Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Patient Selection
2.2. Modulated Electro-Hyperthermia Treatment
2.3. Clinical Characteristics
2.4. Statistical Analysis
3. Results
3.1. Comparison of the Leukocyte Counts, CRP Levels, and NLR and GLR Values Measured at the Baseline and Follow-Up Visits
3.2. Survival Analyses
3.2.1. Survival After the Date of the First mEHT Treatment
3.2.2. Survival After the Date of the Last mEHT Treatment
3.2.3. Do the Number of mEHT Treatment Cycles Affect Patient Survival?
3.2.4. Multivariate Survival Analyses
3.2.5. Longitudinal Survival Analysis
3.3. Comparison of High and Low Immune Marker Groups
4. Discussion
Limitations of the Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and deaths to 2030: The unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014, 74, 2913–2921. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Oncology. National Cancer Registry: Cancer Statistics Reports for Hungary. Available online: http://stat.nrr.hu/ (accessed on 15 August 2024).
- Sarantis, P.; Koustas, E.; Papadimitropoulou, A.; Papavassiliou, A.G.; Karamouzis, M.V. Pancreatic ductal adenocarcinoma: Treatment hurdles, tumor microenvironment and immunotherapy. World J. Gastrointest. Oncol. 2020, 12, 173–181. [Google Scholar] [CrossRef] [PubMed]
- van der Sijde, F.; van Dam, J.L.; Groot Koerkamp, B.; Haberkorn, B.C.M.; Homs, M.Y.V.; Mathijssen, D.; Besselink, M.G.; Wilmink, J.W.; van Eijck, C.H.J. Treatment Response and Conditional Survival in Advanced Pancreatic Cancer Patients Treated with FOLFIRINOX: A Multicenter Cohort Study. J. Oncol. 2022, 2022, 8549487. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Hackert, T. Surgical Treatment of Pancreatic Ductal Adenocarcinoma. Cancers 2021, 13, 1971. [Google Scholar] [CrossRef]
- Latenstein, A.E.J.; van der Geest, L.G.M.; Bonsing, B.A.; Groot Koerkamp, B.; Haj Mohammad, N.; de Hingh, I.; de Meijer, V.E.; Molenaar, I.Q.; van Santvoort, H.C.; van Tienhoven, G.; et al. Nationwide trends in incidence, treatment and survival of pancreatic ductal adenocarcinoma. Eur. J. Cancer 2020, 125, 83–93. [Google Scholar] [CrossRef]
- Mizrahi, J.D.; Surana, R.; Valle, J.W.; Shroff, R.T. Pancreatic cancer. Lancet 2020, 395, 2008–2020. [Google Scholar] [CrossRef]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- Conroy, T.; Desseigne, F.; Ychou, M.; Bouche, O.; Guimbaud, R.; Becouarn, Y.; Adenis, A.; Raoul, J.L.; Gourgou-Bourgade, S.; de la Fouchardiere, C.; et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817–1825. [Google Scholar] [CrossRef]
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef]
- Wang, Z.M.; Ma, H.B.; Meng, Y. Impact of chemoradiotherapy on the survival of unresectable locally advanced pancreatic cancer: A retrospective cohort analysis. BMC Gastroenterol. 2023, 23, 107. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Wang, Z. Unveiling the immunosuppressive landscape of pancreatic ductal adenocarcinoma: Implications for innovative immunotherapy strategies. Front. Oncol. 2024, 14, 1349308. [Google Scholar] [CrossRef] [PubMed]
- Herold, Z.; Szasz, A.M.; Dank, M. Evidence based tools to improve efficiency of currently administered oncotherapies for tumors of the hepatopancreatobiliary system. World J. Gastrointest. Oncol. 2021, 13, 1109–1120. [Google Scholar] [CrossRef] [PubMed]
- Chicheł, A.; Skowronek, J.; Kubaszewska, M.; Kanikowski, M. Hyperthermia—Description of a method and a review of clinical applications. Rep. Pract. Oncol. Radiother. 2007, 12, 267–275. [Google Scholar] [CrossRef]
- Krenacs, T.; Meggyeshazi, N.; Forika, G.; Kiss, E.; Hamar, P.; Szekely, T.; Vancsik, T. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models. Int. J. Mol. Sci. 2020, 21, 6270. [Google Scholar] [CrossRef]
- Lee, S.Y.; Lorant, G.; Grand, L.; Szasz, A.M. The Clinical Validation of Modulated Electro-Hyperthermia (mEHT). Cancers 2023, 15, 4569. [Google Scholar] [CrossRef]
- Szasz, A.M.; Minnaar, C.A.; Szentmartoni, G.; Szigeti, G.P.; Dank, M. Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist. Front. Oncol. 2019, 9, 1012. [Google Scholar] [CrossRef]
- Ou, J.; Zhu, X.; Chen, P.; Du, Y.; Lu, Y.; Peng, X.; Bao, S.; Wang, J.; Zhang, X.; Zhang, T.; et al. A randomized phase II trial of best supportive care with or without hyperthermia and vitamin C for heavily pretreated, advanced, refractory non-small-cell lung cancer. J. Adv. Res. 2020, 24, 175–182. [Google Scholar] [CrossRef]
- Ostapenko, V.V.; Tanaka, H.; Miyano, M.; Nishide, T.; Ueda, H.; Nishide, I.; Tanaka, Y.; Mune, M.; Yukawa, S. Immune-related effects of local hyperthermia in patients with primary liver cancer. Hepatogastroenterology 2005, 52, 1502–1506. [Google Scholar]
- Wang, X.P.; Xu, M.; Gao, H.F.; Zhao, J.F.; Xu, K.C. Intraperitoneal perfusion of cytokine-induced killer cells with local hyperthermia for advanced hepatocellular carcinoma. World J. Gastroenterol. 2013, 19, 2956–2962. [Google Scholar] [CrossRef]
- Van Gool, S.; Makalowski, J.; Feyen, O.; Prix, L.; Schirrmacher, V.; Stuecker, W. The Induction of Immunogenic Cell Death (ICD) During Maintenance Chemotherapy and Subsequent Multimodal Immunotherapy for Glioblastoma (GBM). Austin Oncol. Case Rep. 2018, 3, 1010. [Google Scholar]
- Minnaar, C.A.; Kotzen, J.A.; Ayeni, O.A.; Vangu, M.D.; Baeyens, A. Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients. Front. Oncol. 2020, 10, 376. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Wei, Q.; Fan, J.; Cheng, S.; Ding, W.; Hua, Z. Prognostic role of the neutrophil-to-lymphocyte ratio in pancreatic cancer: A meta-analysis containing 8252 patients. Clin. Chim. Acta 2018, 479, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tabuchi, T.; Takemura, A.; Kasuga, T.; Motohashi, G.; Hiraishi, K.; Katano, M.; Nakada, I.; Ubukata, H.; Tabuchi, T. The granulocyte/lymphocyte ratio as an independent predictor of tumour growth, metastasis and progression: Its clinical applications. Mol. Med. Rep. 2008, 1, 699–704. [Google Scholar] [CrossRef]
- Ducreux, M.; Cuhna, A.S.; Caramella, C.; Hollebecque, A.; Burtin, P.; Goere, D.; Seufferlein, T.; Haustermans, K.; Van Laethem, J.L.; Conroy, T.; et al. Cancer of the pancreas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2015, 26 (Suppl. S5), v56–v68. [Google Scholar] [CrossRef]
- Szmola, R.; Farkas, G.; Hegyi, P.; Czako, L.; Dubravcsik, Z.; Hritz, I.; Kelemen, D.; Lasztity, N.; Morvay, Z.; Olah, A.; et al. Pancreatic cancer. Evidence based management guidelines of the Hungarian Pancreatic Study Group. Orvosi Hetil. 2015, 156, 326–339. [Google Scholar] [CrossRef]
- Therneau, T.; Crowson, C.; Atkinson, E. Using Time Dependent Covariates and Time Dependent Coefficients in the Cox Model. Available online: https://cran.r-project.org/web/packages/survival/vignettes/timedep.pdf (accessed on 20 June 2024).
- Youden, W.J. Index for rating diagnostic tests. Cancer 1950, 3, 32–35. [Google Scholar] [CrossRef]
- Holm, S. A Simple Sequentially Rejective Multiple Test Procedure. Scand. J. Stat. 1979, 6, 65–70. [Google Scholar]
- Eshmuminov, D.; Aminjonov, B.; Palm, R.F.; Malleo, G.; Schmocker, R.K.; Abdallah, R.; Yoo, C.; Shaib, W.L.; Schneider, M.A.; Rangelova, E.; et al. FOLFIRINOX or Gemcitabine-based Chemotherapy for Borderline Resectable and Locally Advanced Pancreatic Cancer: A Multi-institutional, Patient-Level, Meta-analysis and Systematic Review. Ann. Surg. Oncol. 2023, 30, 4417–4428. [Google Scholar] [CrossRef]
- Kleef, R.; Dank, M.; Herold, M.; Agoston, E.I.; Lohinszky, J.; Martinek, E.; Herold, Z.; Szasz, A.M. Comparison of the effectiveness of integrative immunomodulatory treatments and conventional therapies on the survival of selected gastrointestinal cancer patients. Sci. Rep. 2023, 13, 20360. [Google Scholar] [CrossRef]
- Lin, Y.; Kim, J.; Metter, E.J.; Nguyen, H.; Truong, T.; Lustig, A.; Ferrucci, L.; Weng, N.P. Changes in blood lymphocyte numbers with age in vivo and their association with the levels of cytokines/cytokine receptors. Immun. Ageing 2016, 13, 24. [Google Scholar] [CrossRef] [PubMed]
- Stawarz, B.; Zielinski, H.; Szmigielski, S.; Rappaport, E.; Debicki, P.; Petrovich, Z. Transrectal hyperthermia as palliative treatment for advanced adenocarcinoma of prostate and studies of cell-mediated immunity. Urology 1993, 41, 548–553. [Google Scholar] [CrossRef] [PubMed]
- Feng, L.; Gu, S.; Wang, P.; Chen, H.; Chen, Z.; Meng, Z.; Liu, L. White Blood Cell and Granulocyte Counts Are Independent Predictive Factors for Prognosis of Advanced Pancreatic Caner. Gastroenterol. Res. Pract. 2018, 2018, 8096234. [Google Scholar] [CrossRef] [PubMed]
- Neumann, C.C.M.; Schneider, F.; Hilfenhaus, G.; Vecchione, L.; Felsenstein, M.; Ihlow, J.; Geisel, D.; Sander, S.; Pratschke, J.; Stintzing, S.; et al. Inflammation-Based Prognostic Scores in Pancreatic Cancer Patients-A Single-Center Analysis of 1294 Patients within the Last Decade. Cancers 2023, 15, 2367. [Google Scholar] [CrossRef] [PubMed]
- Szkandera, J.; Stotz, M.; Absenger, G.; Stojakovic, T.; Samonigg, H.; Kornprat, P.; Schaberl-Moser, R.; Alzoughbi, W.; Lackner, C.; Ress, A.L.; et al. Validation of C-reactive protein levels as a prognostic indicator for survival in a large cohort of pancreatic cancer patients. Br. J. Cancer 2014, 110, 183–188. [Google Scholar] [CrossRef]
- Dang, C.; Wang, M.; Qin, T.; Qin, R. How can we better predict the prognosis of patients with pancreatic cancer undergoing surgery using an immune-nutritional scoring system? Surgery 2022, 172, 291–302. [Google Scholar] [CrossRef]
- Iwai, N.; Okuda, T.; Sakagami, J.; Harada, T.; Ohara, T.; Taniguchi, M.; Sakai, H.; Oka, K.; Hara, T.; Tsuji, T.; et al. Neutrophil to lymphocyte ratio predicts prognosis in unresectable pancreatic cancer. Sci. Rep. 2020, 10, 18758. [Google Scholar] [CrossRef]
- Zahorec, R. Neutrophil-to-lymphocyte ratio, past, present and future perspectives. Bratisl Lek Listy 2021, 122, 474–488. [Google Scholar] [CrossRef]
- Jiang, W.; Li, X.; Xiang, C.; Zhou, W. Neutrophils in pancreatic cancer: Potential therapeutic targets. Front. Oncol. 2022, 12, 1025805. [Google Scholar] [CrossRef]
- Wu, E.S.; Srour, S.A. Paraneoplastic Hyperleukocytosis in Pancreatic Adenocarcinoma. J. Pancreat. Cancer 2017, 3, 84–86. [Google Scholar] [CrossRef]
- Bellon, E.; Gebauer, F.; Tachezy, M.; Izbicki, J.R.; Bockhorn, M. Pancreatic cancer and liver metastases: State of the art. Updates Surg. 2016, 68, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.; Kwon, W.; Kim, H.; Byun, Y.; Han, Y.; Kang, J.S.; Choi, Y.J.; Jang, J.Y. The Role of Location of Tumor in the Prognosis of the Pancreatic Cancer. Cancers 2020, 12, 2036. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Sarti, D.; Casadei, V.; Milandri, C.; Dentico, P.; Mambrini, A.; Nani, R.; Fiorentini, C.; Guadagni, S. Modulated Electro-Hyperthermia as Palliative Treatment for Pancreatic Cancer: A Retrospective Observational Study on 106 Patients. Integr. Cancer Ther. 2019, 18, 1534735419878505. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Sarti, D.; Mambrini, A.; Hammarberg Ferri, I.; Bonucci, M.; Sciacca, P.G.; Ballerini, M.; Bonanno, S.; Milandri, C.; Nani, R.; et al. Hyperthermia combined with chemotherapy vs chemotherapy in patients with advanced pancreatic cancer: A multicenter retrospective observational comparative study. World J. Clin. Oncol. 2023, 14, 215–226. [Google Scholar] [CrossRef] [PubMed]
- Fiorentini, G.; Sarti, D.; Ranieri, G.; Gadaleta, C.D.; Fiorentini, C.; Milandri, C.; Mambrini, A.; Guadagni, S. Modulated electro-hyperthermia in stage III and IV pancreatic cancer: Results of an observational study on 158 patients. World J. Clin. Oncol. 2021, 12, 1064–1071. [Google Scholar] [CrossRef]
- Dani, A.; Varkonyi, A.; Magyar, T.; Kalden, M.; Szasz, A. Clinical study for advanced pancreas cancer treated by oncothermia. Oncothermia J. 2012, 6, 11–25. [Google Scholar]
- Douwes, F.; Douwes, O.; Migeod, F.; Grote, C.; Bogovic, J. Hyperthermia in Combination with ACNU Chemotherapy in the Treatment of Recurrent Glioblastoma. Available online: https://www.klinik-st-georg.de/wp-content/downloads/Professional-Articles/hyperthermia_in_combination_with_ACNU_chemotherapy_in_the_treatment_of_recurrent_glioblastoma.pdf (accessed on 10 November 2023).
- Dank, M.; Herold, M.; Garay, M.T.; Gajdacsi, J.; Herold, Z.; Szasz, M.A. Electromagnetic procedures in the treatment of pancreatic cancer: Eminent or resentful? Magy. Onkol. 2023, 67, 194–201. [Google Scholar]
- Petenyi, F.G.; Garay, T.; Muhl, D.; Izso, B.; Karaszi, A.; Borbenyi, E.; Herold, M.; Herold, Z.; Szasz, A.M.; Dank, M. Modulated Electro-Hyperthermic (mEHT) Treatment in the Therapy of Inoperable Pancreatic Cancer Patients-A Single-Center Case-Control Study. Diseases 2021, 9, 81. [Google Scholar] [CrossRef]
Clinicopathological Characteristics | Mean ± SD, HR + 95%CI, or Number of Observations (Percentage) |
---|---|
Age at the first mEHT treatment | 64.58 ± 9.85 |
Male:female ratio | 35:38 (47.95%:52.05%) |
Location of the tumor 1 | |
- Head of the pancreas | 41 (56.16%) |
- Tail of the pancreas | 10 (13.70%) |
- Body of the pancreas | 21 (28.77%) |
Metastases | |
- Synchronous hepatic | 27 (36.99%) |
- Metachronous hepatic | 12 (16.44%) |
- Synchronous peritoneal | 20 (27.40%) |
- Metachronous peritoneal | 13 (17.81%) |
- Synchronous pulmonary | 5 (6.85%) |
- Metachronous pulmonary | 8 (10.96%) |
- Other synchronous | 6 (8.22%) |
- Other metachronous | 6 (8.22%) |
Ascites | 26 (35.62%) |
Average number of mEHT treatment cycles the patients received | 35.84 ± 22.94 |
Time elapsed between tumor diagnosis and the first mEHT treatment (months) | 4.40 ± 5.70 |
Time elapsed between the first and last mEHT treatments (months) | 4.52 ± 3.09 |
Median overall survival calculated from the diagnosis of the tumor (months) | 13.24 (95% CI: 11.33–17.31) |
Prognosis | |
- Good (OS from diagnosis > 12 months) | 41 (56.16%) |
- Poor (OS from diagnosis < 12 months) | 32 (43.84%) |
Median overall survival calculated from the first mEHT treatment (months) | 8.15 (95% CI: 7.16–10.97) |
Median overall survival calculated from the last mEHT treatment (months) | 4.01 (95% CI: 2.73–5.72) |
Parameter | Baseline vs. First Follow-Up | Baseline vs. Second Follow-Up | First Follow-Up vs. Second Follow-Up |
---|---|---|---|
Total white blood cell count | 0.6877 | 0.0187 | 0.0498 |
Neutrophil granulocyte count | 0.4847 | 0.0348 | 0.1541 |
Eosinophil granulocyte count | 0.3289 | 0.2816 | 0.9186 |
Basophil granulocyte count | 0.3143 | 0.4551 | 0.7936 |
Total granulocyte count | 0.8055 | 0.0382 | 0.0668 |
Monocyte count | 0.8886 | 0.2558 | 0.3183 |
Lymphocyte count | 0.5049 | 0.9962 | 0.5049 |
C-reactive protein | 0.6293 | 0.0003 | 0.0001 |
Granulocyte–lymphocyte ratio | 0.7319 | 0.0013 | 0.0004 |
Neutrophil–lymphocyte ratio | 0.9777 | 0.0010 | 0.0011 |
Parameter | Model no.1 | Model no.2 | Model no.3 |
---|---|---|---|
Total white blood cell count | 0.1033 0.0066 | – | – |
Granulocyte–lymphocyte ratio | – | 0.1696 0.0362 | – |
Neutrophil–lymphocyte ratio | – | – | 0.0843 0.0385 |
C-reactive protein | 0.0228 0.0113 | 0.2273 0.0170 | 0.5662 0.5460 |
Number of mEHT treatment cycles | 0.0444 0.1320 | 0.0242 0.0268 | 0.0112 0.0497 |
Hepatic metastases: | |||
- None (ref.) vs. metachronous | 0.0102 | 0.0189 | 0.0283 |
- None (ref.) vs. synchronous | 0.0086 | 0.0101 | 0.0184 |
- Metachronous (ref.) vs. synchronous | 0.6832 | 0.8277 | 0.8689 |
Tumor location: | |||
- Tail (ref.) vs. head | 0.0768 | 0.1772 | 0.1732 |
- Tail (ref.) vs. body | 0.4459 | 0.7132 | 0.6154 |
- Head (ref.) vs. body | 0.0781 | 0.0806 | 0.1338 |
Parameter | Model no.1 | Model no.2 | Model no.3 |
---|---|---|---|
Total white blood cell count | 0.0129 0.1190 | – | – |
Granulocyte–lymphocyte ratio | – | 0.1613 0.0534 | – |
Neutrophil–lymphocyte ratio | – | – | 0.0851 0.0342 |
C-reactive protein | 0.0021 0.0224 | 0.0678 | 0.2664 |
Number of mEHT treatment cycles | 0.2226 | 0.7202 | 0.8989 |
Hepatic metastases: | |||
- None (ref.) vs. metachronous | 0.1195 | 0.2361 | 0.1846 |
- None (ref.) vs. synchronous | 0.0531 | 0.0321 | 0.0642 |
- Metachronous (ref.) vs. synchronous | 0.8518 | 0.6309 | 0.8943 |
Tumor location: | |||
- Tail (ref.) vs. head | 0.0013 | 0.0140 | 0.0117 |
- Tail (ref.) vs. body | 0.0129 | 0.0666 | 0.0556 |
- Head (ref.) vs. body | 0.3684 | 0.2566 | 0.2689 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dobos, N.K.; Garay, T.; Herold, M.; Simon, A.; Madar-Dank, V.; Balka, G.; Gajdacsi, J.; Dank, M.; Szasz, A.M.; Herold, Z. Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. Immuno 2024, 4, 385-399. https://doi.org/10.3390/immuno4040025
Dobos NK, Garay T, Herold M, Simon A, Madar-Dank V, Balka G, Gajdacsi J, Dank M, Szasz AM, Herold Z. Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. Immuno. 2024; 4(4):385-399. https://doi.org/10.3390/immuno4040025
Chicago/Turabian StyleDobos, Nikolett Kitti, Tamas Garay, Magdolna Herold, Alexandra Simon, Viktor Madar-Dank, Gyula Balka, Jozsef Gajdacsi, Magdolna Dank, Attila Marcell Szasz, and Zoltan Herold. 2024. "Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis" Immuno 4, no. 4: 385-399. https://doi.org/10.3390/immuno4040025
APA StyleDobos, N. K., Garay, T., Herold, M., Simon, A., Madar-Dank, V., Balka, G., Gajdacsi, J., Dank, M., Szasz, A. M., & Herold, Z. (2024). Immune Marker and C-Reactive Protein Dynamics and Their Prognostic Implications in Modulated Electro-Hyperthermia Treatment in Advanced Pancreatic Cancer: A Retrospective Analysis. Immuno, 4(4), 385-399. https://doi.org/10.3390/immuno4040025