Health Promoting Properties of Vitamins C and D Against HIV Disease Progression, a Narrative Review
Abstract
:1. Introduction
2. Methods
3. HIV-AIDS
4. Benefits of Vitamin D on HIV Patients
4.1. Benefits of Vitamin D
4.2. Medicinal Action of Vitamin D on HIV Patients
4.3. Advantages of Vitamin D on HIV Patients
5. Benefits of Vitamin C on HIV Patients
5.1. Benefits of Vitamin C
5.2. Medicinal Action of Vitamin C on HIV Patients
5.3. Advantages of Vitamin C on HIV Patients
5.4. Disadvantages of Vitamin C on HIV Patients
6. Conclusions and Future Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiss, R.A. How Does HIV Cause AIDS? Science 1993, 260, 1273–1279. [Google Scholar] [CrossRef] [PubMed]
- Global HIV & AIDS Statistics—Fact Sheet. Available online: https://www.unaids.org/en/resources/fact-sheet (accessed on 14 October 2024).
- Nisar, K.S.; Sabbar, Y. Long-Run Analysis of a Perturbed HIV/AIDS Model with Antiretroviral Therapy and Heavy-Tailed Increments Performed by Tempered Stable Lévy Jumps. Alex. Eng. J. 2023, 78, 498–516. [Google Scholar] [CrossRef]
- Catallozzi, M. Chapter 29—Human Immunodeficiency Virus. In Adolescent Medicine; Slap, G.B., Ed.; Mosby: Philadelphia, PA, USA, 2008; pp. 220–228. ISBN 978-0-323-04073-0. [Google Scholar]
- HIV and AIDS. Available online: https://www.who.int/news-room/fact-sheets/detail/hiv-aids (accessed on 14 October 2024).
- Barré-Sinoussi, F.; Ross, A.L.; Delfraissy, J.-F. Past, Present and Future: 30 Years of HIV Research. Nat. Rev. Microbiol. 2013, 11, 877–883. [Google Scholar] [CrossRef]
- Zijenah, L.S.; Bandason, T.; Bara, W.; Chipiti, M.M.; Katzenstein, D.A. Mother-to-Child Transmission of HIV-1 and Infant Mortality in the First Six Months of Life, in the Era of Option B Plus Combination Antiretroviral Therapy. Int. J. Infect. Dis. 2021, 109, 92–98. [Google Scholar] [CrossRef] [PubMed]
- Talluri, S.; Prabhala, N.D.; Prabhala, R.H. Chapter 8—Influence of Nutrition on Human Immunodeficiency Virus Infection. In Health of HIV Infected People; Watson, R.R., Ed.; Academic Press: Boston, MA, USA, 2015; pp. 117–133. ISBN 978-0-12-800769-3. [Google Scholar]
- Smith, R. “Let Food Be Thy Medicine …”. BMJ 2004, 328, 0-g. [Google Scholar] [CrossRef]
- Andlauer, W.; Fürst, P. Nutraceuticals: A Piece of History, Present Status and Outlook. Food Res. Int. 2002, 35, 171–176. [Google Scholar] [CrossRef]
- Rock, C.L. Multivitamin-Multimineral Supplements: Who Uses Them?2. Am. J. Clin. Nutr. 2007, 85, 277S–279S. [Google Scholar] [CrossRef]
- Ashor, A.W.; Siervo, M.; Mathers, J.C. Chapter 43—Vitamin C, Antioxidant Status, and Cardiovascular Aging. In Molecular Basis of Nutrition and Aging; Malavolta, M., Mocchegiani, E., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 609–619. ISBN 978-0-12-801816-3. [Google Scholar]
- Steinberg, F.M.; Rucker, R.B. Vitamin C. In Encyclopedia of Biological Chemistry, 2nd ed.; Lennarz, W.J., Lane, M.D., Eds.; Academic Press: Waltham, MA, USA, 2013; pp. 530–534. ISBN 978-0-12-378631-9. [Google Scholar]
- Nishikimi, M.; Fukuyama, R.; Minoshima, S.; Shimizu, N.; Yagi, K. Cloning and Chromosomal Mapping of the Human Nonfunctional Gene for L-Gulono-Gamma-Lactone Oxidase, the Enzyme for L-Ascorbic Acid Biosynthesis Missing in Man. J. Biol. Chem. 1994, 269, 13685–13688. [Google Scholar] [CrossRef]
- Huo, X.; Clarke, R.; Halsey, J.; Jackson, R.; Lehman, A.; Prince, R.; Lewis, J.; Baron, J.A.; Kroger, H.; Sund, R.; et al. Calcium Supplements and Risk of CVD: A Meta-Analysis of Randomized Trials. Curr. Dev. Nutr. 2023, 7, 100046. [Google Scholar] [CrossRef]
- Chang, S.-W.; Lee, H.-C. Vitamin D and Health—The Missing Vitamin in Humans. Pediatr. Neonatol. 2019, 60, 237–244. [Google Scholar] [CrossRef]
- Das, K.; Chinnathambi, R.; Srinivas, M.N.; Rihan, F.A. An Analysis of Time-Delay Epidemic Model for TB, HIV, and AIDS Co-Infections. Results Control Optim. 2023, 12, 100263. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Mugusi, F.; Muhihi, A.; Aboud, S.; Nagu, T.J.; Ulenga, N.; Hong, B.; Wang, M.; Fawzi, W.W. Efficacy of Vitamin D3 Supplementation for the Prevention of Pulmonary Tuberculosis and Mortality in HIV: A Randomised, Double-Blind, Placebo-Controlled Trial. Lancet HIV 2020, 7, e463–e471. [Google Scholar] [CrossRef] [PubMed]
- Oh, K.S.; Lee, J.S.; Kim, H.C.; Kang, H.-Y.; Lee, J.-Y.; Han, E. Effects of Depression on Medication Adherence in HIV/AIDS Patients: Korea HIV/AIDS Cohort Study. J. Infect. Public Health 2023, 16, 1598–1605. [Google Scholar] [CrossRef] [PubMed]
- Llibre, J.; Falco, V.; Tural, C.; Negredo, E.; Pineda, J.; Munoz, J.; Ortega, E.; Videla, S.; Sirera, G.; Martinez, E.; et al. The Changing Face of HIV/AIDS in Treated Patients. CHR 2009, 7, 365–377. [Google Scholar] [CrossRef] [PubMed]
- Cohen, M.S.; Gay, C.L. Treatment to Prevent Transmission of HIV-1. Clin. Infect. Dis. 2010, 50 (Suppl. 3), S85–S95. [Google Scholar] [CrossRef]
- McCollum, E.V.; Simmonds, N.; Becker, J.E.; Shipley, P.G. Studies on experimental rickets. J. Biol. Chem. 1922, 53, 293–312. [Google Scholar] [CrossRef]
- Aşkın, Ö.; Uzunçakmak, T.K.Ü.; Altunkalem, N.; Tüzün, Y. Vitamin Deficiencies/Hypervitaminosis and the Skin. Clin. Dermatol. 2021, 39, 847–857. [Google Scholar] [CrossRef] [PubMed]
- Visuthranukul, J.; Phansuea, P.; Buranakityanon, P.; Lerdrungroj, P.; Yamasmith, E. Prevalence and Risk Factors of Vitamin D Deficiency among Living with HIV Adults Receiving Antiretroviral Treatment in Tropical Area: Cross-Sectional Study. Heliyon 2023, 9, e19537. [Google Scholar] [CrossRef]
- Jones, G.; Prosser, D.E.; Kaufmann, M. 25-Hydroxyvitamin D-24-Hydroxylase (CYP24A1): Its Important Role in the Degradation of Vitamin D. Arch. Biochem. Biophys. 2012, 523, 9–18. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. Vitamin D Deficiency: Effects on Oxidative Stress, Epigenetics, Gene Regulation, and Aging. Biology 2019, 8, 30. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef] [PubMed]
- Allard, J.P.; Aghdassi, E.; Chau, J.; Tam, C.; Kovacs, C.M.; Salit, I.E.; Walmsley, S.L. Effects of Vitamin E and C Supplementation on Oxidative Stress and Viral Load in HIV-Infected Subjects. AIDS 1998, 12, 1653. [Google Scholar] [CrossRef]
- Havers, F.; Smeaton, L.; Gupte, N.; Detrick, B.; Bollinger, R.C.; Hakim, J.; Kumarasamy, N.; Andrade, A.; Christian, P.; Lama, J.R.; et al. 25-Hydroxyvitamin D Insufficiency and Deficiency Is Associated With HIV Disease Progression and Virological Failure Post-Antiretroviral Therapy Initiation in Diverse Multinational Settings. J. Infect. Dis. 2014, 210, 244–253. [Google Scholar] [CrossRef] [PubMed]
- Chun, R.F.; Liu, N.Q.; Lee, T.; Schall, J.I.; Denburg, M.R.; Rutstein, R.M.; Adams, J.S.; Zemel, B.S.; Stallings, V.A.; Hewison, M. Vitamin D Supplementation and Antibacterial Immune Responses in Adolescents and Young Adults with HIV/AIDS. J. Steroid. Biochem. Mol. Biol. 2015, 148, 290–297. [Google Scholar] [CrossRef]
- Coelho, L.; Cardoso, S.W.; Luz, P.M.; Hoffman, R.M.; Mendonça, L.; Veloso, V.G.; Currier, J.S.; Grinsztejn, B.; Lake, J.E. Vitamin D3 Supplementation in HIV Infection: Effectiveness and Associations with Antiretroviral Therapy. Nutr. J. 2015, 14, 81. [Google Scholar] [CrossRef]
- Mehta, S.; Giovannucci, E.; Mugusi, F.M.; Spiegelman, D.; Aboud, S.; Hertzmark, E.; Msamanga, G.I.; Hunter, D.; Fawzi, W.W. Vitamin D Status of HIV-Infected Women and Its Association with HIV Disease Progression, Anemia, and Mortality. PLoS ONE 2010, 5, e8770. [Google Scholar] [CrossRef]
- Viard, J.-P.; Souberbielle, J.-C.; Kirk, O.; Reekie, J.; Knysz, B.; Losso, M.; Gatell, J.; Pedersen, C.; Bogner, J.R.; Lundgren, J.D.; et al. Vitamin D and Clinical Disease Progression in HIV Infection: Results from the EuroSIDA Study. AIDS 2011, 25, 1305–1315. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, R.; Bevan, M.A.; Kim, S.; Patel, N.; Hawrylowicz, C.; Vyakarnam, A.; Peters, B.S. A Comparative Phase 1 Clinical Trial to Identify Anti-Infective Mechanisms of Vitamin D in People with HIV Infection. AIDS 2015, 29, 1127. [Google Scholar] [CrossRef]
- Ashenafi, S.; Amogne, W.; Kassa, E.; Gebreselassie, N.; Bekele, A.; Aseffa, G.; Getachew, M.; Aseffa, A.; Worku, A.; Hammar, U.; et al. Daily Nutritional Supplementation with Vitamin D3 and Phenylbutyrate to Treatment-Naïve HIV Patients Tested in a Randomized Placebo-Controlled Trial. Nutrients 2019, 11, 133. [Google Scholar] [CrossRef]
- Stallings, V.A.; Schall, J.I.; Hediger, M.L.; Zemel, B.S.; Tuluc, F.; Dougherty, K.A.; Samuel, J.L.; Rutstein, R.M. High-Dose Vitamin D3 Supplementation in Children and Young Adults with HIV: A Randomized, Placebo-Controlled Trial. Pediatr. Infect. Dis. J. 2015, 34, e32. [Google Scholar] [CrossRef]
- Almeida-Afonso, R.; Finamor, D.; Fonseca, L.A.M.; Veiga, A.P.R.; Monteiro, M.A.; Magri, M.; Duarte, A.J.; Casseb, J. Efficacy of Vitamin D Supplementation among Persons Living with HIV/AIDS in São Paulo City, Brazil. Braz. J. Infect. Dis. 2021, 25, 101598. [Google Scholar] [CrossRef] [PubMed]
- Chokephaibulkit, K.; Saksawad, R.; Bunupuradah, T.; Rungmaitree, S.; Phongsamart, W.; Lapphra, K.; Maleesatharn, A.; Puthanakit, T. Prevalence of Vitamin D Deficiency among Perinatally HIV-Infected Thai Adolescents Receiving Antiretroviral Therapy. Pediatr. Infect. Dis. J. 2013, 32, 1237–1239. [Google Scholar] [CrossRef] [PubMed]
- Arpadi, S.M.; McMahon, D.J.; Abrams, E.J.; Bamji, M.; Purswani, M.; Engelson, E.S.; Horlick, M.; Shane, E. Effect of Supplementation with Cholecalciferol and Calcium on 2-y Bone Mass Accrual in HIV-Infected Children and Adolescents: A Randomized Clinical Trial123. Am. J. Clin. Nutr. 2012, 95, 678–685. [Google Scholar] [CrossRef]
- Steenhoff, A.P.; Schall, J.I.; Samuel, J.; Seme, B.; Marape, M.; Ratshaa, B.; Goercke, I.; Tolle, M.; Nnyepi, M.S.; Mazhani, L.; et al. Vitamin D₃ Supplementation in Batswana Children and Adults with HIV: A Pilot Double Blind Randomized Controlled Trial. PLoS ONE 2015, 10, e0117123. [Google Scholar] [CrossRef]
- Rovner, A.J.; Stallings, V.A.; Rutstein, R.; Schall, J.I.; Leonard, M.B.; Zemel, B.S. Effect of High-Dose Cholecalciferol (Vitamin D3) on Bone and Body Composition in Children and Young Adults with HIV Infection: A Randomized, Double-Blind, Placebo-Controlled Trial. Osteoporos. Int. 2017, 28, 201–209. [Google Scholar] [CrossRef]
- Dougherty, K.A.; Schall, J.I.; Zemel, B.S.; Tuluc, F.; Hou, X.; Rutstein, R.M.; Stallings, V.A. Safety and Efficacy of High-Dose Daily Vitamin D3 Supplementation in Children and Young Adults Infected With Human Immunodeficiency Virus. J. Pediatr. Infect. Dis. Soc. 2014, 3, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.S.; Van Tran, K.; Chen, S.-Y.; Tam, K.-W. A Systematic Review and Meta-Analysis of Randomized Controlled Trials of the Effects of Vitamin D Supplementation on Children and Young Adults with HIV Infection. J. Nutr. 2023, 153, 138–147. [Google Scholar] [CrossRef]
- Stevens, C.M.; Bhusal, K.; Levine, S.N.; Dhawan, R.; Jain, S.K. The Association of Vitamin C and Vitamin D Status on Bone Mineral Density and VCAM-1 Levels in Female Diabetic Subjects: Is Combined Supplementation with Vitamin C and Vitamin D Potentially More Successful in Improving Bone Health than Supplementation with Vitamin D Alone? Hum. Nutr. Metab. 2023, 34, 200221. [Google Scholar] [CrossRef]
- Escota, G.V.; Mondy, K.; Bush, T.; Conley, L.; Brooks, J.T.; Önen, N.; Patel, P.; Kojic, E.M.; Henry, K.; Hammer, J.; et al. High Prevalence of Low Bone Mineral Density and Substantial Bone Loss over 4 Years Among HIV-Infected Persons in the Era of Modern Antiretroviral Therapy. AIDS Res. Hum. Retrovir. 2016, 32, 59–67. [Google Scholar] [CrossRef]
- Rezamand, G.; Estêvão, M.D.; Morvaridzadeh, M.; Akbari, A.; Tabaeian, S.P.; Pizarro, A.B.; Malekahmadi, M.; Hasani, M.; Roffey, D.M.; Mirzaei, A.; et al. Effects of Vitamin D Supplementation on Bone Health and Bone-Related Parameters in HIV-Infected Patients: A Systematic Review and Meta-Analysis. Clin. Ther. 2022, 44, e11–25.e8. [Google Scholar] [CrossRef]
- Hileman, C.O.; Overton, E.T.; McComsey, G.A. Vitamin D and Bone Loss in HIV. Curr. Opin. HIV AIDS 2016, 11, 277. [Google Scholar] [CrossRef] [PubMed]
- Hewison, M. Vitamin D and the Intracrinology of Innate Immunity. Mol. Cell. Endocrinol. 2010, 321, 103–111. [Google Scholar] [CrossRef] [PubMed]
- Realegeno, S.; Modlin, R.L. Shedding Light on the Vitamin D–Tuberculosis–HIV Connection. Proc. Natl. Acad. Sci. USA 2011, 108, 18861–18862. [Google Scholar] [CrossRef] [PubMed]
- Agak, G.W.; Qin, M.; Nobe, J.; Kim, M.-H.; Krutzik, S.R.; Tristan, G.R.; Elashoff, D.; Garbán, H.J.; Kim, J. Propionibacterium Acnes Induces an IL-17 Response in Acne Vulgaris That Is Regulated by Vitamin A and Vitamin D. J. Investig. Dermatol. 2014, 134, 366–373. [Google Scholar] [CrossRef]
- Mostafa, W.Z.; Hegazy, R.A. Vitamin D and the Skin: Focus on a Complex Relationship: A Review. J. Adv. Res. 2015, 6, 793–804. [Google Scholar] [CrossRef]
- Chiang, K.-C.; Chen, T.C. The Anti-Cancer Actions of Vitamin D. Anti-Cancer Agents Med. Chem. Anti-Cancer Agents 2013, 13, 126–139. [Google Scholar] [CrossRef]
- Qurban, R.; Saeed, S.; Kanwal, W.; Junaid, K.; Rehman, A. Potential Immune Modulatory Effect of Vitamin D in HIV Infection: A Review. Clin. Nutr. ESPEN 2022, 47, 1–8. [Google Scholar] [CrossRef]
- Shikuma, C.M.; Seto, T.; Liang, C.-Y.; Bennett, K.; DeGruttola, V.; Gerschenson, M.; Stein, J.H.; Budoff, M.; Hodis, H.N.; Delaney, J.A.C.; et al. Vitamin D Levels and Markers of Arterial Dysfunction in HIV. AIDS Res. Hum. Retrovir. 2012, 28, 793–797. [Google Scholar] [CrossRef]
- Gois, P.H.F.; Ferreira, D.; Olenski, S.; Seguro, A.C. Vitamin D and Infectious Diseases: Simple Bystander or Contributing Factor? Nutrients 2017, 9, 651. [Google Scholar] [CrossRef]
- Adorini, L.; Penna, G. Dendritic Cell Tolerogenicity: A Key Mechanism in Immunomodulation by Vitamin D Receptor Agonists. Hum. Immunol. 2009, 70, 345–352. [Google Scholar] [CrossRef]
- Baeke, F.; Korf, H.; Overbergh, L.; van Etten, E.; Verstuyf, A.; Gysemans, C.; Mathieu, C. Human T Lymphocytes Are Direct Targets of 1,25-Dihydroxyvitamin D3 in the Immune System. J. Steroid. Biochem. Mol. Biol. 2010, 121, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Canale, D.; de Bragança, A.C.; Gonçalves, J.G.; Shimizu, M.H.M.; Sanches, T.R.; Andrade, L.; Volpini, R.A.; Seguro, A.C. Vitamin D Deficiency Aggravates Nephrotoxicity, Hypertension and Dyslipidemia Caused by Tenofovir: Role of Oxidative Stress and Renin-Angiotensin System. PLoS ONE 2014, 9, e103055. [Google Scholar] [CrossRef] [PubMed]
- Ezeamama, A.E.; Guwatudde, D.; Wang, M.; Bagenda, D.; Kyeyune, R.; Sudfeld, C.; Manabe, Y.C.; Fawzi, W.W. Vitamin-D Deficiency Impairs CD4+T-Cell Count Recovery Rate in HIV-Positive Adults on Highly Active Antiretroviral Therapy: A Longitudinal Study. Clin. Nutr. 2016, 35, 1110–1117. [Google Scholar] [CrossRef]
- Tsoupras, A.B.; Chini, M.; Tsogas, N.; Fragopoulou, E.; Nomikos, T.; Lioni, A.; Mangafas, N.; Demopoulos, C.A.; Antonopoulou, S.; Lazanas, M.C. Anti-Platelet-Activating Factor Effects of Highly Active Antiretroviral Therapy (HAART): A New Insight in the Drug Therapy of HIV Infection? AIDS Res. Hum. Retrovir. 2008, 24, 1079–1086. [Google Scholar] [CrossRef]
- Tsoupras, A.B.; Chini, M.; Mangafas, N.; Tsogas, N.; Stamatakis, G.; Tsantila, N.; Fragopoulou, E.; Antonopoulou, S.; Gargalianos, P.; Demopoulos, C.A.; et al. Platelet-Activating Factor and Its Basic Metabolic Enzymes in Blood of Naive HIV-Infected Patients. Angiology 2012, 63, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Kelesidis, T.; Papakonstantinou, V.; Detopoulou, P.; Fragopoulou, E.; Chini, M.; Lazanas, M.C.; Antonopoulou, S. The Role of Platelet-Activating Factor in Chronic Inflammation, Immune Activation, and Comorbidities Associated with HIV Infection. AIDS Rev. 2015, 17, 191–201. [Google Scholar]
- Verouti, S.N.; Tsoupras, A.B.; Alevizopoulou, F.; Demopoulos, C.A.; Iatrou, C. Paricalcitol Effects on Activities and Metabolism of Platelet Activating Factor and on Inflammatory Cytokines in Hemodialysis Patients. Int. J. Artif. Organs 2013, 36, 87–96. [Google Scholar] [CrossRef]
- Chini, M.; Tsoupras, A.B.; Mangafas, N.; Tsogas, N.; Papakonstantinou, V.D.; Fragopoulou, E.; Antonopoulou, S.; Gargalianos, P.; Demopoulos, C.A.; Lazanas, M.C. Effects of HAART on Platelet-Activating Factor Metabolism in Naive HIV-Infected Patients I: Study of the Tenofovir-DF/Emtricitabine/Efavirenz HAART Regimen. AIDS Res. Hum. Retrovir. 2012, 28, 766–775. [Google Scholar] [CrossRef]
- Chini, M.; Tsoupras, A.B.; Mangafas, N.; Tsogas, N.; Papakonstantinou, V.D.; Fragopoulou, E.; Antonopoulou, S.; Gargalianos, P.; Demopoulos, C.A.; Lazanas, M.C. Effects of Highly Active Antiretroviral Therapy on Platelet Activating Factor Metabolism in Naïve HIV-Infected Patients: II) Study of the Abacavir/Lamivudine/Efavirenz Haart Regimen. Int. J. Immunopathol. Pharmacol. 2012, 25, 247–258. [Google Scholar] [CrossRef]
- Papakonstantinou, V.D.; Chini, M.; Mangafas, N.; Stamatakis, G.M.; Tsogas, N.; Tsoupras, A.B.; Psarra, K.; Fragopoulou, E.; Antonopoulou, S.; Gargalianos, P.; et al. In Vivo Effect of Two First-Line ART Regimens on Inflammatory Mediators in Male HIV Patients. Lipids Health Dis. 2014, 13, 90. [Google Scholar] [CrossRef]
- Britannica Vitamin C|Definition, Structure, Benefits, & Facts|Britannica. Available online: https://www.britannica.com/science/vitamin-C (accessed on 5 January 2024).
- Hays, N.P.; Roberts, S.B. Aging—Nutritional aspects. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 81–87. ISBN 978-0-12-227055-0. [Google Scholar]
- Ha, M.N.; Graham, F.L.; D’Souza, C.K.; Muller, W.J.; Igdoura, S.A.; Schellhorn, H.E. Functional Rescue of Vitamin C Synthesis Deficiency in Human Cells Using Adenoviral-Based Expression of Murine l-Gulono-γ-Lactone Oxidase. Genomics 2004, 83, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. The Pecking Order of Free Radicals and Antioxidants: Lipid Peroxidation, α-Tocopherol, and Ascorbate. Arch. Biochem. Biophys. 1993, 300, 535–543. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Levine, M. Vitamin C Physiology: The Known and the Unknown and Goldilocks. Oral Dis. 2016, 22, 463–493. [Google Scholar] [CrossRef]
- Stephensen, C.B.; Marquis, G.S.; Jacob, R.A.; Kruzich, L.A.; Douglas, S.D.; Wilson, C.M. Vitamins C and E in Adolescents and Young Adults with HIV Infection2. Am. J. Clin. Nutr. 2006, 83, 870–879. [Google Scholar] [CrossRef]
- Merenstein, D.; Wang, C.; Gandhi, M.; Robison, E.; Levine, A.M.; Schwartz, R.M.; Weber, K.M.; Liu, C. An Investigation of the Possible Interaction between the Use of Vitamin C and Highly Active Antiretroviral Therapy (HAART) Adherence and Effectiveness in Treated HIV+ Women. Complement. Ther. Med. 2012, 20, 222–227. [Google Scholar] [CrossRef] [PubMed]
- Harakeh, S.; Jariwalla, R. Comparative Study of the Anti-HIV Activities of Ascorbate and Thiol-Containing Reducing Agents in Chronically HIV-Infected Cells. Am. J. Clin. Nutr. 1991, 54, 1231S–1235S. [Google Scholar] [CrossRef]
- Basu, T.K.; Donaldson, D. Scurvy. In Encyclopedia of Food Sciences and Nutrition, 2nd ed.; Caballero, B., Ed.; Academic Press: Oxford, UK, 2003; pp. 5107–5111. ISBN 978-0-12-227055-0. [Google Scholar]
- Li, Y.; Schellhorn, H.E. New Developments and Novel Therapeutic Perspectives for Vitamin C1,2. J. Nutr. 2007, 137, 2171–2184. [Google Scholar] [CrossRef] [PubMed]
- Ebenuwa, I.; Violet, P.-C.; Michel, K.; Padayatty, S.J.; Wang, Y.; Tu, H.; Wilkins, K.J.; Kassaye, S.; Levine, M. Vitamin C Urinary Loss and Deficiency in Human Immunodeficiency Virus (HIV): Cross-Sectional Study of Vitamin C Renal Leak in Women with HIV. Clin. Infect. Dis. 2023, 77, 1157–1165. [Google Scholar] [CrossRef]
- Oliveira, K.F.; Cunha, D.F.; Weffort, V.R.S. Analysis of Serum and Supplemented Vitamin C and Oxidative Stress in HIV-Infected Children and Adolescents. J. Pediatr. 2011, 87, 517–522. [Google Scholar] [CrossRef]
- Makinde, O.; Rotimi, K.; Ikumawoyi, V.; Adeyemo, T.; Olayemi, S. Effect of Vitamin A and Vitamin C Supplementation on Oxidative Stress in HIV and HIV-TB Co-Infection at Lagos University Teaching Hospital (LUTH) Nigeria. Afr. Health Sci. 2017, 17, 308–314. [Google Scholar] [CrossRef]
- Wilkinson, A.L.; Huey, S.L.; Mehta, S. Antioxidants and HIV/AIDS: Zinc, Selenium, and Vitamins C and E. In Nutrition and HIV: Epidemiological Evidence to Public Health; Mehta, S., Finkelstein, J.L., Eds.; CRC Press: New York, NY, USA, 2018; ISBN 978-1-4665-8581-2. [Google Scholar]
- Saeed, R.W.; Peng, T.; Metz, C.N. Ascorbic Acid Blocks the Growth Inhibitory Effect of Tumor Necrosis Factor-α on Endothelial Cells. Exp. Biol. Med. 2003, 228, 855–865. [Google Scholar] [CrossRef] [PubMed]
- Lewis, D.E.; Couturier, J.P. Chapter 6—Chronic Inflammation in HIV Pathogenesis: Effects on Immune Cells, Organ Systems, and Systemic Consequences. In Translational Inflammation; Actor, J.K., Smith, K.C., Eds.; Perspectives in Translational Cell Biology; Academic Press: New York, NY, USA, 2019; pp. 111–131. ISBN 978-0-12-813832-8. [Google Scholar]
- Kruzich, L.A.; Marquis, G.S.; Wilson, C.M.; Stephensen, C.B. HIV-Infected US Youth Are at High Risk of Obesity and Poor Diet Quality: A Challenge for Improving Short- and Long-Term Health Outcomes. J. Am. Diet. Assoc. 2004, 104, 1554–1560. [Google Scholar] [CrossRef] [PubMed]
- Jiamton, S.; Pepin, J.; Suttent, R.; Filteau, S.; Mahakkanukrauh, B.; Hanshaoworakul, W.; Chaisilwattana, P.; Suthipinittharm, P.; Shetty, P.; Jaffar, S. A Randomized Trial of the Impact of Multiple Micronutrient Supplementation on Mortality among HIV-Infected Individuals Living in Bangkok. AIDS 2003, 17, 2461–2469. [Google Scholar] [CrossRef]
- Fawzi, W.; Msamanga, G.; Spiegelman, D.; Hunter, D.J. Studies of Vitamins and Minerals and HIV Transmission and Disease Progression. J. Nutr. 2005, 135, 938–944. [Google Scholar] [CrossRef]
- Hu, W.-S.; Hughes, S.H. HIV-1 Reverse Transcription. Cold Spring Harb. Perspect. Med. 2012, 2, a006882. [Google Scholar] [CrossRef] [PubMed]
- Cathcart, R.F. Vitamin C in the Treatment of Acquired Immune Deficiency Syndrome (AIDS). Med. Hypotheses 1984, 14, 423–433. [Google Scholar] [CrossRef]
- Tsoupras, A. The Anti-Inflammatory and Antithrombotic Properties of Bioactives from Orange, Sanguine and Clementine Juices and from Their Remaining By-Products. Beverages 2022, 8, 39. [Google Scholar] [CrossRef]
- Fawzi, W.W.; Msamanga, G.I.; Spiegelman, D.; Wei, R.; Kapiga, S.; Villamor, E.; Mwakagile, D.; Mugusi, F.; Hertzmark, E.; Essex, M.; et al. A Randomized Trial of Multivitamin Supplements and HIV Disease Progression and Mortality. N. Engl. J. Med. 2004, 351, 23–32. [Google Scholar] [CrossRef]
- Fawzi, W.W.; Msamanga, G.I.; Spiegelman, D.; Urassa, E.J.; McGrath, N.; Mwakagile, D.; Antelman, G.; Mbise, R.; Kapiga, S.; Willett, W.; et al. Randomised Trial of Effects of Vitamin Supplements on Pregnancy Outcomes and T Cell Counts in HIV-1-Infected Women in Tanzania. Lancet 1998, 351, 1477–1482. [Google Scholar] [CrossRef]
- Fawzi, W.W.; Msamanga, G.I.; Hunter, D.; Renjifo, B.; Antelman, G.; Bang, H.; Manji, K.; Kapiga, S.; Mwakagile, D.; Essex, M.; et al. Randomized Trial of Vitamin Supplements in Relation to Transmission of HIV-1 through Breastfeeding and Early Child Mortality. AIDS 2002, 16, 1935. [Google Scholar] [CrossRef]
- Slain, D.; Amsden, J.R.; Khakoo, R.A.; Fisher, M.A.; Lalka, D.; Hobbs, G.R. Effect of High-Dose Vitamin C on the Steady-State Pharmacokinetics of the Protease Inhibitor Indinavir in Healthy Volunteers. Pharmacother. J. Hum. Pharmacol. Drug Ther. 2005, 25, 165–170. [Google Scholar] [CrossRef] [PubMed]
Hypothesis—Intervention | Study Design-/Parameters Examined | Main Findings | Year of Study | Ref. |
---|---|---|---|---|
Aim: assess the efficacy of vitamin D3 supplementation for pulmonary TB 1 and mortality prevention among HIV-infected adults initiating ART. | Randomized, parallel-group, placebo-controlled, double-blind trial on HIV+ Tanzanian adults recently starting ART (vitamin D 50,000 IU weekly, followed by 2000 IU daily after one month of ART). |
| 2020 | [18] |
Aim: 25(OH)D deficiency’s risk factors and associated outcomes. | Randomized cART 2 trial, 1571 cART-naive adults in US. |
| 2014 | [29] |
Aim: examine the possible importance of vitamin D for antibacterial responses in HIV+ patients. | Total of 44 HIV-positive individuals with compromised antibacterial responses to infections received vitamin D3 supplementation (two groups: 4000 IU and 7000 IU, daily). |
| 2015 | [30] |
Aim: success or failure to achieve 25(OH)D ≥ 30 ng/mL by the end of the trial. | Total of 97 HIV patients (regardless of which ART they received), received vitamin D3 supplementation (5 weeks: 50,000 IU, 19 weeks: 8000 IU). |
| 2015 | [31] |
Vitamin D decreases the general mortality rate of symptomatic and asymptomatic HIV-infected patients. | Total of 884 Tanzanian women who received multivitamin supplementation (assessment of vitD levels). |
| 2010 | [32] |
Aim: Investigating the correlation between 25(OH)D and HIV disease progression. | EuroSIDA study based on the vitamin D levels of 16,599 HIV-1-infected people. |
| 2011 | [33] |
A biological mechanism exists that explains the faster HIV disease progression and increased mortality rates when blood vitamin D levels are low, and supplementation could improve T cell immunity function. | Pilot, open-label, three-arm prospective phase 1 study on patients with low plasma vitamin D, 17 with HIV+ (11 on HAART and 6 treatment-naive), 11 healthy controls, received vitamin D3 supplements (200,000 IU on a single dose). |
| 2015 | [34] |
Daily vitamin D3 and phenylbutyrate supplementation could boost immune function, restore adequate nutrition, and hinder viral replication. | A 16-week double-blind, placebo-controlled, randomized trial in Ethiopia, ART-naïve HIV+ patients’ viral load recording (supplementation included 5000 IU daily). |
| 2019 | [35] |
| Double-blind trial of 58 subjects; safety markers related to 25(OH)D immune status were assessed at baseline, 3, 6, and 12 months. |
| 2015 | [36] |
Aim: evaluate the variables involved in vitamin D metabolism and risk factors associated with hypovitaminosis in HIV patients. | Weekly 50,000 IU vitamin D tests of 1,25(OH)2D, PTH, total Ca, ionic Ca, glucose, urea, creatinine, osteocalcin, propeptide of procollagen type 1 (P1NP), renal function, and urine conducted on 73 patients. |
| 2021 | [37] |
Aim: assess the prevalence of vitamin D deficiency among 101 PHIV-infected Thai adolescents receiving ART. Information regarding sunlight exposure was collected. | Cross-sectional study of vitamin D levels and BMD 4, serum (25(OH)D), PTH, calcium, and BMD determination on 101 HIV-infected Thai adolescents. |
| 2014 | [38] |
Bone accrual could be enhanced by supplementation with vitamin D and calcium. | In a 24-month randomized, placebo-controlled, multicenter clinical trial at 4 NYC hospitals, 59 participants, received daily 100,000 IU oral cholecalciferol and 1 g Ca daily or double placebo intake. |
| 2012 | [39] |
The objective was to test the safety and efficacy of two oral daily doses of D3 over 12 weeks in children and adults with HIV in Botswana. | A 12-week pilot, prospective randomized double-blind 12-week pilot trial, 60 participants were aged 5 to 50.9 years, HIV infected, on first-line ART, and in a usual state of good health, 4000 or 7000 IU D3 daily, excluded were subjects with some HIV-unrelated chronic conditions. |
| 2015 | [40] |
Aim: determine vitamin D3 supplementation’s impact on body composition, bone density, structure, and strength, and assess differences between those with PHIV or BHIV 6 infections. | A 12-month randomized, placebo-controlled, double-blind study of vitamin D3 supplementation in children (7000 IU daily) and young adults, ages 5 to 24.9, with PHIV or BHIV infection. |
| 2016 | [41] |
In this study, a vitD3 dose was considered unsafe if it resulted in elevated 25(OH)D > 160 ng/mL coupled with an elevated calcium (age- and sex-specific range). | Double-blind trial, subjects infected with HIV were given vitamin D3 supplementation of 4000 IU/day or 7000 IU/day and evaluated for changes in vitD status and HIV indicators. |
| 2014 | [42] |
Hypothesis—Intervention | Study Design/Parameters Examined | Main Findings | Year of Study | Ref. |
---|---|---|---|---|
Aim: examine the impact of high-dose micronutrient supplementation. | Randomized 48-week placebo-controlled trial, 481 HIV-infected individuals in Bangkok, CD4 cell counts 50 × 106–50 × 106/L, micronutrients (vitamin D3, vitamin C 400 mg, among others) or placebo intake. |
| 2003 | [84] |
Aim: examine the significance of multivitamin supplements in decreasing the patients’ mortality rate. | A 3-month randomized placebo-controlled, double-blind study of vitamin C (1000 mg daily) and E (800 IU daily) supplementation on 49 HIV+ adults. |
| 1995–1996 | [28] |
Micronutrient status could be a determining factor in the advance of HIV disease. | Total of 1078 pregnant women with HIV, double-blind, placebo-controlled trial in Tanzania, daily supplementation of vitamin A, multivitamins containing B, C (500 mg daily), and E, or both. |
| 2003 | [89] |
Aim: investigate the effects of vitamin A, multivitamins, or both supplementation on T cell counts and birth outcomes. | Total of 1075 participants; randomized, double-blind, placebo-controlled trial with a 2 × 2 factorial design, HIV-1-infected women at 12–27 weeks’ gestation (supplementation included 500 mg vitamin C daily). |
| 1998 | [90] |
Poor micronutrient status in pregnant women could be associated with HIV-1 transmission through breastfeeding. | Tanzanian HIV-infected pregnant women, 20 weeks gestation, during lactation, vitamin A or multivitamins without A supplementation (supplementation included 500 mg vitamin C daily). |
| 2002 | [91] |
Indinavir was given for 2 days, plus a 7-day washout period and 7 days vitC supplementation. After 6 days of vitC, indinavir was resumed to measure its pharmacokinetics. | Prospective, open-label, longitudinal, two-period time series on 7 healthy volunteers (supplementation included 1000 mg vitamin C daily). | High doses of vitamin C apparently reduced steady-state indinavir plasma concentrations and can lead to subtherapeutic concentrations of antiretroviral medication, causing viral resistance and treatment regimen failure. | 2005 | [92] |
Aim: to identify the modulatory roles of vitamin A and C supplementation on oxidative stress associated with HIV mono-infection and HIV-TB co-infection. | Total of 90 adult patients with HIV and HIV-TB co-infection from Lagos, Groups A and C: vitamin supplementation (2600 mg of vitamin C). Determined the following: antioxidant enzyme activity, lipid peroxidation, catalase, SOD, MDA, and GSH 1. |
| 2017 | [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markou, G.; Panoutsopoulou, E.; Stavrakoudi, E.; Mylonas, C.; Ioannou, S.; Chini, M.; Tsoupras, A. Health Promoting Properties of Vitamins C and D Against HIV Disease Progression, a Narrative Review. Immuno 2024, 4, 601-619. https://doi.org/10.3390/immuno4040035
Markou G, Panoutsopoulou E, Stavrakoudi E, Mylonas C, Ioannou S, Chini M, Tsoupras A. Health Promoting Properties of Vitamins C and D Against HIV Disease Progression, a Narrative Review. Immuno. 2024; 4(4):601-619. https://doi.org/10.3390/immuno4040035
Chicago/Turabian StyleMarkou, Garyfallos, Ellie Panoutsopoulou, Evangelia Stavrakoudi, Charalampos Mylonas, Sofia Ioannou, Maria Chini, and Alexandros Tsoupras. 2024. "Health Promoting Properties of Vitamins C and D Against HIV Disease Progression, a Narrative Review" Immuno 4, no. 4: 601-619. https://doi.org/10.3390/immuno4040035
APA StyleMarkou, G., Panoutsopoulou, E., Stavrakoudi, E., Mylonas, C., Ioannou, S., Chini, M., & Tsoupras, A. (2024). Health Promoting Properties of Vitamins C and D Against HIV Disease Progression, a Narrative Review. Immuno, 4(4), 601-619. https://doi.org/10.3390/immuno4040035