The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review
Abstract
1. Introduction
2. Autoimmune Disease Pathophysiology
3. Current Therapies for Autoimmune Disease
4. Diet, Gut Metabolism, and Autoimmune Disease
5. Intermittent Fasting and Autoimmune Disease
5.1. Intermittent Fasting and Type I Diabetes
5.2. Intermittent Fasting and Systemic Lupus Erythematosus
5.3. Intermittent Fasting and Rheumatoid Arthritis
5.4. Intermittent Fasting and Inflammatory Bowel Disease
5.5. Intermittent Fasting and Multiple Sclerosis
5.6. Summary
6. Aging Effects of Intermittent Fasting
7. Limitations of Intermittent Fasting
8. Conclusions, Limitations, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mujalli, A.; Farrash, W.F.; Alghamdi, K.S.; Obaid, A.A. Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies. Metabolites 2023, 13, 987. [Google Scholar] [CrossRef]
- Mameli, C.; Triolo, T.M.; Chiarelli, F.; Rewers, M.; Zuccotti, G.; Simmons, K.M. Lessons and Gaps in the Prediction and Prevention of Type 1 Diabetes. Pharmacol. Res. 2023, 193, 106792. [Google Scholar] [CrossRef]
- Zucchi, D.; Silvagni, E.; Elefante, E.; Signorini, V.; Cardelli, C.; Trentin, F.; Schilirò, D.; Cascarano, G.; Valevich, A.; Bortoluzzi, A.; et al. Systemic Lupus Erythematosus: One Year in Review 2023. Clin. Exp. Rheumatol. 2023, 41, 997–1008. [Google Scholar] [CrossRef] [PubMed]
- Mariani, F.M.; Martelli, I.; Pistone, F.; Chericoni, E.; Puxeddu, I.; Alunno, A. Pathogenesis of Rheumatoid Arthritis: One Year in Review 2023. Clin. Exp. Rheumatol. 2023, 41, 1725–1734. [Google Scholar] [CrossRef]
- Ashton, J.J.; Beattie, R.M. Inflammatory Bowel Disease: Recent Developments. Arch. Dis. Child. 2024, 109, 370–376. [Google Scholar] [CrossRef]
- Haki, M.; Al-Biati, H.A.; Al-Tameemi, Z.S.; Ali, I.S.; Al-Hussaniy, H.A. Review of Multiple Sclerosis: Epidemiology, Etiology, Pathophysiology, and Treatment. Medicine 2024, 103, e37297. [Google Scholar] [CrossRef] [PubMed]
- Wigerblad, G.; Kaplan, M.J. Neutrophil Extracellular Traps in Systemic Autoimmune and Autoinflammatory Diseases. Nat. Rev. Immunol. 2022, 23, 274–288. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, J.M.; Divers, J.; Isom, S.; Saydah, S.; Imperatore, G.; Pihoker, C.; Marcovina, S.M.; Mayer-Davis, E.J.; Hamman, R.F.; Dolan, L.; et al. Trends in Prevalence of Type 1 and Type 2 Diabetes in Children and Adolescents in the US, 2001–2017. J. Am. Med. Assoc. 2021, 326, 1331. [Google Scholar] [CrossRef] [PubMed]
- Radu, A.; Bungau, S.G. Management of Rheumatoid Arthritis: An Overview. Cells 2021, 10, 2857. [Google Scholar] [CrossRef]
- Miller, F.W. The Increasing Prevalence of Autoimmunity and Autoimmune Diseases: An Urgent Call to Action for Improved Understanding, Diagnosis, Treatment and Prevention. Curr. Opin. Immunol. 2023, 80, 102266. [Google Scholar] [CrossRef]
- Tsoukalas, D.; Fragoulakis, V.; Sarandi, E.; Docea, A.O.; Papakonstaninou, E.; Tsilimidos, G.; Anamaterou, C.; Fragkiadaki, P.; Aschner, M.; Tsatsakis, A.; et al. Targeted Metabolomic Analysis of Serum Fatty Acids for the Prediction of Autoimmune Diseases. Front. Mol. Biosci. 2019, 6, 120. [Google Scholar] [CrossRef] [PubMed]
- Furman, D.; Campisi, J.; Verdin, E.; Carrera-Bastos, P.; Targ, S.; Franceschi, C.; Ferrucci, L.; Gilroy, D.W.; Fasano, A.; Miller, G.W.; et al. Chronic Inflammation in the Etiology of Disease Across the Lifespan. Nat. Med. 2020, 25, 1822–1832. [Google Scholar] [CrossRef] [PubMed]
- Kopp, W. How Western Diet and Lifestyle Drive the Pandemic of Obesity and Civilization Diseases. Diabetes Metab. Syndr. Obes. 2019, 12, 2221–2236. Available online: https://www.tandfonline.com/doi/full/10.2147/DMSO.S216791 (accessed on 18 July 2024). [CrossRef] [PubMed]
- Lascano, A.M.; Lalive, P.H. Update in Immunosuppressive Therapy of Myasthenia Gravis. Autoimmun. Rev. 2021, 20, 102712. [Google Scholar] [CrossRef]
- Timmermans, S.; Soufriau, J.; Libert, C. A General Introduction to Glucocorticoid Biology. Front. Immunol. 2019, 10, 1545. [Google Scholar] [CrossRef]
- Konen, F.F.; Möhn, N.; Witte, T.; Schefzyk, M.; Wiestler, M.; Lovric, S.; Hufendiek, K.; Schwenkenbecher, P.; Sühs, K.; Friese, M.A.; et al. Treatment of Autoimmunity: The Impact of Disease-Modifying Therapies in Multiple Sclerosis and Comorbid Autoimmune Disorders. Autoimmun. Rev. 2023, 22, 103312. [Google Scholar] [CrossRef]
- Wang, L.; Wang, F.; Gershwin, M.E. Human Autoimmune Diseases: A Comprehensive Update. J. Intern. Med. 2015, 278, 369–395. [Google Scholar] [CrossRef]
- Hori, H.; Kim, Y. Inflammation and Post-Traumatic Stress Disorder. Psychiatry Clin. Neurosci. 2019, 73, 143–153. [Google Scholar] [CrossRef]
- Iwata, M.; Ota, K.T.; Duman, R.S. The Inflammasome: Pathways Linking Psychological Stress, Depression, and Systemic. Brain Behav. Immun. 2013, 31, 105–114. [Google Scholar] [CrossRef]
- Hirano, T. IL-6 in Inflammation, Autoimmunity, and Cancer. Int. Immunol. 2021, 33, 127–148. [Google Scholar] [CrossRef]
- Jang, D.; Lee, A.; Shin, H.; Song, H.; Park, J.; Kang, T.; Lee, S.; Yang, S. The Role of Tumor Necrosis Factor Alpha (TNF-α) in Autoimmune Disease and Current TNF-α Inhibitors in Therapeutics. Int. J. Mol. Sci. 2021, 22, 2719. [Google Scholar] [CrossRef]
- Pope, J.E.; Choy, E.H. C-Reactive Protein and Implications in Rheumatoid Arthritis and Associated Comorbidities. Elsevier 2021, 51, 219–229. [Google Scholar] [CrossRef]
- Frazzei, G.; van Vollenhoven, R.F.; de Jong, B.A.; Siegelaar, S.E.; van Schaardenburg, D. Preclinical Autoimmune Disease: A Comparison of Rheumatoid Arthritis, Systemic Lupus Erythematosus, Multiple Sclerosis, and Type 1 Diabetes. Front. Immunol. 2022, 13, 899372. [Google Scholar] [CrossRef]
- Enocsson, H.; Karlsson, J.; Li, H.; Wu, Y.; Kushner, I.; Wetterö, J.; Sjöwall, C. The Complex Role of C-Reactive Protein in Systemic Lupus Erythematosus. J. Clin. Med. 2021, 10, 5837. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, W.; Li, W.; Zhao, Y. NLRP3 Inflammasome: Checkpoint Connecting Innate and Adaptive Immunity in Autoimmune Diseases. Front. Immunol. 2021, 12, 732933. [Google Scholar] [CrossRef] [PubMed]
- Scheinecker, C.; Göschl, L.; Bonelli, M. Treg Cells in Health and Autoimmune Diseases: New Insights from Single Cell Analysis. J. Autoimmun. 2020, 110, 102376. [Google Scholar] [CrossRef] [PubMed]
- Woźniak, E.; Owczarczyk-Saczonek, A.; Placek, W. Psychological Stress, Mast Cells, and Psoriasis—Is There Any Relationship? Int. J. Mol. Sci. 2021, 22, 13252. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Goronzy, J.J.; Weyand, C.M. Autophagy in Autoimmune Disease. J. Mol. Med. 2015, 93, 707–717. [Google Scholar] [CrossRef]
- Merino-Vico, A.; Frazzei, G.; van Hamburg, J.P.; Tas, S.W. Targeting B Cells and Plasma Cells in Autoimmune Diseases: From Established Treatments to Novel Therapeutic Approaches. Eur. J. Immunol. 2023, 53, 2149675. [Google Scholar] [CrossRef]
- Eggenhuien, P.J.; Ng, B.H.; Ooi, J.D. Treg Enhancing Therapies to Treat Autoimmune Diseases. Int. J. Mol. Sci. 2020, 21, 7015. [Google Scholar] [CrossRef]
- Graβhoff, H.; Comdühr, S.; Monne, L.R.; Müller, A.; Lamprecht, P.; Riemekasten, G.; Humrich, J.Y. Low-Dose IL-2 Therapy in Autoimmune and Rheumatic Diseases. Front. Immunol. 2021, 12, 648408. [Google Scholar] [CrossRef]
- Shen, P.; Deng, X.; Chen, Z.; Ba, X.; Qin, K.; Huang, Y.; Huang, Y.; Li, T.; Yan, J.; Tu, S. SIRT1: A Potential Therapeutic Target in Autoimmune Diseases. Front. Immunol. 2021, 12, 779177. [Google Scholar] [CrossRef]
- Wotler, M.; Grant, E.T.; Boudaud, M.; Steimie, A.; Pereira, G.V.; Martens, E.C.; Desai, M.S. Leveraging Diet to Engineer the Gut Microbiome. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 885–902. [Google Scholar] [CrossRef]
- Kim, D.; Yoo, S.; Kim, W. Gut Microbiota in Autoimmunity: Potential for Clinical Applications. Arch. Pharm. Res. 2016, 39, 1565–1576. [Google Scholar] [CrossRef]
- Christovich, A.; Luo, X.M. Gut Microbiota, Leaky Gut, and Autoimmune Diseases. Front. Immunol. 2022, 13, 946248. [Google Scholar] [CrossRef]
- La Cava, A. Leptin in Inflammation and Autoimmunity. Cytokine 2017, 98, 51–58. [Google Scholar] [CrossRef] [PubMed]
- Procaccini, C.; Pucino, V.; Mantzoros, C.S.; Matarese, G. Leptin in Autoimmune Diseases. Metabolism 2015, 64, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Kiernan, K.; Maclver, N.J. The Role of the Adipokine Leptin in Immune Cell Function in Health and Disease. Front. Immunol. 2021, 29, 622468. [Google Scholar] [CrossRef]
- Alwarawrah, Y.; Kiernan, K.; Maclver, N.J. Changes in Nutritional Status Impact Immune Cell Metabolism and Function. Front. Immunol. 2018, 9, 1055. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Jin, W.; Wu, R.; Li, J.; Park, S.; Tu, E.; Zanvit, P.; Xu, J.; Liu, O.; Cain, A.; et al. High Glucose Intake Exacerbates Autoimmunity Through Reactive-Oxygen-Species-Mediated TGF-β Cytokine Activation. Immunity 2019, 51, 671–681. [Google Scholar] [CrossRef]
- Hutcheson, J. Adipokines Influence the Inflammatory Balance in Autoimmunity. Cytokine 2015, 75, 272–279. [Google Scholar] [CrossRef]
- Hofer, S.J.; Carmona-Gutierrez, D.; Mueller, M.I.; Madeo, F. The Ups and Downs of Caloric Restriction and Fasting: From Molecular Effects to Clinical Application. EMBO Mol. Med. 2022, 14, e14418. [Google Scholar] [CrossRef] [PubMed]
- Vasim, I.; Majeed, C.N.; DeBoer, M.D. Intermittent Fasting and Metabolic Health. Nutrients 2022, 14, 631. [Google Scholar] [CrossRef]
- Welton, S.; Minty, R.; O’Driscoll, T.; Willms, H.; Poirier, D.; Madden, S.; Kelly, L. Intermittent Fasting and Weight Loss. Can. Fam. Physician 2020, 66, 117–125. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7021351/ (accessed on 20 August 2024).
- Dong, T.A.; Sandesara, P.B.; Dhindsa, D.S.; Mehta, A.; Arneson, L.C.; Dollar, A.L.; Taub, P.R.; Sperling, L.S. Intermittent Fasting: A Heart Healthy Dietary Pattern? Am. J. Med. 2020, 133, 901–907. [Google Scholar] [CrossRef]
- Mattson, M.P.; Longo, V.D.; Harvie, M. Impact of Intermittent Fasting on Health and Disease Processes. Ageing Res. Rev. 2017, 39, 46–58. [Google Scholar] [CrossRef] [PubMed]
- Bagherniya, M.; Butler, A.E.; Barreto, G.E.; Sahebkar, A. The Effect of Fasting or Calorie Restriction on Autophagy Induction: A Review of the Literature. Ageing Res. Rev. 2018, 47, 183–197. [Google Scholar] [CrossRef] [PubMed]
- Hannan, A.; Rahman, A.; Rahman, S.; Sohag, A.A.M.; Dash, R.; Hossain, K.S.; Farjana, M.; Uddin, J. Intermittent Fasting, A Possible Priming Tool for Host Defense Against SARS-CoV-2 Infection: Crosstalk Among Calorie Restriction, Autophagy, and Immune Response. Immunol. Lett. 2020, 226, 38–45. [Google Scholar] [CrossRef]
- Qian, J.; Fang, Y.; Yuan, N.; Gao, X.; Lv, Y.; Zhao, C.; Zhang, S.; Li, Q.; Li, L.; Xu, L.; et al. Innate Immune Remodeling by Short-Term Intensive Fasting. Aging Cell 2021, 20, e13507. [Google Scholar] [CrossRef]
- Brandhorst, S.; Levine, M.E.; Wei, M.; Shelehchi, M.; Morgan, T.E.; Nayak, K.S.; Dorff, T.; Hong, K.; Crimmins, E.M.; Cohen, P.; et al. Fasting-Mimicking Diet Causes Hepatic and Blood Markers Changes Indicating Reduced Biological Age and Disease Risk. Nat. Commun. 2024, 15, 1309. [Google Scholar] [CrossRef]
- Cohen, S.; Danzaki, K.; Maclver, N.J. Nutritional Effects on T-cell Immunometabolism. Eur. J. Immunol. 2017, 47, 225–235. [Google Scholar] [CrossRef]
- Okawa, T.; Nagai, M.; Hase, K. Dietary Intervention Impacts Immune Cell Functions and Dynamics by Inducing Metabolic Rewiring. Front. Immunol. 2020, 11, 623989. [Google Scholar] [CrossRef]
- Di Francesco, A.; Di Geranio, C.; Bernier, M.; de Cabo, R. A Time to Fast. Science 2018, 362, 770–775. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.; Tung, N.; Casanova-Acebes, M.; Chang, C.; Cantoni, C.; Zhang, D.; Wirtz, T.H.; Naik, S.; Rose, S.A.; Brocker, C.N.; et al. Dietary Intake Regulates the Circulating Inflammatory Monocyte Pool. Cell 2019, 178, 1102–1114. [Google Scholar] [CrossRef]
- Margina, D.; Ungurianu, A.; Purdel, C.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Tekos, F.; Mesnage, R.; Kouretas, D.; Tsatasakis, A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. Int. J. Environ. Res. Public Health 2020, 17, 4135. [Google Scholar] [CrossRef]
- Margina, D.; Ungurianu, A.; Purdel, C.; Nitulescu, G.M.; Tsoukalas, D.; Sarandi, E.; Thanasoula, M.; Burykina, T.I.; Tekos, F.; Buha, A.; et al. Analysis of the Intricate Effects of Polyunsaturated Fatty Acids and Polyphenols on Inflammatory Pathways in Health and Disease. Food Chem. Toxicol. 2020, 143, 111558. [Google Scholar] [CrossRef]
- Rhodes, C.H.; Zhu, C.; Agus, J.; Tang, X.; Li, Q.; Engebrecht, J.; Zivkovic, A.M. Human Fasting Modulates Macrophage Function and Upregulates Multiple Bioactive Metabolites that Extend Lifespan in Caenorhabditis Elegans: A Pilot Clinical Study. Am. J. Clin. Nutr. 2022, 117, 286–297. [Google Scholar] [CrossRef]
- Dabek, A.; Wojtala, M.; Pirola, L.; Balcerczyk, A. Modulation of Cellular Biochemistry, Epigenetics, and Metabolomics by Ketone Bodies. Implications of the Ketogenic Diet in the Physiology of the Organism and Pathological States. Nutrients 2020, 12, 788. [Google Scholar] [CrossRef]
- Nobari, H.; Saedmocheshi, S.; Murawska-Cialowicz, E.; Clemente, F.M.; Suzuki, K.; Silva, A.F. Exploring the Effects of Energy Constraints on Performance, Body Composition, Endocrinological/Hematological Biomarkers, and Immune System Among Athletes: An Overview of the Fasting State. Nutrients 2022, 14, 3197. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Xu, H.; Li, C.; Yang, H.; Mao, Y. Intermittent Fasting and Immunomodulatory Effects: A Systematic Review. Front. Nutr. 2023, 10, 1048230. [Google Scholar] [CrossRef] [PubMed]
- Faris, M.A.E.; Salem, M.L.; Jahrami, H.A.; Madkour, M.I.; BaHamman, A.S. Ramadan Intermittent Fasting and Immunity: An Important Topic in the Era of COVID-19. Ann. Thorac. Med. 2020, 15, 125–133. [Google Scholar] [CrossRef]
- Moro, T.; Tinsley, G.; Longo, G.; Grigoletto, D.; Bianco, A.; Ferraris, C.; Guglielmetti, M.; Veneto, A.; Tagliabue, A.; Marcolin, G.; et al. Time-Restricted Eating Effects on Performance, Immune Function, and Body Composition in Elite Cyclists: A Randomized Controlled Trial. J. Int. Soc. Sports Nutr. 2020, 17, 65. [Google Scholar] [CrossRef]
- Mulas, A.; Cienfuegos, S.; Ezpeleta, M.; Lin, S.; Pavlou, V.; Varady, K.A. Effect of Intermittent Fasting on Circulating Inflammatory Markers in Obesity: A Review of Human Trials. Front. Nutr. 2023, 10, 1146924. [Google Scholar] [CrossRef]
- Ealey, K.N.; Phillips, J.; Sung, H. COVID-19 and Obesity: Fighting Two Pandemics. Trends Endocrinol. Metab. 2021, 32, 706–720. [Google Scholar] [CrossRef] [PubMed]
- Ciaffi, J.; Mitselman, D.; Mancarella, L.; Brusi, V.; Lisi, L.; Ruscitti, P.; Cipriani, P.; Meliconi, R.; Giacomelli, R.; Borghi, C.; et al. The Effect of Ketogenic Diet on Inflammatory Arthritis and Cardiovascular Health in Rheumatic Conditions: A Mini Review. Front. Med. 2021, 8, 792846. [Google Scholar] [CrossRef] [PubMed]
- Patterson, R.E.; Sears, D.D. Metabolic Effects of Intermittent Fasting. Annu. Rev. Nutr. 2017, 37, 371–393. [Google Scholar] [CrossRef]
- Nagai, M.; Noguchi, R.; Takahashi, D.; Morikawa, T.; Koshida, K.; Komiyama, S.; Ishihara, N.; Yamada, T.; Kawamura, Y.I.; Muroi, K.; et al. Fasting-Refeeding Impacts Immune Cell Dynamics and Mucosal Immune Responses. Cell 2019, 178, 1072–1087. [Google Scholar] [CrossRef] [PubMed]
- Tang, D.; Tang, Q.; Huang, W.; Zhang, Y.; Tian, Y.; Fu, X. Fasting: From Physiology to Pathology. Adv. Sci. 2023, 10, 2204487. [Google Scholar] [CrossRef]
- Mahmoud, A.; Begg, M.; Tarhuni, M.; Fotso, M.N.; Gonzalez, N.A.; Sanivarapu, R.R.; Osman, U.; Kumar, A.L.; Sadagopan, A.; Alfonso, M. Inflammatory Bowel Sugar Disease: A Pause from New Pharmacological Agents and an Embrace of Natural Therapy. Cureus 2023, 15, e42786. [Google Scholar] [CrossRef]
- Longo, V.D.; Di Tano, M.; Mattson, M.P.; Guidi, N. Intermittent and Periodic Fasting, Longevity, and Disease. Nat. Aging 2021, 1, 47–59. [Google Scholar] [CrossRef]
- Taylor, E.B. The Complex Role of Adipokines in Obesity, Inflammation, and Autoimmunity. Clin. Sci. 2021, 135, 731–752. [Google Scholar] [CrossRef]
- Choi, I.Y.; Lee, C.; Longo, V.D. Nutrition and Fasting Mimicking Diets in the Prevention and Treatment of Autoimmune Diseases and Immunosenescence. Mol. Cell Endocrinol. 2017, 455, 4–12. [Google Scholar] [CrossRef]
- Adawi, M.; Watad, A.; Brown, S.; Aazza, K.; Aazza, H.; Zouhir, M.; Sharif, K.; Ghanayem, K.; Farah, R.; Mahagna, H.; et al. Ramadan Fasting Exerts Immunomodulatory Effects: Insights from a Systematic Review. Front. Immunol. 2017, 8, 1144. [Google Scholar] [CrossRef]
- Herz, D.; Haupt, S.; Zimmer, R.T.; Wachsmuth, N.B.; Schierbauer, J.; Zimmerman, P.; Voit, T.; Thurm, U.; Khoramipour, K.; Rilstone, S.; et al. Efficacy of Fasting in Type 1 and Type 2 Diabetes Mellitus: A Narrative Review. Nutrients 2023, 15, 3525. [Google Scholar] [CrossRef] [PubMed]
- Khanna, S.; Jaiswal, K.S.; Gupta, B. Managing Rheumatoid Arthritis with Dietary Inteventions. Front. Nutr. 2017, 4, 52. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, A.M.; D’Urso, M.; Dell’Oro, M.; Koppold, D.A.; Steckhan, N.; Michalsen, A.; Kandil, F.; Kessler, C.S. Post Hoc Analysis of a Randomized Controlled Trial on Fasting and Plant-Based Diet in Rheumatoid Arthritis (NutriFast): Nutritional Supply and Impact on Dietary Behavior. Nutrients 2023, 15, 851. [Google Scholar] [CrossRef] [PubMed]
- Gunes-Bayir, A.; Mendes, B.; Dadak, A. The Integral Role of Diets Including Natural Products to Manage Rheumatoid Arthritis: A Narrative Review. Curr. Issues Mol. Biol. 2023, 45, 5373–5388. [Google Scholar] [CrossRef]
- Athanassiou, P.; Athanassiou, L.; Kostoglou-Athanassiou, I. Nutrtional Pearls: Diet and Rheumatoid Arthritis. Meditter. J. Rhematol. 2020, 31, 319–324. [Google Scholar] [CrossRef]
- Badsha, H. Role of Diet in Influencing Rheumatoid Arthritis Disease Activity. Open Rheumatol. J. 2018, 12, 19–28. [Google Scholar] [CrossRef]
- Venetsanopoulou, A.I.; Voulgari, P.V.; Drosos, A.A. Fasting Mimicking Diets: A Literature Review of Their Impact on Inflammatory Arthritis. Mediterr. J. Rheumatol. 2019, 30, 201–206. [Google Scholar] [CrossRef]
- Longo, V.D.; Panda, S. Fasting, Circadian Rhythms, and Time Restricted Feeding in Healthy Lifespan. Cell Metab. 2016, 23, 1048–1059. [Google Scholar] [CrossRef]
- Zielinska, M.; Michonska, I. Effectiveness of Various Diet Patterns Among Patients with Multiple Sclerosis. Postep. Psychiatr. Neurol. 2023, 32, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Morales-Suarez-Varela, M.; Sánchez, E.C.; Peraita-Costa, I.; Llopis-Morales, A.; Soriano, J.M. Intermittent Fasting and the Possible Benefits in Obesity, Diabetes, and Multiple Sclerosis: A Systematic Review of Randomized Clinical Trials. Nutrients 2021, 13, 3179. [Google Scholar] [CrossRef] [PubMed]
- Rangan, P.; Choi, I.; Wei, M.; Navarrete, G.; Guen, E.; Brandhorst, S.; Enyati, N.; Pasia, G.; Maesincee, D.; Ocon, V.; et al. Fasting-Mimicking Diet Modulates Microbiota and Promotes Intestinal Regeneration to Reduce Inflammatory Bowel Disease Pathology. Cell Rep. 2019, 26, 2704–2719. [Google Scholar] [CrossRef]
- Jiang, Y.; Jarr, K.; Layton, C.; Gardner, C.D.; Ashouri, J.F.; Abreu, M.T.; Sinha, S.R. Therapeutic Implications of Diet in Inflammatory Bowel Disease and Related Immune-Mediated Inflammatory Diseases. Nutrients 2021, 13, 890. [Google Scholar] [CrossRef]
- Gubert, C.; Kong, G.; Renoir, T.; Hannan, A.J. Exercise, Diet and Stress as Modulators of Gut Microbiota: Implications for Neurodegenerative Diseases. Neurobiol. Dis. 2019, 134, 104621. [Google Scholar] [CrossRef]
- Ilchmann-Diounou, H.; Menard, S. Psychological Stress, Intestinal Barrier Dysfunctions, and Autoimmune Disorders: An Overview. Front. Immunol. 2020, 11, 1823. [Google Scholar] [CrossRef]
- Cantoni, C.; Dorsett, Y.; Fontana, L.; Zhou, Y.; Piccio, L. Effects of Dietary Restriction on Gut Microbiota and CNS Autoimmunity. Clin. Immunol. 2022, 235, 108575. [Google Scholar] [CrossRef]
- Mayor, E. Neurotrophic Effects of Intermittent Fasting, Calorie Restriction and Exercise: A Review and Annotated Bibliography. Front. Aging 2023, 4, 1161814. [Google Scholar] [CrossRef] [PubMed]
- Cignarella, F.; Cantoni, C.; Ghezzi, L.; Salter, A.; Dorsett, Y.; Chen, L.; Phillips, D.; Weinstock, G.M.; Fontana, L.; Cross, A.H.; et al. Intermittent Fasting Confers Protection in CNS Autoimmunity by Altering the Gut Microbiota. Cell Metab. 2018, 27, 1222–1235. [Google Scholar] [CrossRef]
- Choi, I.Y.; Piccio, L.; Childress, P.; Bollman, B.; Ghosh, A.; Brandhorst, S.; Suarez, J.; Michalsen, A.; Cross, A.H.; Morgan, T.E.; et al. Diet Mimicking Fasting Promotes Regeneration and Reduces Autoimmunity and Multiple Sclerosis Symptoms. Cell Rep. 2016, 15, 2136–2146. [Google Scholar] [CrossRef]
- Fitzgerald, K.C.; Vizthum, D.; Henry-Barron, B.; Schweitzer, A.; Cassard, S.D.; Kossoff, E.; Hartman, A.L.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; et al. Effect of Intermittent vs. Daily Calorie Restriction on Changes in Weight and Patient-Reported Outcomes in People with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2018, 23, 33–39. [Google Scholar] [CrossRef]
- Jahromi, S.R.; Ghaemi, A.; Alizadeh, A.; Sabetghadam, F.; Tabriz, H.M.; Togha, M. Effects of Intermittent Fasting on Experimental Autoimmune Encephalomyelitis in C57BL/6 Mice. Iran. J. Allergy Asthma Immunol. 2016, 15, 212–219. [Google Scholar]
- Xiao, Y.; Gong, Y.; Qi, Y.; Shao, Z.; Jiang, Y. Effects of Dietary Intervention on Human Diseases: Molecular Mechanisms and Therapeutic Potential. Signal Transduct. Target. Ther. 2024, 9, 59. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, K.C.; Bhargava, P.; Smith, M.D.; Vizthum, D.; Henry-Barron, B.; Kornberg, M.D.; Cassard, S.D.; Kapogiannis, D.; Sullivan, P.; Baer, D.J.; et al. Intermittent Calorie Restriction Alters T Cell Subsets and Metabolic Markers in People with Multiple Sclerosis. eBioMedicine 2022, 82, 104124. [Google Scholar] [CrossRef]
- Fanara, S.; Aprile, M.; Iacono, S.; Schirò, G.; Bianchi, A.; Brighina, F.; Dominguez, L.J.; Ragonese, P.; Salemi, G. The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients 2021, 13, 3774. [Google Scholar] [CrossRef]
- Martinelli, V.; Albanese, M.; Altieri, M.; Annovazzi, P.; Arabi, S.; Bucello, S.; Caleri, F.; Cerqua, R.; Costanzi, C.; Cottone, S.; et al. Gut-Oriented Interventions in Patients with Multiple Sclerosis: Fact or Fiction? Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 935–946. [Google Scholar] [CrossRef]
- Gerriets, V.A.; Danzaki, K.; Kishton, R.J.; Eisner, W.; Nichols, A.G.; Saucillo, D.C.; Shinohara, M.L.; Maclver, N.J. Leptin Directly Promotes T-Cell Glycolytic Metabolism to Drive Effector T-Cell Differentiation in a Mouse Model of Autoimmunity. Eur. J. Immunol. 2016, 46, 1970–1983. [Google Scholar] [CrossRef]
- Bahr, L.S.; Bock, M.; Liebscher, D.; Bellmann-Strobl, J.; Franz, L.; Prüβ, A.; Schumann, D.; Piper, S.K.; Kessler, C.S.; Steckhan, N.; et al. Ketogenic Diet and Fasting as Nutritional Approaches in Multiple Sclerosis (NAMS): Protocol of a Randomized Controlled Study. Trials 2020, 21, 3. [Google Scholar] [CrossRef] [PubMed]
- Tsogka, A.; Kitsos, D.K.; Stavrogianni, K.; Giannopapas, V.; Chasiotis, A.; Christouli, N.; Tsivgoulis, G.; Tzartos, J.S.; Giannopoulos, S. Modulating the Gut Microbiome in Multiple Sclerosis Management: A Systematic Review of Current Interventions. J. Clin. Med. 2023, 12, 7610. [Google Scholar] [CrossRef]
- Jakimovski, D.; Guan, Y.; Ramanathan, M.; Weinstock-Guttman, B.; Zivadinov, R. Lifestyle-Based Modifiable Risk Factors in Multiple Sclerosis: Review of Experimental and Clinical Findings. Neurodegener. Dis. Manag. 2019, 9, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Langley, M.R.; Triplet, E.M.; Scarisbrick, I.A. Dietary Influence on Central Nervous System Myelin Production, Injury, and Regeneration. Mol. Basis Dis. 2020, 1866, 165779. [Google Scholar] [CrossRef]
- Surugiu, R.; Iancu, M.A.; Vintilescu, S.B.; Stepan, M.D.; Burdusel, D.; Valentina, A.; Dogaru, C.; Dumitra, G.G. Molecular Mechanisms of Healthy Aging: The Role of Caloric Restriction, Intermittent Fasting, Mediterranean Diet, and Ketogenic Diet—A Scoping Review. Nutrients 2024, 16, 2878. [Google Scholar] [CrossRef]
- James, D.L.; Hawley, N.A.; Mohr, A.E.; Hermer, J.; Ofori, E.; Yu, F.; Sears, D.D. Impact of Intermittent Fasting and/or Caloric Restriction on Aging-Related Outcomes in Adults: A Scoping Review of Randomized Controlled Trials. Nutrients 2024, 16, 316. [Google Scholar] [CrossRef] [PubMed]
- Stekovic, S.; Hofer, S.J.; Tripolt, N.; Aon, M.A.; Royer, P.; Pein, L.; Stadler, J.T.; Pendl, T.; Prietl, B.; Url, J.; et al. Alternate Day Fasting Improves Physiological and Molecular Markers of Aging in Healthy, Non-obese Humans. Cell Metab. 2019, 30, 462–476. Available online: https://www.cell.com/cell-metabolism/fulltext/S1550-4131(19)30429-2?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS1550413119304292%3Fshowall%3Dtrue (accessed on 27 October 2024). [CrossRef] [PubMed]
- Habobe, H.A.; Pieters, R.H.; Bikker, F.J. Investigating the Salivary Biomarkers Profile in Obesity: A Systematic Review. Curr. Obes. Rep. 2025, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Shabkhizan, R.; Haiaty, S.; Moslehian, M.S.; Bazmani, A.; Sadeghsoltani, F.; Bagheri, H.S.; Rahbarghazi, R.; Sakhinia, E. The Beneficial and Adverse Effects of Autophagic Response to Caloric Restriction and Fasting. Adv. Nutr. 2023, 14, 1211–1225. [Google Scholar] [CrossRef]
- Rynders, C.A.; Thomas, E.A.; Zaman, A.; Pan, Z.; Catenacci, V.A.; Melanson, E.L. Effectiveness of Intermittent Fasting and Time-Restricted Feeding Compared to Continuous Energy Restriction for Weight Loss. Nutrients 2019, 11, 2442. [Google Scholar] [CrossRef]
- Harris, L.; Hamilton, S.; Azevedo, L.B.; Olajide, J.; De Brún, C.; Waller, G.; Whittaker, V.; Sharp, T.; Lean, M.; Hankey, C.; et al. Intermittent Fasting Interventions for the Treatment of Overweight and Obesity in Adults Aged 18 Years and Over: A Systematic Review and Meta-analysis. JBI Database Syst. Rev. Implement. Rep. 2018, 16, 507–547. [Google Scholar] [CrossRef]
- Ozcan, M.; Abdellatif, M.; Javaheri, A.; Sedei, S. Risks and Benefits of Intermittent Fasting for the Aging Cardiovascular System. Can. J. Cardiol. 2024, 40, 1445–1457. Available online: https://onlinecjc.ca/article/S0828-282X(24)00092-8/fulltext (accessed on 3 November 2024). [CrossRef]
- Liu, S.; Zeng, M.; Wan, W.; Huang, M.; Li, X.; Xie, Z.; Wang, S.; Cai, Y. The Health-Promoting Effects and the Mechanism of Intermittent Fasting. J. Diabetes Res. 2023, 2023, 4038546. [Google Scholar] [CrossRef] [PubMed]
- Obermayer, A.; Tripolt, N.J.; Pferschy, P.N.; Kojzar, H.; Aziz, F.; Müller, A.; Schauer, M.; Oulhaj, A.; Aberer, F.; Sourij, C.; et al. Efficacy and Safety of Intermittent Fasting in People with Insulin-Treated Type 2 Diabetes (INTERFAST-2)—A Randomized Controlled Trial. Diabetes Care 2022, 46, 463–468. [Google Scholar] [CrossRef]
- Lin, X.; Wang, S.; Gao, Y. The Effects of Intermittent Fasting for Patients with Multiple Sclerosis (MS): A Systematic Review. Front. Nutr. 2024, 10, 1328426. [Google Scholar] [CrossRef] [PubMed]
- Berger, B.; Jenetzky, E.; Köblös, D.; Stange, R.; Baumann, A.; Simstich, J.; Michalsen, A.; Schmelzer, K.; Martin, D.D. Seven-Day Fasting as a Multimodal Complex Intervention for Adults with Type 1 Diabetes: Feasibility, Benefit and Safety in a Controlled Pilot Study. Nutrition 2021, 86, 111169. [Google Scholar] [CrossRef] [PubMed]



| Time Restricted Eating | Description of Fasting Diet | Limitations/Risks |
|---|---|---|
| 20/4, 18/6, 16/8 | Food is consumed over a 4, 6, or 8-h period, and the individual fasts the rest of the day | Adverse effects during the fasting period: hypoglycemia, dizziness, and weakness. Greater risk for high fluctuating glucose concentrations and hypoglycemia in adults of advanced age. Potential vitamin and other micronutrient deficiencies. |
| B2 Regimen | 2 large meals per day: 4 h morning period for breakfast, 4 h afternoon period for lunch, and no dinner | Adverse effects during the fasting period: hypoglycemia, dizziness, and weakness (overall lower risk). Greater risk for high fluctuating glucose concentrations and hypoglycemia in adults of advanced age. Potential vitamin and other micronutrient deficiencies. |
| Periodic Fasting | ||
| 1–2 Day Fasting Weekly | 24 h fast with no calorie intake 1–2 times per week, with regular eating for the rest of the days of the week | Adverse effects on fasting days: hypoglycemia, dizziness, and weakness. Adherence difficulties with more time-intensive fasting. Greater risk for high fluctuating glucose concentrations and hypoglycemia in adults of advanced age. Potential vitamin and other micronutrient deficiencies. |
| Caloric Restriction | ||
| 5:2 | 2 days of a very low-calorie diet, with regular eating the rest of the days of the week | Adverse effects on fasting days: hypoglycemia, dizziness, and weakness. Adherence difficulties with more time-extensive fasting. Greater risk for high fluctuating glucose concentrations and hypoglycemia in adults of advanced age. Potential vitamin and other micronutrient deficiencies. |
| AD | Pathophysiology | Cellular and Molecular Effects of IF |
|---|---|---|
| T1D | Autoantibodies and pro-inflammatory cytokines → pancreatic beta cell destruction |
|
| SLE | Auto-reactive T-cells/autoantibodies → increase in pro-inflammatory cytokines → organ → dysfunction (renal decline, etc.) |
|
| RA | Auto-reactive T-cells/autoantibodies (anti-CCP/CIC) → infiltration, inflammation, and destruction of synovial membranes and joint spaces |
|
| IBD | Auto-reactive T-cells, epithelial barrier dysfunction, dysbiosis → increase in pro-inflammatory cytokines and markers → intestinal inflammation and dysfunction |
|
| MS | Increase in Th1/Th17 → increase in pro-inflammatory cytokines and markers → demyelination, neuronal loss, gliosis |
|
| AD | Trial | Inclusion/Exclusion Criteria | Results | Limitations |
|---|---|---|---|---|
| T1D | Pilot randomized clinical trial with a 5-day fasting diet/month for 3 months vs. a regular diet [74] | Exclusion: Non-compliance with dietary protocol, previous eating disorders, extremes of under- or overweight, and other concomitant diseases. | Decreased fasting blood glucose levels and body weight after the third fasting cycle. | Limited long-term follow-up after the IF diet Small sample size (38). |
| RA | 7-day fast vs. 7-day ketogenic diet [80] | Inclusion: Patients who met criteria for the American College of Rheumatology for RA, prednisolone dosage < 7.5 mg/day and stable dose 4 weeks before study entry, and stable DMARD therapy at least 3 months before study entry. | Decreased IL-6, ESR, and CRP serum levels. Decreased tender joints. Decreased DAS-28 scores. | Short-term fasting period with no long-term follow-up. Small sample size (23). Fasting diet at Health Farm vs. ketogenic diet at home. |
| 7-day fast in comparison with a control regimen in a crossover trial [78] | Inclusion: Patients with classical or definite RA according to the American Rheumatism Association criteria. Exclusion: Treatment with gold salts, penicillamine, levamisole, antimalarials, or cytostatic drugs within the last 3 months before the trial. Obvious extremes of under- or overweight. Other concomitant diseases. | Decreased ESR. Decreased clinical joint inflammation. Decreased neutrophil locomotion after reference serum induction. | Short-term fasting period with no long-term follow-up. Small sample size (13). | |
| 7–10 day fast followed by a 9-week lactovegetarian diet vs. a regular diet [76] | Exclusion: Previous eating disorders, extremes of under- or overweight, and other concomitant diseases. | Reduced pain/joint stiffness and consumption of analgesics. | Short-term fasting period with no long-term follow-up. Small sample size (26). Combined fasting and lactovegetarian diet in the experimental arm. | |
| Single-blind, randomized controlled trial of 7–10 fast followed by a 3.5-month vegan diet and lactovegetarian diet for the rest of the year [77] | Exclusion: Previous eating disorders, extremes of under- or overweight, and other concomitant diseases. | Decreased tender/swollen joints Improved Ritchie’s articular index. Decreased pain scores and duration of morning stiffness. Decreased ESR and CRP. Sustained clinical benefit at 2-year follow-up. | Short-term fasting period Multiple diet regimens: fasting, vegan, and lactovegetarian. | |
| IBD | Cohort study with fasting diet associated with Ramadan [85] | Inclusion: Diagnosis of IBD currently in remission. Exclusion: Previous eating disorders, extremes of under- or overweight, and other concomitant diseases. | Decreased mean score of colitis activity index in males with ulcerative colitis. | Non-standardized/variable fasting diet among participants in the fasting arm. |
| MS | Randomized controlled pilot trial of a 2-week fasting diet vs. regular diet [100] | Inclusion: Diagnosis of relapsing remitting MS. Exclusion: Previous eating disorders, extremes of under- or overweight, and other concomitant diseases. | Decreased EDSS scores. | Short-term fasting period with no long-term follow-up. Other forms of MS not been studied. |
| Randomized controlled pilot trial of 8-week caloric restriction diet vs. fasting diet vs. regular diet [101] | Inclusion: Diagnosis of relapsing remitting MS with relapse in the past 2 years, disease duration of <15 years, EDSS < 6, stable on current therapy. Exclusion: Previous eating disorders, extremes of under- or overweight, kidney disease, warfarin use, major surgery in the past 3 months, chemotherapy in the past year, and pregnancy/breastfeeding. | Improvement in emotional well-being/depression scores. Decreased body weight. | Short-term fasting period with no long-term follow-up. Reduced adherence in the fasting diet experimental arm Subjective patient data reporting. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasuda, K.; Ryznar, R.J. The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review. Immuno 2025, 5, 60. https://doi.org/10.3390/immuno5040060
Yasuda K, Ryznar RJ. The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review. Immuno. 2025; 5(4):60. https://doi.org/10.3390/immuno5040060
Chicago/Turabian StyleYasuda, Krista, and Rebecca Jean Ryznar. 2025. "The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review" Immuno 5, no. 4: 60. https://doi.org/10.3390/immuno5040060
APA StyleYasuda, K., & Ryznar, R. J. (2025). The Relationship Between Autoimmune Disease and Intermittent Fasting: A Narrative Review. Immuno, 5(4), 60. https://doi.org/10.3390/immuno5040060
