, S.; Kim, S.; Kim, J. Life-cycle energy, cost, and CO2 emission of CO2-enhanced coalbed methane (ECBM) recovery framework. J. Nat. Gas Sci. Eng. 2019, 70, 102953. [Google Scholar] [CrossRef]
- Qi, L.; Tang, X.; Wang, Z.; Peng, X. Pore characterization of different types of coal from coal and gas outburst disaster sites using low temperature nitrogen adsorption approach. Int. J. Min. Sci. Technol. 2017, 27, 371–377. [Google Scholar] [CrossRef]
- Godec, M.; Koperna, G.; Gale, J. CO2-ECBM: A Review of its Status and Global Potential. Energy Procedia 2014, 63, 5858–5869. [Google Scholar] [CrossRef] [Green Version]
- Mukherjee, M.; Misra, S. A review of experimental research on Enhanced Coal Bed Methane (ECBM) recovery via CO2 sequestration. Earth-Sci. Rev. 2018, 179, 392–410. [Google Scholar] [CrossRef]
- Harpalani, S.; Ouyang, S. A New Laboratory Technique to Estimate Gas Diffusion Characteristics of Coals. In Proceedings of the International Coalbed Methane Symposium, Tuscaloosa, AL, USA, 11–17 June 1999; pp. 141–149. [Google Scholar]
- Vishal, V.; Mahanta, B.; Pradhan, S.; Singh, T.; Ranjith, P. Simulation of CO2 enhanced coalbed methane recovery in Jharia coalfields, India. Energy 2018, 159, 1185–1194. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. A theoretical model for gas adsorption-induced coal swelling. Int. J. Coal Geol. 2007, 69, 243–252. [Google Scholar] [CrossRef]
- Kim, H.J.; Shi, Y.; He, J.; Lee, H.-H.; Lee, C.-H. Adsorption characteristics of CO2 and CH4 on dry and wet coal from subcritical to supercritical conditions. Chem. Eng. J. 2011, 171, 45–53. [Google Scholar] [CrossRef]
- Hol, S.; Peach, C.J.; Spiers, C.J. Applied stress reduces the CO2 sorption capacity of coal. Int. J. Coal Geol. 2011, 85, 128–142. [Google Scholar] [CrossRef]
- Pan, Z.; Connell, L.D. Modelling permeability for coal reservoirs: A review of analytical models and testing data. Int. J. Coal Geol. 2012, 92, 1–44. [Google Scholar] [CrossRef]
- White, C.M.; Smith, D.H.; Jones, K.L.; Goodman, A.L.; Jikich, S.A.; LaCount, R.B.; DuBose, S.B.; Ozdemir, E.; Morsi, A.B.I.; Schroeder, K.T. Sequestration of Carbon Dioxide in Coal with Enhanced Coalbed Methane Recovery—A Review. Energy Fuels 2005, 19, 659–724. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y. CBM and CO2-ECBM related sorption processes in coal: A review. Int. J. Coal Geol. 2011, 87, 49–71. [Google Scholar] [CrossRef]
- Susilawati, R.; Esterle, J.S.; Golding, S.D.; Mares, T.E. Microbial Methane Potential for the South Sumatra Basin Coal: Formation Water Screening and Coal Substrate Bioavailability. Energy Procedia 2015, 65, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Saghafi, A. Potential for ECBM and CO2 storage in mixed gas Australian coals. Int. J. Coal Geol. 2010, 82, 240–251. [Google Scholar] [CrossRef]
- Ahmed, M.; Smith, J. Biogenic methane generation in the degradation of eastern Australian Permian coals. Org. Geochem. 2001, 32, 809–816. [Google Scholar] [CrossRef]
- Moore, T.A. Coalbed methane: A review. Int. J. Coal Geol. 2012, 101, 36–81. [Google Scholar] [CrossRef]
- Scott, A.R.; Kaiser, W.R.; Ayers, W.B. Thermogenic and secondary biogenic gases, San Juan Basin, Colorado and New Mexico—Implications for coalbed gas producibility. Am. Assoc. Pet. Geol. Bull. 1994, 78, 1186–1209. [Google Scholar] [CrossRef]
- Rice, D.D. Composition and Origins of Coalbed Gas. AAPG Bull. 1993, 77. [Google Scholar] [CrossRef]
- Al-Mahmoud, M.J.; Inan, S.; Al-Duaiji, A.A. Coal occurrence in the Jurassic Dhruma Formation in Saudi Arabia: Inferences on its gas and surface mining potential. Int. J. Coal Geol. 2014, 124, 5–10. [Google Scholar] [CrossRef]
- Zheng, Y.; Li, Q.; Yuan, C.; Tao, Q.; Zhao, Y.; Zhang, G.; Liu, J. Influence of temperature on adsorption selectivity: Coal-based activated carbon for CH4 enrichment from coal mine methane. Powder Technol. 2019, 347, 42–49. [Google Scholar] [CrossRef]
- Merkel, A.; Gensterblum, Y.; Krooss, B.; Amann-Hildenbrand, A. Competitive sorption of CH4, CO2 and H2O on natural coals of different rank. Int. J. Coal Geol. 2015, 150–151, 181–192. [Google Scholar] [CrossRef]
- Levine, J.R. Coalification: The Evolution of Coal as a Source Rock and Reservoir Rock for Oil and Gas. In Hydrocarbon in Coal; Law, B.E., Rice, D.D., Eds.; American Association of Petroleum Geologists Studies in Geology: Tuscaloosa, AL, USA, 1993; Volume 38, pp. 39–77. [Google Scholar]
- Li, Y.; Zhang, C.; Tang, D.; Gan, Q.; Niu, X.; Wang, K.; Shen, R. Coal pore size distributions controlled by the coalification process: An experimental study of coals from the Junggar, Ordos and Qinshui basins in China. Fuel 2017, 206, 352–363. [Google Scholar] [CrossRef]
- Olajossy, A. Some parameters of coal methane system that cause very slow release of methane from virgin coal beds (CBM). Int. J. Min. Sci. Technol. 2017, 27, 321–326. [Google Scholar] [CrossRef]
- Pone, J.D.N.; Halleck, P.M.; Mathews, J.P. Sorption Capacity and Sorption Kinetic Measurements of CO2 and CH4 in Confined and Unconfined Bituminous Coal. Energy Fuels 2009, 23, 4688–4695. [Google Scholar] [CrossRef]
- Kim, D.; Seo, Y.; Kim, J.; Han, J.; Lee, Y. Experimental and Simulation Studies on Adsorption and Diffusion Characteristics of Coalbed Methane. Energies 2019, 12, 3445. [Google Scholar] [CrossRef] [Green Version]
- Busch, A.; Krooss, B.; Gensterblum, Y.; van Bergen, F.; Pagnier, H. High-pressure adsorption of methane, carbon dioxideand their mixtures on coals with a special focus on the preferential sorption behaviour. J. Geochem. Explor. 2003, 78–79, 671–674. [Google Scholar] [CrossRef]
- Mastalerz, M.; Gluskoter, H.; Rupp, J. Carbon dioxide and methane sorption in high volatile bituminous coals from Indiana, USA. Int. J. Coal Geol. 2004, 60, 43–55. [Google Scholar] [CrossRef]
- Battistutta, E.; van Hemert, P.; Lutynski, M.; Bruining, H.; Wolf, K.-H. Swelling and sorption experiments on methane, nitrogen and carbon dioxide on dry Selar Cornish coal. Int. J. Coal Geol. 2010, 84, 39–48. [Google Scholar] [CrossRef]
- Ozdemir, E.; I Morsi, B.; Schroeder, K. CO2 adsorption capacity of argonne premium coals. Fuel 2004, 83, 1085–1094. [Google Scholar] [CrossRef]
- Skoczylas, N.; Pajdak, A.; Młynarczuk, M. CO2 Adsorption–Desorption Kinetics from the Plane Sheet of Hard Coal and Associated Shrinkage of the Material. Energies 2019, 12, 4013. [Google Scholar] [CrossRef] [Green Version]
- Švábová, M.; Weishauptová, Z.; Přibyl, O. The effect of moisture on the sorption process of CO2 on coal. Fuel 2012, 92, 187–196. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y.; Krooss, B.; Littke, R. Methane and carbon dioxide adsorption–diffusion experiments on coal: Upscaling and modeling. Int. J. Coal Geol. 2004, 60, 151–168. [Google Scholar] [CrossRef]
- Crosdale, P.J.; Moore, T.; Mares, T. Influence of moisture content and temperature on methane adsorption isotherm analysis for coals from a low-rank, biogenically-sourced gas reservoir. Int. J. Coal Geol. 2008, 76, 166–174. [Google Scholar] [CrossRef]
- Chen, M.-Y.; Cheng, Y.-P.; Li, H.-R.; Wang, L.; Jin, K.; Dong, J. Impact of inherent moisture on the methane adsorption characteristics of coals with various degrees of metamorphism. J. Nat. Gas Sci. Eng. 2018, 55, 312–320. [Google Scholar] [CrossRef]
- Guo, H.; Cheng, Y.; Wang, L.; Lu, S.; Jin, K. Experimental study on the effect of moisture on low-rank coal adsorption characteristics. J. Nat. Gas Sci. Eng. 2015, 24, 245–251. [Google Scholar] [CrossRef]
- Hao, D.; Zhang, L.; Li, M.; Tu, S.; Zhang, C.; Bai, Q.; Wang, C. Experimental study of the moisture content influence on CH4 adsorption and deformation characteristics of cylindrical bituminous coal core. Adsorpt. Sci. Technol. 2018, 36, 1512–1537. [Google Scholar] [CrossRef] [Green Version]
- Cai, Y.; Liu, D.; Pan, Z.; Yao, Y.; Li, J.; Qiu, Y. Pore structure and its impact on CH4 adsorption capacity and flow capability of bituminous and subbituminous coals from Northeast China. Fuel 2013, 103, 258–268. [Google Scholar] [CrossRef]
- Laxminarayana, C.; Crosdale, P.J. Role of coal type and rank on methane sorption characteristics of Bowen Basin, Australia coals. Int. J. Coal Geol. 1999, 40, 309–325. [Google Scholar] [CrossRef]
- Li, J.; Li, B. Evolution features of coal matrix porosity with the variation in temperature and stress. IOP Conf. Ser. Mater. Sci. Eng. 2017, 191, 12050. [Google Scholar] [CrossRef] [Green Version]
- Siemons, N.; Busch, A. Measurement and interpretation of supercritical CO2 sorption on various coals. Int. J. Coal Geol. 2007, 69, 229–242. [Google Scholar] [CrossRef]
- Kumar, H.; Mishra, M.K.; Mishra, S. Sorption capacity of Indian coal and its variation with rank parameters. J. Pet. Explor. Prod. Technol. 2019, 9, 2175–2184. [Google Scholar] [CrossRef] [Green Version]
- Yalçin, E.; Durucan, Ş. Methane capacities of Zonguldak coals and the factors affecting methane adsorption. Min. Sci. Technol. 1991, 13, 215–222. [Google Scholar] [CrossRef]
- Faiz, M.M.; Aziz, N.I.; Hutton, A.C.; Jones, B.G. Porosity and gas sorption capacity of some eastern Australian coals in relation to coal rank and composition. Coalbed Methane Symp. 1992, 19, 9–13. [Google Scholar]
- Karayiğit, A.I.; Mastalerz, M.; Oskay, R.G.; Buzkan, I. Bituminous coal seams from underground mines in the Zonguldak Basin (NW Turkey): Insights from mineralogy, coal petrography, Rock-Eval pyrolysis, and meso-and microporosity. Int. J. Coal Geol. 2018, 199, 91–112. [Google Scholar] [CrossRef]
- Fitzgerald, J.; Pan, Z.; Sudibandriyo, M.; Robinson, J.R.; Gasem, K.; Reeves, S. Adsorption of methane, nitrogen, carbon dioxide and their mixtures on wet Tiffany coal. Fuel 2005, 84, 2351–2363. [Google Scholar] [CrossRef]
- Bustin, R.; Clarkson, C. Geological controls on coalbed methane reservoir capacity and gas content. Int. J. Coal Geol. 1998, 38, 3–26. [Google Scholar] [CrossRef]
- Shen, J.; Qin, Y.; Zhao, J. Maceral Contribution to Pore Size Distribution in Anthracite in the South Qinshui Basin. Energy Fuels 2019, 33, 7234–7243. [Google Scholar] [CrossRef]
- Rodrigues, C.F.A.; de Sousa, M.J.L. The measurement of coal porosity with different gases. Int. J. Coal Geol. 2002, 48, 245–251. [Google Scholar] [CrossRef] [Green Version]
- Beamish, B.; Crosdale, P.J. Instantaneous outbursts in underground coal mines: An overview and association with coal type. Int. J. Coal Geol. 1998, 35, 27–55. [Google Scholar] [CrossRef]
- Karacan, C.; Mitchell, G.D. Behavior and effect of different coal microlithotypes during gas transport for carbon dioxide sequestration into coal seams. Int. J. Coal Geol. 2003, 53, 201–217. [Google Scholar] [CrossRef]
- Larsen, J.W. The effects of dissolved CO2 on coal structure and properties. Int. J. Coal Geol. 2004, 57, 63–70. [Google Scholar] [CrossRef]
- Unsworth, J.F.; Fowler, C.S.; Jones, L.F. Moisture in coal: 2. Maceral effects on pore structure. Fuel 1989, 68, 18–26. [Google Scholar] [CrossRef]
- Keshavarz, A.; Sakurovs, R.; Grigore, M.; Sayyafzadeh, M. Effect of maceral composition and coal rank on gas diffusion in Australian coals. Int. J. Coal Geol. 2017, 173, 65–75. [Google Scholar] [CrossRef]
- Brandani, S.; Mangano, E.; Sarkisov, L. Net, excess and absolute adsorption and adsorption of helium. Adsorption 2016, 22, 261–276. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, R.; Huang, J.; Li, Z.; Zhao, Z.; Zeng, Z. Effects of pore structure and methane adsorption in coal with alkaline treatment. Fuel 2019, 254, 115600. [Google Scholar] [CrossRef]
- Bakshi, T.; Prusty, B.; Pathak, K.; Nayak, B.; Mani, D.; Pal, S. Source rock characteristics and pore characterization of Indian shale. J. Nat. Gas Sci. Eng. 2017, 45, 761–770. [Google Scholar] [CrossRef]
- Qin, L.; Li, S.; Zhai, C.; Lin, H.; Zhao, P.; Yan, M.; Ding, Y.; Shi, Y. Joint analysis of pores in low, intermediate, and high rank coals using mercury intrusion, nitrogen adsorption, and nuclear magnetic resonance. Powder Technol. 2020, 362, 615–627. [Google Scholar] [CrossRef]
- Li, S.; Tang, D.; Xu, H.; Yang, Z. The pore-fracture system properties of coalbed methane reservoirs in the Panguan Syncline, Guizhou, China. Geosci. Front. 2012, 3, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Liu, D.; Cai, Y.; Wang, Y.; Teng, J. Adsorption pore structure and its fractal characteristics of coals by N2 adsorption/desorption and FESEM image analyses. Fuel 2019, 257, 116031. [Google Scholar] [CrossRef]
- Clarkson, C.; Bustin, R. The effect of pore structure and gas pressure upon the transport properties of coal: A laboratory and modeling study. 1. Isotherms and pore volume distributions. Fuel 1999, 78, 1333–1344. [Google Scholar] [CrossRef]
- Parkash, S.; Chakrabartty, S. Microporosity in Alberta Plains coals. Int. J. Coal Geol. 1986, 6, 55–70. [Google Scholar] [CrossRef]
- Sun, W.; Feng, Y.; Jiang, C.; Chu, W. Fractal characterization and methane adsorption features of coal particles taken from shallow and deep coalmine layers. Fuel 2015, 155, 7–13. [Google Scholar] [CrossRef]
- Yao, Y.; Liu, D. Effects of igneous intrusions on coal petrology, pore-fracture and coalbed methane characteristics in Hongyang, Handan and Huaibei coalfields, North China. Int. J. Coal Geol. 2012, 96–97, 72–81. [Google Scholar] [CrossRef]
- Staib, G.; Sakurovs, R.; Gray, E.M.A. A pressure and concentration dependence of CO2 diffusion in two Australian bituminous coals. Int. J. Coal Geol. 2013, 116–117, 106–116. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Z.; Zhang, R.; Wang, G.; Yu, H.; Sun, G.; Chen, L. CO2 injection in coal: Advantages and influences of temperature and pressure. Fuel 2018, 236, 493–500. [Google Scholar] [CrossRef]
- Yamazaki, T.; Aso, K.; Chinju, J. Japanese potential of CO2 sequestration in coal seams. Appl. Energy 2006, 83, 911–920. [Google Scholar] [CrossRef]
- Busch, A.; Gensterblum, Y.; Krooss, B.M. High-Pressure Sorption of Nitrogen, Carbon Dioxide, and their Mixtures on Argonne Premium Coals. Energy Fuels 2007, 21, 1640–1645. [Google Scholar] [CrossRef]
- Cui, X.; Bustin, R.; Dipple, G. Selective transport of CO2, CH4, and N2 in coals: Insights from modeling of experimental gas adsorption data. Fuel 2004, 83, 293–303. [Google Scholar] [CrossRef]
- Zheng, G.; Pan, Z.; Tang, S.; Ling, B.; Lv, D.; Connell, L.D. Laboratory and Modeling Study on Gas Diffusion with Pore Structures in Different-Rank Chinese Coals. Energy Explor. Exploit. 2013, 31, 859–877. [Google Scholar] [CrossRef] [Green Version]
- Bhowmik, S.; Dutta, P. Adsorption rate characteristics of methane and CO2 in coal samples from Raniganj and Jharia coalfields of India. Int. J. Coal Geol. 2013, 113, 50–59. [Google Scholar] [CrossRef]
- Charrière, D.; Pokryszka, Z.; Behra, P. Effect of pressure and temperature on diffusion of CO2 and CH4 into coal from the Lorraine basin (France). Int. J. Coal Geol. 2010, 81, 373–380. [Google Scholar] [CrossRef]
- Zhao, J.; Tang, D.; Qin, Y.; Xu, H.; Liu, Y.; Wu, H. Characteristics of Methane (CH4) Diffusion in Coal and Its Influencing Factors in the Qinshui and Ordos Basins. Energy Fuels 2018, 32, 1196–1205. [Google Scholar] [CrossRef]
- Li, X.; Yan, X.; Kang, Y. Effect of temperature on the permeability of gas adsorbed coal under triaxial stress conditions. J. Geophys. Eng. 2017, 15, 386–396. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Sang, S.; Liu, S. The coupling mechanism of the thermal-hydraulic-mechanical fields in CH4-bearing coal and its application in the CO2-enhanced coalbed methane recovery. J. Pet. Sci. Eng. 2019, 181, 106177. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, D.; Su, E.; Jiang, Z.; Wang, C.; Chu, Y.; Ye, C. Pore structure and diffusion characteristics of intact and tectonic coals: Implications for selection of CO2 geological sequestration site. J. Nat. Gas Sci. Eng. 2020, 81, 103388. [Google Scholar] [CrossRef]
- Dutta, A. Multicomponent Gas Diffusion and Adsorption in Coals for Enhanced Methane Recovery. Master’s Thesis, Stanford University, Stanford, USA, June 2009. [Google Scholar]
- Abunowara, M.; Sufian, S.; Bustam, M.A.; Eldemerdash, U.; Suleman, H.; Bencini, R.; Assiri, M.A.; Ullah, S.; Al-Sehemi, A.G. Experimental measurements of carbon dioxide, methane and nitrogen high-pressure adsorption properties onto Malaysian coals under various conditions. Energy 2020, 210, 118575. [Google Scholar] [CrossRef]
- George, J.S.; Barakat, M. The change in effective stress associated with shrinkage from gas desorption in coal. Int. J. Coal Geol. 2001, 45, 105–113. [Google Scholar] [CrossRef]
- Joewondo, N. Pore Sturucture of Micro and Mesoporous Mudrocks Based on Nitrogen and Carbon Sorption. Master’s Thesis, Colorado School of Mines, Golden, Colorado, 2018. [Google Scholar]
- Aleghafouri, A.; Mohsen-Nia, M.; Mohajeri, A.; Mahdyarfar, M.; Asghari, M. Micropore Size Analysis of Activated Carbons Using Nitrogen, Carbon Dioxide and Methane Adsorption Isotherms: Experimental and Theoretical Studies. Adsorpt. Sci. Technol. 2012, 30, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Fu, X.; Jian, K.; Li, T.; Luo, P. Changes in coal pore structure and permeability during N 2 injection. J. Nat. Gas Sci. Eng. 2015, 27, 1234–1241. [Google Scholar] [CrossRef]
- Fang, Z.; Li, X.; Hu, H. Gas mixture enhance coalbed methane recovery technology: Pilot tests. Energy Procedia 2011, 4, 2144–2149. [Google Scholar] [CrossRef] [Green Version]
- Reeves, S. The Coal-Seq Project: Key Results from Field, Laboratory, and Modeling Studies. Greenh. Gas Control Technol. 2005, II, 1399–1403. [Google Scholar]
- Zhu, H.; He, X.; Xie, Y.; Guo, S.; Huo, Y.; Wang, W. A Study on the Effect of Coal Metamorphism on the Adsorption Characteristics of a Binary Component System: CO2 and N2. ACS Omega 2020, 6, 523–532. [Google Scholar] [CrossRef]
- Zhang, L.; Aziz, N.; Ren, T.X.; Wang, Z. Influence of Temperature on Coal Sorption Characteristics and the Theory of Coal Surface Free Energy. Procedia Eng. 2011, 26, 1430–1439. [Google Scholar] [CrossRef] [Green Version]
- Hao, M.; Qiao, Z.; Zhang, H.; Wang, Y.; Li, Y. Thermodynamic Analysis of CH4/CO2/N2 Adsorption on Anthracite Coal: Investigated by Molecular Simulation. Energy Fuels 2021, 35, 4246–4257. [Google Scholar] [CrossRef]
- Romanov, V.; Soong, Y.; Schroeder, K. Volumetric Effects in Coal Sorption Capacity Measurements. Chem. Eng. Technol. 2006, 29, 368–374. [Google Scholar] [CrossRef]
- Day, S.; Duffy, G.; Saghafi, A.; Sakurovs, R. Factors controlling CO2 absorption in Australian coals. Greenh. Gas Control. Technol. 2005, 2, 2519–2523. [Google Scholar] [CrossRef]
- Sudibandriyo, M.; Pan, Z.; Fitzgerald, J.E.; Robinson, R.L.; Gasem, K.A.M. Adsorption of Methane, Nitrogen, Carbon Dioxide, and Their Binary Mixtures on Dry Activated Carbon at 318.2 K and Pressures up to 13.6 MPa. Langmuir 2003, 19, 5323–5331. [Google Scholar] [CrossRef]
- De Weireld, G.; Frere, M.; Jadot, R. Automated determination of high-temperature and high-pressure gas adsorption isotherms using a magnetic suspension balance. Meas. Sci. Technol. 1999, 10, 117–126. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, W.; Liu, S.; Liu, Y.; Yang, M.; Zhao, J.; Song, Y. Pure methane, carbon dioxide, and nitrogen adsorption on anthracite from China over a wide range of pressures and temperatures: Experiments and modeling. RSC Adv. 2015, 5, 52612–52623. [Google Scholar] [CrossRef]
- Du, X.; Cheng, Y.; Liu, Z.; Yin, H.; Wu, T.; Huo, L.; Shu, C. CO2 and CH4 adsorption on different rank coals: A thermodynamics study of surface potential, Gibbs free energy change and entropy loss. Fuel 2021, 283, 118886. [Google Scholar] [CrossRef]
- Deng, J.; Kang, J.; Zhou, F.; Li, H.; Zhang, D.; Li, G. The adsorption heat of methane on coal: Comparison of theoretical and calorimetric heat and model of heat flow by microcalorimeter. Fuel 2019, 237, 81–90. [Google Scholar] [CrossRef]
- Liu, X.-Q.; He, X.; Qiu, N.-X.; Yang, X.; Tian, Z.-Y.; Li, M.-J.; Xue, Y. Molecular simulation of CH4, CO2, H2O and N2 molecules adsorption on heterogeneous surface models of coal. Appl. Surf. Sci. 2016, 389, 894–905. [Google Scholar] [CrossRef]
- Clarkson, C.; Bustin, R.; Levy, J. Application of the mono/multilayer and adsorption potential theories to coal methane adsorption isotherms at elevated temperature and pressure. Carbon 1997, 35, 1689–1705. [Google Scholar] [CrossRef]
- Kumar, A. Adsorption of Methane on Activated Carbon by Volumetric Method. Chem. Eng. 2011. [Google Scholar] [CrossRef]
- Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361–1403. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.J. Asphaltene Adsorption, a Literature Review. Energy Fuels 2014, 28, 2831–2856. [Google Scholar] [CrossRef]
- Montoya, T.; Coral, D.; Franco, C.A.; Nassar, N.N.; Cortés, F.B. A Novel Solid–Liquid Equilibrium Model for Describing the Adsorption of Associating Asphaltene Molecules onto Solid Surfaces Based on the “Chemical Theory”. Energy Fuels 2014, 28, 4963–4975. [Google Scholar] [CrossRef]
- Keller, J.U.; Staudt, R. Gas Adsorption Equilibria: Experimental Methods and Adsorptive Isotherms; Springer: Berlin/Heidelberg, Germany, 2005; ISBN 0387235981. [Google Scholar]
- Zhao, J.; Xu, H.; Tang, D.; Mathews, J.P.; Li, S.; Tao, S. A comparative evaluation of coal specific surface area by CO2 and N2 adsorption and its influence on CH4 adsorption capacity at different pore sizes. Fuel 2016, 183, 420–431. [Google Scholar] [CrossRef]
- Zhu, Q.; Yang, Y.; Lu, X.; Liu, D.; Li, X.; Zhang, Q.; Cai, Y. Pore Structure of Coals by Mercury Intrusion, N2 Adsorption and NMR: A Comparative Study. Appl. Sci. 2019, 9, 1680. [Google Scholar] [CrossRef] [Green Version]
- Masoudian, M.S. Multiphysics of carbon dioxide sequestration in coalbeds: A review with a focus on geomechanical characteristics of coal. J. Rock Mech. Geotech. Eng. 2016, 8, 93–112. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Zhang, Z.; Choi, S.K.; Lu, Y. Surface Properties and Pore Structure of Anthracite, Bituminous Coal and Lignite. Energies 2018, 11, 1502. [Google Scholar] [CrossRef] [Green Version]
- Clarkson, C.R.; Bustin, R.M. Variation in micropore capacity and size distribution with composition in bituminous coal of the Western Canadian Sedimentary Basin: Implications for coalbed methane potential. Fuel 1996, 75, 1483–1498. [Google Scholar] [CrossRef]
- Landers, J.; Gor, G.Y.; Neimark, A.V. Density functional theory methods for characterization of porous materials. Colloids Surf. A Physicochem. Eng. Asp. 2013, 437, 3–32. [Google Scholar] [CrossRef]
- Thommes, M. Pore Size Analysis by Gas Adsorption Part I: Aspects of the Application of Density Functional Theory (DFT) and Monte Carlo Simulation (MC) for Micro/Mesopore Size Analysis. Available online: http://www.quantachrome.com/articles.html (accessed on 9 November 2020).
- Seaton, N.A.; Walton, J.P.R.B.; Quirke, N. A new analysis method for the determination of the pore size distribution of porous carbons from nitrogen adsorption measurements. Carbon 1989, 27, 853–861. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, K.; Clennell, M.; Dewhurst, D.; Pervukhina, M. Molecular simulation of CO2–CH4 competitive adsorption and induced coal swelling. Fuel 2015, 160, 309–317. [Google Scholar] [CrossRef]
- Gao, D.; Hong, L.; Wang, J.; Zheng, D. Adsorption simulation of methane on coals with different metamorphic grades. AIP Adv. 2019, 9, 095108. [Google Scholar] [CrossRef]
- Yang, Z.; Yin, Z.; Xue, W.; Meng, Z.; Li, Y.; Long, J.; Wang, J. Construction of Buertai Coal Macromolecular Model and GCMC Simulation of Methane Adsorption in Micropores. ACS Omega 2021, 6, 11173–11182. [Google Scholar] [CrossRef]
- He, X.; Liu, X.; Nie, B.; Song, D. FTIR and Raman spectroscopy characterization of functional groups in various rank coals. Fuel 2017, 206, 555–563. [Google Scholar] [CrossRef]
- Maphala, T.; Wagner, N.J. Effects of CO2 storage in coal on coal properties. Energy Procedia 2012, 23, 426–438. [Google Scholar] [CrossRef] [Green Version]
- Zuo, P.; Qu, S.; Shen, W. Asphaltenes: Separations, structural analysis and applications. J. Energy Chem. 2019, 34, 186–207. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; He, Y.; Li, H.; Yu, J.; Xie, W.; Wei, H. The molecular structure of Inner Mongolia lignite utilizing XRD, solid state 13C NMR, HRTEM and XPS techniques. Fuel 2017, 203, 764–773. [Google Scholar] [CrossRef]
- Perera, S.; Ranjith, P.; Viete, D. Effects of gaseous and super-critical carbon dioxide saturation on the mechanical properties of bituminous coal from the Southern Sydney Basin. Appl. Energy 2013, 110, 73–81. [Google Scholar] [CrossRef]
- Syed, A.; Durucan, S.; Shi, J.-Q.; Korre, A. Flue Gas Injection for CO2 Storage and Enhanced Coalbed Methane Recovery: Mixed Gas Sorption and Swelling Characteristics of Coals. Energy Procedia 2013, 37, 6738–6745. [Google Scholar] [CrossRef] [Green Version]
- Pirzada, M.A.; Zoorabadi, M.; Ramandi, H.L.; Canbulat, I.; Roshan, H. CO2 sorption induced damage in coals in unconfined and confined stress states: A micrometer to core scale investigation. Int. J. Coal Geol. 2018, 198, 167–176. [Google Scholar] [CrossRef]
- Levine, J.R. Model study of the influence of matrix shrinkage on absolute permeability of coal bed reservoirs. Geol. Soc. Lond. Spéc. Publ. 1996, 109, 197–212. [Google Scholar] [CrossRef]
- Anggara, F.; Sasaki, K.; Sugai, Y. The correlation between coal swelling and permeability during CO 2 sequestration: A case study using Kushiro low rank coals. Int. J. Coal Geol. 2016, 166, 62–70. [Google Scholar] [CrossRef]
- Niu, Y.; Mostaghimi, P.; Shikhov, I.; Chen, Z.; Armstrong, R.T. Coal permeability: Gas slippage linked to permeability rebound. Fuel 2018, 215, 844–852. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, J.; Tang, D.; Jiang, Y. The effect of adsorption-induced swelling on porosity based on the transient coal swelling model. AIP Adv. 2019, 9, 035229. [Google Scholar] [CrossRef] [Green Version]
- Day, S.; Fry, R.; Sakurovs, R.; Weir, S. Swelling of Coals by Supercritical Gases and Its Relationship to Sorption. Energy Fuels 2010, 24, 2777–2783. [Google Scholar] [CrossRef]
- Chen, G.; Yang, J.; Liu, Z. Method for Simultaneous Measure of Sorption and Swelling of the Block Coal under High Gas Pressure. Energy Fuels 2012, 26, 4583–4589. [Google Scholar] [CrossRef]
- Wang, G.; Wei, X.; Wang, K.; Massarotto, P.; Rudolph, V. Sorption-induced swelling/shrinkage and permeability of coal under stressed adsorption/desorption conditions. Int. J. Coal Geol. 2010, 83, 46–54. [Google Scholar] [CrossRef]
- Anggara, F.; Sasaki, K.; Sugai, Y. Mineral Dissolution/Precipitation during CO2 Injection into Coal Reservoir: A Laboratory Study. Energy Procedia 2013, 37, 6722–6729. [Google Scholar] [CrossRef] [Green Version]
- Mastalerz, M.; Goodman, A.; Chirdon, D. Coal Lithotypes before, during, and after Exposure to CO2: Insights from Direct Fourier Transform Infrared Investigation. Energy Fuels 2012, 26, 3586–3591. [Google Scholar] [CrossRef]
- Baysal, M.; Yürüm, A.; Yıldız, B.; Yürüm, Y. Structure of some western Anatolia coals investigated by FTIR, Raman, 13C solid state NMR spectroscopy and X-ray diffraction. Int. J. Coal Geol. 2016, 163, 166–176. [Google Scholar] [CrossRef]
- Cao, X.; Mastalerz, M.; Chappell, M.A.; Miller, L.F.; Li, Y.; Mao, J. Chemical structures of coal lithotypes before and after CO2 adsorption as investigated by advanced solid-state 13C nuclear magnetic resonance spectroscopy. Int. J. Coal Geol. 2011, 88, 67–74. [Google Scholar] [CrossRef]
- Wang, K.; Du, F.; Wang, G. The influence of methane and CO 2 adsorption on the functional groups of coals: Insights from a Fourier transform infrared investigation. J. Nat. Gas Sci. Eng. 2017, 45, 358–367. [Google Scholar] [CrossRef]
- Mastalerz, M.; Drobniak, A.; Walker, R.; Morse, D. Coal lithotypes before and after saturation with CO2; insights from micro- and mesoporosity, fluidity, and functional group distribution. Int. J. Coal Geol. 2010, 83, 467–474. [Google Scholar] [CrossRef]
- Zhang, J.; Wei, C.; Zhao, C.; Zhang, T.; Lu, G.; Zou, M. Effects of nano-pore and macromolecule structure of coal samples on energy parameters variation during methane adsorption under different temperature and pressure. Fuel 2021, 289, 119804. [Google Scholar] [CrossRef]
- Sonibare, O.O.; Haeger, T.; Foley, S. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FTIR spectroscopy. Energy 2010, 35, 5347–5353. [Google Scholar] [CrossRef]
- Pan, J.; Lv, M.; Hou, Q.; Han, Y.; Wang, K. Coal microcrystalline structural changes related to methane adsorption/desorption. Fuel 2019, 239, 13–23. [Google Scholar] [CrossRef]
Coal Rank | Coal Sample | Adsorbate | Experimental Method | Experimental Analysis | Swelling Result | Reference | ||
---|---|---|---|---|---|---|---|---|
Sorption | Swelling | Pmax | T | |||||
Bituminous | Block | CO2 | Gravimetric | O | 16 MPa | 55 °C | 1.8% | [138] |
Semi-anthracite | Block | CO2/N2 | Manometric/volumetric | Sg | 16 MPa | 318–338 K | 1.42% | [43] |
Bituminous | Cube | CO2 | Volumetric | Sg | 6 MPa | 30 °C | 3.8 × 10 μE | [51] |
Anthracite | Core | CO2 | Volumetric | L and Sg | 18 MPa | 45 °C | 0.9% | [139] |
High volatile bituminous | Block | CO2 | Tri-axial | Sg | 0.4 MPa | 25 °C | 1200 μE | [140] |
Bituminous | core | CO2 | Adsorption deformation testing system | Sg | 2.5 MPa | Room | 1.8% | [137] |
Method | Advantages | Disadvantages | Source |
---|---|---|---|
13C NMR | Detect aromatic CO2 adsorption in different coal types and coal ranks in detail | It is difficult to describe complexity of selectivity gas adsorption | [144] |
FTIR | Changes in the amounts of functional groups can be detected, and the evolution of micropore structure can be described | Discovered the inconsistencies in functional groups for the same type of coal | [145,146,147] |
Raman | Consider the loss of oxygen groups in aromatics | It shows higher average lateral size of crystalline aromatics in coal compared to the XRD result | [143,148] |
XRD | It shows an accurate change in micropore by interplanar spacing, stacking height and lateral size | Cannot directly mention destruction in later spacing of the microcrystalline aromatic by adsorption or by other mechanisms | [149] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tambaria, T.N.; Sugai, Y.; Nguele, R. Adsorption Factors in Enhanced Coal Bed Methane Recovery: A Review. Gases 2022, 2, 1-21. https://doi.org/10.3390/gases2010001
Tambaria TN, Sugai Y, Nguele R. Adsorption Factors in Enhanced Coal Bed Methane Recovery: A Review. Gases. 2022; 2(1):1-21. https://doi.org/10.3390/gases2010001
Chicago/Turabian StyleTambaria, Theodora Noely, Yuichi Sugai, and Ronald Nguele. 2022. "Adsorption Factors in Enhanced Coal Bed Methane Recovery: A Review" Gases 2, no. 1: 1-21. https://doi.org/10.3390/gases2010001
APA StyleTambaria, T. N., Sugai, Y., & Nguele, R. (2022). Adsorption Factors in Enhanced Coal Bed Methane Recovery: A Review. Gases, 2(1), 1-21. https://doi.org/10.3390/gases2010001