How Protein Ubiquitination Can Influence Cytokine Expression—Updated Review on Autoinflammatory VEXAS Syndrome
Abstract
:1. Introduction
2. UBA1 in VEXAS Syndrome
3. Cytokine Expression in VEXAS Cases
3.1. IL-6
3.2. TNF-α
3.3. IL-1
3.4. IL-18
3.5. IL-2R
3.6. IL-8
3.7. Other Cytokines
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Beck, D.B.; Ferrada, M.A.; Sikora, K.A.; Ombrello, A.K.; Collins, J.C.; Pei, W.; Balanda, N.; Ross, D.L.; Cardona, D.O.; Wu, Z.; et al. Somatic Mutations in UBA1 and Severe Adult-Onset Autoinflammatory Disease. N. Eng. J. Med. 2020, 383, 2628–2638. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, H.; Kunimoto, H. VEXAS Syndrome. Int. J. Hematol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Beck, D.B.; Werner, A.; Kastner, D.L.; Aksentijevich, I. Disorders of Ubiquitylation: Unchained Inflammation. Nat. Rev. Rheumatol. 2022, 18, 435–447. [Google Scholar] [CrossRef] [PubMed]
- Lacombe, V.; Prevost, M.; Bouvier, A.; Thépot, S.; Chabrun, F.; Kosmider, O.; Lacout, C.; Beucher, A.; Lavigne, C.; Geneviève, F.; et al. Vacuoles in Neutrophil Precursors in VEXAS Syndrome: Diagnostic Performances and Threshold. Br. J. Haematol. 2021, 195, 286–289. [Google Scholar] [CrossRef]
- Grayson, P.C.; Beck, D.B.; Ferrada, M.A.; Nigrovic, P.A.; Kastner, D.L. Notes from the Field: VEXAS Syndrome and Disease Taxonomy in Rheumatology. Arthritis Rheumatol. 2022, 74, 1733–1736. [Google Scholar] [CrossRef]
- Groen, E.J.N.; Gillingwater, T.H. UBA1: At the Crossroads of Ubiquitin Homeostasis and Neurodegeneration. Trends Mol. Med. 2015, 21, 622–632. [Google Scholar] [CrossRef]
- Ruffer, N.; Krusche, M. VEXAS Syndrome: A Diagnostic Puzzle. RMD Open 2023, 9, e003332. [Google Scholar] [CrossRef]
- Rivera, E.G.; Patnaik, A.; Salvemini, J.; Jain, S.; Lee, K.; Lozeau, D.; Yao, Q. SARS-CoV-2/COVID-19 and Its Relationship with NOD2 and Ubiquitination. Clin. Immunol. 2022, 238, 109027. [Google Scholar] [CrossRef]
- Koster, M.J.; Lasho, T.L.; Olteanu, H.; Reichard, K.K.; Mangaonkar, A.; Warrington, K.J.; Patnaik, M.M. VEXAS Syndrome: Clinical, Hematologic Features and a Practical Approach to Diagnosis and Management. Am. J. Hematol. 2024, 99, 284–299. [Google Scholar] [CrossRef]
- Echerbault, R.; Bourguiba, R.; Georgin-Lavialle, S.; Lavigne, C.; Ravaiau, C.; Lacombe, V. Comparing Clinical Features between Males and Females with VEXAS Syndrome: Data from Literature Analysis of Patient Reports. Rheumatology 2024, keae123. [Google Scholar] [CrossRef]
- Barba, T.; Jamilloux, Y.; Durel, C.-A.; Bourbon, E.; Mestrallet, F.; Sujobert, P.; Hot, A. VEXAS Syndrome in a Woman. Rheumatology 2021, 60, e402–e403. [Google Scholar] [CrossRef] [PubMed]
- Diarra, A.; Duployez, N.; Terriou, L. Mutant UBA1 and Severe Adult-Onset Autoinflammatory Disease. N. Eng. J. Med. 2021, 384, 2163–2164. [Google Scholar] [CrossRef]
- Georgin-Lavialle, S.; Terrier, B.; Guedon, A.F.; Heiblig, M.; Comont, T.; Lazaro, E.; Lacombe, V.; Terriou, L.; Ardois, S.; Bouaziz, J. -D.; et al. Further Characterization of Clinical and Laboratory Features in VEXAS Syndrome: Large-scale Analysis of a Multicentre Case Series of 116 French Patients. Br. J. Dermatol. 2022, 186, 564–574. [Google Scholar] [CrossRef] [PubMed]
- Sterling, D.; Duncan, M.E.; Philippidou, M.; Salisbury, J.R.; Kulasekararaj, A.G.; Basu, T.N. VEXAS Syndrome (Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic) for the Dermatologist. J. Am. Acad. Dermatol. 2023, 89, 1209–1214. [Google Scholar] [CrossRef]
- Bruno, A.; Gurnari, C.; Alexander, T.; Snowden, J.A.; Greco, R. Autoimmune Diseases Working Party of the European Society for Blood and Marrow Transplantation Autoimmune Manifestations in VEXAS: Opportunities for Integration and Pitfalls to Interpretation. J. Allergy Clin. Immunol. 2023, 151, 1204–1214. [Google Scholar] [CrossRef]
- Valor-Méndez, L.; Sticherling, M.; Zeschick, M.; Atreya, R.; Schmidt, F.D.; Waldfahrer, F.; Saake, M.; Hüffmeier, U.; Schett, G.; Rech, J. VEXAS Syndrome Mimicking Lupus-like Disease. Rheumatology 2023, 62, e271–e272. [Google Scholar] [CrossRef]
- Zakine, E.; Schell, B.; Battistella, M.; Vignon-Pennamen, M.-D.; Chasset, F.; Mahévas, T.; Cordoliani, F.; Adès, L.; Sébert, M.; Delaleu, J.; et al. UBA1 Variations in Neutrophilic Dermatosis Skin Lesions of Patients with VEXAS Syndrome. JAMA Dermatol. 2021, 157, 1349–1354. [Google Scholar] [CrossRef]
- D’Angelo, G. Hematopoietic Cells Vacuolation, Not Always a Reactive Event. The VEXAS Syndrome. Int. J. Lab. Hematol. 2023, 45, e15–e16. [Google Scholar] [CrossRef]
- Ferrada, M.A.; Sikora, K.A.; Luo, Y.; Wells, K.V.; Patel, B.; Groarke, E.M.; Ospina Cardona, D.; Rominger, E.; Hoffmann, P.; Le, M.T.; et al. Somatic Mutations in UBA1 Define a Distinct Subset of Relapsing Polychondritis Patients with VEXAS. Arthritis Rheumatol. 2021, 73, 1886–1895. [Google Scholar] [CrossRef]
- Khitri, M.-Y.; Hadjadj, J.; Mekinian, A.; Jachiet, V. VEXAS Syndrome: An Update. Jt. Bone Spine 2024, 91, 105700. [Google Scholar] [CrossRef]
- Grayson, P.C.; Patel, B.A.; Young, N.S. VEXAS Syndrome. Blood 2021, 137, 3591–3594. [Google Scholar] [CrossRef] [PubMed]
- Saad, A.J.; Patil, M.K.; Cruz, N.; Lam, C.S.; O’Brien, C.; Nambudiri, V.E. VEXAS Syndrome: A Review of Cutaneous Findings and Treatments in an Emerging Autoinflammatory Disease. Exp. Dermatol. 2024, 33, e15050. [Google Scholar] [CrossRef] [PubMed]
- Diarra, A.; Duployez, N.; Fournier, E.; Preudhomme, C.; Coiteux, V.; Magro, L.; Quesnel, B.; Heiblig, M.; Sujobert, P.; Barraco, F.; et al. Successful Allogeneic Hematopoietic Stem Cell Transplantation in Patients with VEXAS Syndrome: A 2-Center Experience. Blood Adv. 2022, 6, 998–1003. [Google Scholar] [CrossRef] [PubMed]
- van Leeuwen-Kerkhoff, N.; de Witte, M.A.; Heijstek, M.W.; Leavis, H.L. Case Report: Up-Front Allogeneic Stem Cell Transplantation in a Patient with the VEXAS Syndrome. Br. J. Haematol. 2022, 199, e12–e15. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakim, A.; Poulter, J.A.; Mahmoud, D.; Rose, A.M.S.; Elcombe, S.; Lachmann, H.; Cargo, C.; Duncan, C.J.A.; Bishton, M.; Bigley, V.; et al. Allogeneic Haematopoietic Stem Cell Transplantation for VEXAS Syndrome: UK Experience. Br. J. Haematol. 2022, 199, 777–781. [Google Scholar] [CrossRef]
- Lee, I.; Schindelin, H. Structural Insights into E1-Catalyzed Ubiquitin Activation and Transfer to Conjugating Enzymes. Cell 2008, 134, 268–278. [Google Scholar] [CrossRef]
- Chang, T.-K.; Shravage, B.V.; Hayes, S.D.; Powers, C.M.; Simin, R.T.; Harper, J.W.; Baehrecke, E.H. Uba1 Functions in Atg7-and Atg3-Independent Autophagy. Nat. Cell Biol. 2013, 15, 1067–1078. [Google Scholar] [CrossRef]
- Lee, T.V.; Ding, T.; Chen, Z.; Rajendran, V.; Scherr, H.; Lackey, M.; Bolduc, C.; Bergmann, A. The E1 Ubiquitin-Activating Enzyme Uba1 in Drosophila Controls Apoptosis Autonomously and Tissue Growth Non-Autonomously. Development 2008, 135, 43–52. [Google Scholar] [CrossRef]
- Barghout, S.H.; Patel, P.S.; Wang, X.; Xu, G.W.; Kavanagh, S.; Halgas, O.; Zarabi, S.F.; Gronda, M.; Hurren, R.; Jeyaraju, D.V.; et al. Preclinical Evaluation of the Selective Small-Molecule UBA1 Inhibitor, TAK-243, in Acute Myeloid Leukemia. Leukemia 2019, 33, 37–51. [Google Scholar] [CrossRef]
- McGrath, J.P.; Jentsch, S.; Varshavsky, A. UBA 1: An Essential Yeast Gene Encoding Ubiquitin-Activating Enzyme. EMBO J. 1991, 10, 227–236. [Google Scholar] [CrossRef]
- Xu, G.W.; Ali, M.; Wood, T.E.; Wong, D.; Maclean, N.; Wang, X.; Gronda, M.; Skrtic, M.; Li, X.; Hurren, R.; et al. The Ubiquitin-Activating Enzyme E1 as a Therapeutic Target for the Treatment of Leukemia and Multiple Myeloma. Blood 2010, 115, 2251–2259. [Google Scholar] [CrossRef] [PubMed]
- Majeed, S.; Aparnathi, M.K.; Nixon, K.C.J.; Venkatasubramanian, V.; Rahman, F.; Song, L.; Weiss, J.; Barayan, R.; Sugumar, V.; Barghout, S.H.; et al. Targeting the Ubiquitin–Proteasome System Using the UBA1 Inhibitor TAK-243 Is a Potential Therapeutic Strategy for Small-Cell Lung Cancer. Clin. Cancer Res. 2022, 28, 1966–1978. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wu, R.; Tian, C.; Wang, W.; Zhou, L.; Guo, T.; Yu, J.; Wu, C.; Shen, Y.; Liu, X.; et al. GRP78 Blockade Overcomes Intrinsic Resistance to UBA1 Inhibitor TAK-243 in Glioblastoma. Cell Death Discov. 2022, 8, 133. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Yang, Y.; Lei, Z.; Narayanan, S.; Wang, J.; Teng, Q.; Murakami, M.; Ambudkar, S.V.; Ping, F.; Chen, Z. ABCB1 Limits the Cytotoxic Activity of TAK-243, an Inhibitor of the Ubiquitin-Activating Enzyme UBA1. Front. Biosci. (Landmark Ed.) 2022, 27, 5. [Google Scholar] [CrossRef]
- Fenteany, G.; Gaur, P.; Hegedűs, L.; Dudás, K.; Kiss, E.; Wéber, E.; Hackler, L.; Martinek, T.; Puskás, L.G.; Haracska, L. Multilevel Structure–Activity Profiling Reveals Multiple Green Tea Compound Families That Each Modulate Ubiquitin-Activating Enzyme and Ubiquitination by a Distinct Mechanism. Sci. Rep. 2019, 9, 12801. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Zhong, Y.; Hu, X.; Xu, T.; Zhang, Y.; Kales, S.; Qu, Y.; Talley, D.C.; Baljinnyam, B.; LeClair, C.A.; et al. Auranofin Targets UBA1 and Enhances UBA1 Activity by Facilitating Ubiquitin Trans-Thioesterification to E2 Ubiquitin-Conjugating Enzymes. Nat. Commun. 2023, 14, 4798. [Google Scholar] [CrossRef]
- Moudry, P.; Lukas, C.; Macurek, L.; Hanzlikova, H.; Hodny, Z.; Lukas, J.; Bartek, J. Ubiquitin-Activating Enzyme UBA1 Is Required for Cellular Response to DNA Damage. Cell Cycle 2012, 11, 1573–1582. [Google Scholar] [CrossRef]
- Gurnari, C.; Pascale, M.R.; Vitale, A.; Diral, E.; Tomelleri, A.; Galossi, E.; Falconi, G.; Bruno, A.; Crisafulli, F.; Frassi, M.; et al. Diagnostic Capabilities, Clinical Features, and Longitudinal UBA1 Clonal Dynamics of a Nationwide VEXAS Cohort. Am. J. Hematol. 2024, 99, 254–262. [Google Scholar] [CrossRef]
- Poulter, J.A.; Collins, J.C.; Cargo, C.; De Tute, R.M.; Evans, P.; Ospina Cardona, D.; Bowen, D.T.; Cunnington, J.R.; Baguley, E.; Quinn, M.; et al. Novel Somatic Mutations in UBA1 as a Cause of VEXAS Syndrome. Blood 2021, 137, 3676–3681. [Google Scholar] [CrossRef]
- Mascaro, J.M.; Rodriguez-Pinto, I.; Poza, G.; Mensa-Vilaro, A.; Fernandez-Martin, J.; Caminal-Montero, L.; Espinosa, G.; Hernández-Rodríguez, J.; Diaz, M.; Rita-Marques, J.; et al. Spanish Cohort of VEXAS Syndrome: Clinical Manifestations, Outcome of Treatments and Novel Evidences about UBA1 Mosaicism. Ann. Rheum. Dis. 2023, 82, 1594–1605. [Google Scholar] [CrossRef]
- van der Made, C.I.; Potjewijd, J.; Hoogstins, A.; Willems, H.P.J.; Kwakernaak, A.J.; de Sevaux, R.G.L.; van Daele, P.L.A.; Simons, A.; Heijstek, M.; Beck, D.B.; et al. Adult-Onset Autoinflammation Caused by Somatic Mutations in UBA1: A Dutch Case Series of Patients with VEXAS. J. Allergy Clin. Immunol. 2022, 149, 432–439.e4. [Google Scholar] [CrossRef] [PubMed]
- Maeda, A.; Tsuchida, N.; Uchiyama, Y.; Horita, N.; Kobayashi, S.; Kishimoto, M.; Kobayashi, D.; Matsumoto, H.; Asano, T.; Migita, K.; et al. Efficient Detection of Somatic UBA1 Variants and Clinical Scoring System Predicting Patients with Variants in VEXAS Syndrome. Rheumatology 2023, 8, 2056–2064. [Google Scholar] [CrossRef]
- Obiorah, I.E.; Patel, B.A.; Groarke, E.M.; Wang, W.; Trick, M.; Ombrello, A.K.; Ferrada, M.A.; Wu, Z.; Gutierrez-Rodrigues, F.; Lotter, J.; et al. Benign and Malignant Hematologic Manifestations in Patients with VEXAS Syndrome Due to Somatic Mutations in UBA1. Blood Adv. 2021, 5, 3203–3215. [Google Scholar] [CrossRef] [PubMed]
- Tsuchida, N.; Kunishita, Y.; Uchiyama, Y.; Kirino, Y.; Enaka, M.; Yamaguchi, Y.; Taguri, M.; Yamanaka, S.; Takase-Minegishi, K.; Yoshimi, R.; et al. Pathogenic UBA1 Variants Associated with VEXAS Syndrome in Japanese Patients with Relapsing Polychondritis. Ann. Rheum. Dis. 2021, 80, 1057–1061. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Rodrigues, F.; Kusne, Y.; Fernandez, J.; Lasho, T.; Shalhoub, R.; Ma, X.; Alessi, H.; Finke, C.; Koster, M.J.; Mangaonkar, A.; et al. Spectrum of Clonal Hematopoiesis in VEXAS Syndrome. Blood 2023, 142, 244–259. [Google Scholar] [CrossRef]
- Ferrada, M.A.; Savic, S.; Cardona, D.O.; Collins, J.C.; Alessi, H.; Gutierrez-Rodrigues, F.; Kumar, D.B.U.; Wilson, L.; Goodspeed, W.; Topilow, J.S.; et al. Translation of Cytoplasmic UBA1 Contributes to VEXAS Syndrome Pathogenesis. Blood 2022, 140, 1496–1506. [Google Scholar] [CrossRef]
- Gurnari, C.; Mannion, P.; Pandit, I.; Pagliuca, S.; Voso, M.T.; Maciejewski, J.P.; Visconte, V.; Rogers, H.J. UBA1 Screening in Sweet Syndrome With Hematological Neoplasms Reveals a Novel Association Between VEXAS and Chronic Myelomonocytic Leukemia. HemaSphere 2022, 6, e775. [Google Scholar] [CrossRef] [PubMed]
- Al-Hakim, A.; Kulasekararaj, A.; Norouzi, M.; Medlock, R.; Patrick, F.; Cargo, C.; Savic, S. S56F UBA1 Variant Is Associated with Haematological Predominant Subtype of VEXAS. Br. J. Haematol. 2023, 203, 331–335. [Google Scholar] [CrossRef] [PubMed]
- Stiburkova, B.; Pavelcova, K.; Belickova, M.; Magaziner, S.J.; Collins, J.C.; Werner, A.; Beck, D.B.; Balajkova, V.; Salek, C.; Vostry, M.; et al. Novel Somatic UBA1 Variant in a Patient With VEXAS Syndrome. Arthritis Rheumatol. 2023, 75, 1285–1290. [Google Scholar] [CrossRef]
- Sakuma, M.; Blombery, P.; Meggendorfer, M.; Haferlach, C.; Lindauer, M.; Martens, U.M.; Kern, W.; Haferlach, T.; Walter, W. Novel Causative Variants of VEXAS in UBA1 Detected through Whole Genome Transcriptome Sequencing in a Large Cohort of Hematological Malignancies. Leukemia 2023, 37, 1080. [Google Scholar] [CrossRef]
- Matsumoto, H.; Asano, T.; Tsuchida, N.; Maeda, A.; Yoshida, S.; Yokose, K.; Fujita, Y.; Temmoku, J.; Matsuoka, N.; Yashiro-Furuya, M.; et al. Behçet’s Disease with a Somatic UBA1 Variant:Expanding Spectrum of Autoinflammatory Phenotypes of VEXAS Syndrome. Clin. Immunol. 2022, 238, 108996. [Google Scholar] [CrossRef]
- Sockel, K.; Götze, K.; Ganster, C.; Bill, M.; Georgi, J.-A.; Balaian, E.; Aringer, M.; Trautmann-Grill, K.; Uhlig, M.; Bornhäuser, M.; et al. VEXAS Syndrome: Complete Molecular Remission after Hypomethylating Therapy. Ann. Hematol. 2024, 103, 993. [Google Scholar] [CrossRef]
- Podvin, B.; Cleenewerck, N.; Nibourel, O.; Marceau-Renaut, A.; Roynard, P.; Preudhomme, C.; Duployez, N.; Terriou, L. Three UBA1 Clones for a Unique VEXAS Syndrome. Rheumatology 2024, 63, e48–e50. [Google Scholar] [CrossRef]
- Kosmider, O.; Possémé, C.; Templé, M.; Corneau, A.; Carbone, F.; Duroyon, E.; Breillat, P.; Chirayath, T.-W.; Oules, B.; Sohier, P.; et al. VEXAS Syndrome Is Characterized by Inflammasome Activation and Monocyte Dysregulation. Nat. Commun. 2024, 15, 910. [Google Scholar] [CrossRef]
- Shaukat, F.; Hart, M.; Burns, T.; Bansal, P. UBA1 and DNMT3A Mutations in VEXAS Syndrome. A Case Report and Literature Review. Mod. Rheumatol. Case Rep. 2022, 6, 134–139. [Google Scholar] [CrossRef]
- Kataoka, A.; Mizumoto, C.; Kanda, J.; Iwasaki, M.; Sakurada, M.; Oka, T.; Fujimoto, M.; Yamamoto, Y.; Yamashita, K.; Nannya, Y.; et al. Successful Azacitidine Therapy for Myelodysplastic Syndrome Associated with VEXAS Syndrome. Int. J. Hematol. 2023, 117, 919–924. [Google Scholar] [CrossRef]
- Estes, J.; Malus, M.; Wilson, L.; Grayson, P.C.; Maz, M. A Case of VEXAS: Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic Syndrome With Co-Existing DNA (Cytosine-5)-Methyltransferase 3A Mutation Complicated by Localized Skin Reaction to Tocilizumab and Azacitidine. Cureus 2023, 15, e39906. [Google Scholar] [CrossRef]
- Kunimoto, H.; Miura, A.; Maeda, A.; Tsuchida, N.; Uchiyama, Y.; Kunishita, Y.; Nakajima, Y.; Takase-Minegishi, K.; Yoshimi, R.; Miyazaki, T.; et al. Clinical and Genetic Features of Japanese Cases of MDS Associated with VEXAS Syndrome. Int. J. Hematol. 2023, 118, 494–502. [Google Scholar] [CrossRef]
- Lötscher, F.; Seitz, L.; Simeunovic, H.; Sarbu, A.-C.; Porret, N.A.; Feldmeyer, L.; Borradori, L.; Bonadies, N.; Maurer, B. Case Report: Genetic Double Strike: VEXAS and TET2-Positive Myelodysplastic Syndrome in a Patient With Long-Standing Refractory Autoinflammatory Disease. Front. Immunol. 2022, 12, 800149. [Google Scholar] [CrossRef]
- Brunetti, L.; Gundry, M.C.; Goodell, M.A. DNMT3A in Leukemia. Cold Spring Harb. Perspect. Med. 2017, 7, a030320. [Google Scholar] [CrossRef]
- Yang, L.; Rau, R.; Goodell, M.A. DNMT3A in Haematological Malignancies. Nat. Rev. Cancer 2015, 15, 152–165. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Li, X.; Cassady, K.; Zou, Z.; Zhang, X. TET2 Function in Hematopoietic Malignancies, Immune Regulation, and DNA Repair. Front. Oncol. 2019, 9, 210. [Google Scholar] [CrossRef]
- Khrabrova, D.A.; Yakubovskaya, M.G.; Gromova, E.S. AML-Associated Mutations in DNA Methyltransferase DNMT3A. Biochem. Mosc. 2021, 86, 307–318. [Google Scholar] [CrossRef]
- Pasca, S.; Jurj, A.; Zdrenghea, M.; Tomuleasa, C. The Potential Equivalents of TET2 Mutations. Cancers 2021, 13, 1499. [Google Scholar] [CrossRef] [PubMed]
- Grootjans, J.; Kaser, A.; Kaufman, R.J.; Blumberg, R.S. The Unfolded Protein Response in Immunity and Inflammation. Nat. Rev. Immunol. 2016, 16, 469–484. [Google Scholar] [CrossRef]
- Wu, Z.; Gao, S.; Gao, Q.; Patel, B.A.; Groarke, E.M.; Feng, X.; Manley, A.L.; Li, H.; Cardona, D.O.; Kajigaya, S.; et al. Early Activation of Inflammatory Pathways in UBA1-Mutated Hematopoietic Stem and Progenitor Cells in VEXAS. Cell Rep. Med. 2023, 4, 101160. [Google Scholar] [CrossRef]
- Chen, C.; Meng, Y.; Wang, L.; Wang, H.-X.; Tian, C.; Pang, G.-D.; Li, H.-H.; Du, J. Ubiquitin-Activating Enzyme E1 Inhibitor PYR41 Attenuates Angiotensin II-Induced Activation of Dendritic Cells via the IκBa/NF-κB and MKP1/ERK/STAT1 Pathways. Immunology 2014, 142, 307–319. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Tamashiro, S.; Baritaki, S.; Penichet, M.; Yu, Y.; Chen, H.; Berenson, J.; Bonavida, B. TRAF6 Activation in Multiple Myeloma: A Potential Therapeutic Target. Clin. Lymphoma Myeloma Leuk. 2012, 12, 155–163. [Google Scholar] [CrossRef]
- Maubach, G.; Schmädicke, A.-C.; Naumann, M. NEMO Links Nuclear Factor-κB to Human Diseases. Trends Mol. Med. 2017, 23, 1138–1155. [Google Scholar] [CrossRef]
- Wancket, L.M.; Frazier, W.J.; Liu, Y. Mitogen-Activated Protein Kinase (MKP)-1 in Immunology, Physiology, and Disease. Life Sci. 2012, 90, 237–248. [Google Scholar] [CrossRef]
- Schirmer, B.; Neumann, D. Cytokines. In Nijkamp and Parnham’s Principles of Immunopharmacology; Parnham, M.J., Nijkamp, F.P., Rossi, A.G., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 69–91. ISBN 978-3-030-10811-3. [Google Scholar]
- Boshtam, M.; Asgary, S.; Kouhpayeh, S.; Shariati, L.; Khanahmad, H. Aptamers Against Pro- and Anti-Inflammatory Cytokines: A Review. Inflammation 2017, 40, 340–349. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chu, D.; Kalantar-Zadeh, K.; George, J.; Young, H.A.; Liu, G. Cytokines: From Clinical Significance to Quantification. Adv. Sci. (Weinh) 2021, 8, 2004433. [Google Scholar] [CrossRef] [PubMed]
- Brocker, C.; Thompson, D.; Matsumoto, A.; Nebert, D.W.; Vasiliou, V. Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family. Hum. Genom. 2010, 5, 30–55. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Narazaki, M.; Metwally, H.; Kishimoto, T. Historical Overview of the Interleukin-6 Family Cytokine. J. Exp. Med. 2020, 217, e20190347. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, T.; Narazaki, M.; Kishimoto, T. IL-6 in Inflammation, Immunity, and Disease. Cold Spring Harb. Perspect. Biol. 2014, 6, a016295. [Google Scholar] [CrossRef]
- Huang, H.; Zhang, W.; Cai, W.; Liu, J.; Wang, H.; Qin, T.; Xu, Z.; Li, B.; Qu, S.; Pan, L.; et al. VEXAS Syndrome in Myelodysplastic Syndrome with Autoimmune Disorder. Exp. Hematol. Oncol. 2021, 10, 23. [Google Scholar] [CrossRef]
- Casal Moura, M.; Baqir, M.; Tandon, Y.K.; Samec, M.J.; Hines, A.S.; Reichard, K.K.; Mangaonkar, A.A.; Go, R.S.; Warrington, K.J.; Patnaik, M.M.; et al. Pulmonary Manifestations in VEXAS Syndrome. Respir. Med. 2023, 213, 107245. [Google Scholar] [CrossRef]
- Grey, A.; Cheong, P.L.; Lee, F.J.; Abadir, E.; Favaloro, J.; Yang, S.; Adelstein, S. A Case of VEXAS Syndrome Complicated by Hemophagocytic Lymphohistiocytosis. J. Clin. Immunol. 2021, 41, 1648–1651. [Google Scholar] [CrossRef]
- Robert, M.; Berleur, M.; Gaudemer, A.; Crow, Y.J.; Frémond, M.-L.; Sacré, K. VEXAS Syndrome: Expanding the Clinical and Molecular Spectrum. Jt. Bone Spine 2023, 90, 105531. [Google Scholar] [CrossRef]
- Staels, F.; Betrains, A.; Woei-A-Jin, F.J.S.H.; Boeckx, N.; Beckers, M.; Bervoets, A.; Willemsen, M.; Neerinckx, B.; Humblet-Baron, S.; Blockmans, D.E.; et al. Case Report: VEXAS Syndrome: From Mild Symptoms to Life-Threatening Macrophage Activation Syndrome. Front. Immunol. 2021, 12, 678927. [Google Scholar] [CrossRef]
- Kao, R.L.; Jacobsen, A.A.; Billington, C.J.; Yohe, S.L.; Beckman, A.K.; Vercellotti, G.M.; Pearson, D.R. A Case of VEXAS Syndrome Associated with EBV-Associated Hemophagocytic Lymphohistiocytosis. Blood Cells Mol. Dis. 2022, 93, 102636. [Google Scholar] [CrossRef] [PubMed]
- Manzoni, M.; Bosi, A.; Fabris, S.; Lionetti, M.; Salerio, S.; Migliorini, A.C.; Cavallaro, F.; Barbullushi, K.; Rampi, N.; Montefusco, V.; et al. Clinical, Morphological and Clonal Progression of VEXAS Syndrome in the Context of Myelodysplasia Treated with Azacytidine. Clin. Hematol. Int. 2022, 4, 52–55. [Google Scholar] [CrossRef] [PubMed]
- Varadarajan, A.; Verghese, R.M.; Tirlangi, P.K.; Dass, J.; Soneja, M.; Seth, T. VEXAS Syndrome (Vacuoles, E1 Enzyme, X-Linked, Autoinflammatory, Somatic). QJM Int. J. Med. 2023, 116, 313–315. [Google Scholar] [CrossRef] [PubMed]
- Himmelmann, A.; Brücker, R. The VEXAS Syndrome: Uncontrolled Inflammation and Macrocytic Anaemia in a 77-Year-Old Male Patient. Eur. J. Case Rep. Intern. Med. 2021, 8, 002484. [Google Scholar] [CrossRef]
- Cordts, I.; Hecker, J.S.; Gauck, D.; Park, J.; Härtl, J.; Günthner, R.; Hammitzsch, A.; Schoser, B.; Abeck, D.; Götze, K.S.; et al. Successful Treatment with Azacitidine in VEXAS Syndrome with Prominent Myofasciitis. Rheumatology 2022, 61, e117–e119. [Google Scholar] [CrossRef]
- Afsahi, V.; Christensen, R.E.; Alam, M. VEXAS Syndrome in Dermatology. Arch. Dermatol. Res. 2023, 315, 161–164. [Google Scholar] [CrossRef]
- Matsuki, Y.; Kawai, R.; Suyama, T.; Katagiri, K.; Kanazawa, N.; Inaba, Y. A Case of VEXAS Syndrome with Myositis Possibly Associated with Macrophage Activation Syndrome. J. Dermatol. 2022, 49, e441–e443. [Google Scholar] [CrossRef]
- Miyoshi, Y.; Kise, T.; Morita, K.; Okada, H.; Imadome, K.-I.; Tsuchida, N.; Maeda, A.; Uchiyama, Y.; Kirino, Y.; Matsumoto, N.; et al. Long-Term Remission of VEXAS Syndrome Achieved by a Single Course of CHOP Therapy: A Case Report. Mod. Rheumatol. Case Rep. 2023, 8, 199–204. [Google Scholar] [CrossRef]
- Varfolomeev, E.; Vucic, D. Intracellular Regulation of TNF Activity in Health and Disease. Cytokine 2018, 101, 26–32. [Google Scholar] [CrossRef]
- Horiuchi, T.; Mitoma, H.; Harashima, S.; Tsukamoto, H.; Shimoda, T. Transmembrane TNF-α: Structure, Function and Interaction with Anti-TNF Agents. Rheumatology 2010, 49, 1215–1228. [Google Scholar] [CrossRef]
- Teufel, L.U.; Arts, R.J.W.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A.B. IL-1 Family Cytokines as Drivers and Inhibitors of Trained Immunity. Cytokine 2022, 150, 155773. [Google Scholar] [CrossRef] [PubMed]
- Weber, A.; Wasiliew, P.; Kracht, M. Interleukin-1 (IL-1) Pathway. Sci. Signal. 2010, 3, cm1. [Google Scholar] [CrossRef] [PubMed]
- Broderick, L.; Hoffman, H.M. IL-1 and Autoinflammatory Disease: Biology, Pathogenesis and Therapeutic Targeting. Nat. Rev. Rheumatol. 2022, 18, 448–463. [Google Scholar] [CrossRef] [PubMed]
- Vecchié, A.; Bonaventura, A.; Toldo, S.; Dagna, L.; Dinarello, C.A.; Abbate, A. IL-18 and Infections: Is There a Role for Targeted Therapies? J. Cell. Physiol. 2021, 236, 1638–1657. [Google Scholar] [CrossRef] [PubMed]
- Kaplanski, G. Interleukin-18: Biological Properties and Role in Disease Pathogenesis. Immunol. Rev. 2018, 281, 138–153. [Google Scholar] [CrossRef]
- Damoiseaux, J. The IL-2-IL-2 Receptor Pathway in Health and Disease: The Role of the Soluble IL-2 Receptor. Clin. Immunol. 2020, 218, 108515. [Google Scholar] [CrossRef]
- Dik, W.A.; Heron, M. Clinical Significance of Soluble Interleukin-2 Receptor Measurement in Immune-Mediated Diseases. Neth. J. Med. 2020, 78, 220–231. [Google Scholar]
- Baggiolini, M.; Clark-Lewis, I. Interleukin-8, a Chemotactic and Inflammatory Cytokine. FEBS Lett. 1992, 307, 97–101. [Google Scholar] [CrossRef]
Mutation | Effect of Mutation | Reference |
---|---|---|
p.Ser56Phe | Temperature-dependent UBA1 catalytic function impairment | Poulter et al. [39] Gurnari et al. [47] Al-Hakim et al. [48] Gurnari et al. [38] |
Leu93Arg and Cys413Phe | Unknown significance | Al-Hakim et al. [48] |
p.Gly477Ala | Thioester formation defect | Gurnari et al. [38] Stiburkova et al. [49] |
Ile894Ser and Asn606Ile | NA | Sakuma et al. [50] |
c.118-1G > C | Lost expression of the UBA1b isoform | Poulter et al. [39] Zakine et al. [17] Gurnari et al. [38] Matsumoto et al. [51] Mascaro et al. [40] Sockel et al. [52] Maeda et al. [42] Georgin-Lavialle et al. [13] Podvin et al. [53] |
Patient | Cytokine Expression | Manifestations | Outcome | Reference |
---|---|---|---|---|
61-year-old male | IL-6 (Increased), TNF-α (Increased) | NA | No improvement | Huang et al. [77] |
81-year-old male | IL-6 (Increased) | Oral ulcerations, disseminated erythematous papules on the upper back, chest, arms and legs, painful auricular and nasal erythematous swelling and arthritis in the hands and feet | Improvement | Valor-Méndez et al. [16] |
77-year-old patient | IL-6 (Increased), TNF-α (Increased), IL-1 (Normal) | Deep venous thrombosis of the leg and cutaneous lesions | NA | Himmelmann and Brücker [85] |
74-year-old man | IL-6 (Increased) | Neutrophilic dermatosis, recurrent fever, cognitive dysfunction, mental confusion and gait disorder | Improvement | Robert et al. [80] |
69 year-old male | IL-6 (Increased) | Weight, fever, night sweats, fatigue, bilateral cervical lymphadenopathy, arthralgia, episcleritis, nose chondritis, thrombophlebitis, nodular lesions, confusion, dyspnea and skin ulcerations | Partial improvement | Staels et al. [81] |
76-year-old male | NA | Rash, symmetric polyarthritis of both large and small joints, bilateral episcleritis, polyarthritis, livedoid rash and polychondritis of the nose and ears | Improvement | Staels et al. [81] |
77-year-old male | IL-6 (Increased) | Polychondritis of the nose and ears, uveitis and erythema nodosum | Deceased | Manzoni et al. [83] |
60-year-old male | IL-6 (Increased) | Erythematous nodules on the trunk and neck, fever, oral aphthae, vulvar ulcers and retinal uveitis | Deceased | Matsumoto et al. [51] |
55-year-old male | IL-6 (Increased), TNF-α (Increased), IL-1 (Normal), IL-18 (Increased), IL-2R (Increased), IL-8 (Increased), IFN- γ (Increased) | Cutaneous polyarteritis nodosa, cutaneous nodules, fever, fatigue, anorexia, shortness of breath, hypoxia, pleural effusions and extremity oedema | Deceased | Kao et al. [82] |
69-year-old male | IL-6 (Normal) | Dry cough, fever, subglottic oedema, weight loss, facial swelling, skin nodules and ataxia | Partial improvement | Varadarajan et. al. [84] |
70-year-old patient | IL-6 (Increased), IL-2R (Increased) | Non-pruritic tender lesions, limb swelling, myalgias, fatigue, fever and extremity oedema | Improvement | Cordts et al. [86] |
74-year-old male | TNF-α (Increased), IL-8 (Increased), IP-10 (Increased) | Painful auricular swelling, dysphonia, fever, night sweats, dry cough and right-sided pleuritic chest pain | Deceased | Grey et al. [79] |
80-year-old male | IFN-γ (Increased), IL- 1 (Increased), IL-7(Increased), IL-12 (Increased), IL-18 (Increased) | Weakness, weight loss, arthralgia, fever, dry cough, malaise and a 2-cm smooth round pink plaque on scalp | Deceased | Afsahni et al. [87] |
71-year-old male | NA | A 2.5-cm smooth pink plaque on knee, fatigue, weakness and decreased endurance | Improvement | Afsahni et al. [87] |
64-year-old male | IL-2R (Increased) | Erythema, fever and bilateral ear lobe oedema | Improvement | Matsuki et al. [88] |
47-year-old patient | IL-2R (Increased) | Sinusitis, cough, weight loss, fever, erythema nodosum and rash | Improvement | van Leeuwen-Kerkhoff et al. [24] |
52-year-old male | IL-2R (Increased) | Papuloerythematous skin rash | Improvement | Miyoshi et al. [89] |
75-year-old male | IL-2R (Decreased) | External ear chondritis, sensorineural hearing loss, dizziness, blurry vision, hand pain, pericardial effusion, fever, chills, sore throat, dry cough, abdominal cramping, diarrhea, arthritis and limb maculopapular lesions | Improvement | Rivera et al. [8] |
Cytokine | Patient | Mutation | Expression | Concentration | Reference |
---|---|---|---|---|---|
IL-6 | 61-year-old male | p.Met41Leu | Increased | 14.5 pg/mL | Huang et al. [77] |
45 male patients, median age 68 years | p.Met41Thr (24), p.Met41Val (10), Splice mutations (7), p.Met41Leu (4) | Increased (18/20) | NA | Casal Moura et al. [78] | |
12 male patients, mean age 67 years | p.Met41Thr (7), p.Met41Val (4), p.Met41Leu (1) | Increased (3/4) | 492 pg/mL, 38 pg/mL, 858 pg/mL, 3.9 pg/mL | Van der Made et al. [41] | |
81-year-old male | p.Met41Leu | Increased | NA | Valor-Méndez et al. [16] | |
77-year-old patient | p.Met41Leu | Increased | 79.8 pmol/ml | Himmelmann and Brücker [85] | |
74-year-old man | p.Met41Val | Increased | 325.3 pg/mL (CSF) | Robert el al. [80] | |
69- and 76-year-old males | p.Met41Thr and p.Met41Leu | Increased (1/1) | 102 pg/mL | Staels et al. [81] | |
77-year-old male | p.Met41Thr | Increased | 18.7 pg/mL | Manzoni et al. [83] | |
60-year-old male | Splice mutation c.118-1G>C | Increased | 112.1 pg/mL | Matsumoto et al. [51] | |
55-year-old male | p.Met41Thr | Increased | 24.8 pg/mL | Kao et al. [82] | |
69-year-old male | Splice mutation c.118-2A>C | Normal | 1.81 pg/mL | Varadarajan et. al. [84] | |
70-year-old patient | p.Met41Leu | Increased level | NA | Cordts et al. [86] | |
TNF-α | 61-year-old male | p.Met41Leu | Increased | 9.56 pg/mL | Huang et al. [77] |
45 male patients, median age 68 years | p.Met41Thr (24), p.Met41Val (10), Splice mutations (7), p.Met41Leu (4) | Increased (9/20) | NA | Casal Moura et al. [78] | |
74-year-old male | p.Met41Thr | Increased | Over 300 pg/mL | Grey et al. [79] | |
55-year-old male | p.Met41Thr | Increased | 85.4 pg/mL | Kao et al. [82] | |
77-year-old patient | p.Met41Leu | Normal | NA | Himmelmann and Brücker [85] | |
IL-1 | 80-year-old male, 71-year-old male | NA | Increased (1/1) | NA | Afsahni et al. [87] |
55-year-old male | p.Met41Thr | Normal | 0.5 pg/mL | Kao et al. [82] | |
77-year-old patient | p.Met41Leu | Normal | NA | Himmelmann and Brücker [85] | |
IL-18 | 80-year-old male, 71-year-old male | NA | Increased (1/1) | NA | Afsahni et al. [87] |
55-year-old male | p.Met41Thr | Increased | 2627 pg/mL | Kao et al. [82] | |
IL-2R | 12 male patients, mean age 67 years | p.Met41Thr (7), p.Met41Val (4), p.Met41Leu (1) | Increased (5/7) | 17,933 pg/mL, 380 pg/mL, 21,700 pg/mL, 10,831 pg/mL, 4443 pg/mL, 759 pg/mL, 21,500 pg/mL | van der Made et al. [41] |
55-year-old male | p.Met41Thr | Increased | 56,876 pg/mL | Kao et al. [82] | |
70-year-old male | p.Met41Leu | Increased | NA | Cordts et al. [86] | |
64-year-old male | p.Met41Thr | Increased | 32,832 pg/mL | Matsuki et al. [88] | |
47-year-old patient | p.Met41Thr | Increased | NA | van Leeuwen-Kerkhoff et al. [24] | |
52-year-old male | Splice mutation c.118-1G>C | Increased | 9823 pg/mL | Miyoshi et al. [89] | |
75-year-old male | p.Met41Thr | Decreased | NA | Rivera et al. [8] | |
IL-8 | 55-year-old male | p.Met41Thr | Increased | 161.0 pg/mL | Kao et al. [82] |
74-year-old male | p.Met41Thr | Increased | Over 1000 pg/mL | Grey et al. [79] | |
IFN- γ | 55-year-old male | p.Met41Thr | Normal | 3.3 pg/mL | Kao et al. [82] |
80-year-old male, 71-year old male | NA | Increased | NA | Afsahni et al. [87] | |
IL-12 | 80-year-old male, 71-year-old male | NA | Increased | NA | Afsahni et al. [87] |
IL-7 | 80-year-old male, 71-year-old male | NA | Increased | NA | Afsahni et al. [87] |
IP-10 | 74-year-old male | p.Met41Thr | Increased | Over 10,000 pg/mL | Grey et al. [79] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majer, D.; Kujawińska, M.; Limanówka, P.; Sędek, Ł. How Protein Ubiquitination Can Influence Cytokine Expression—Updated Review on Autoinflammatory VEXAS Syndrome. Immuno 2024, 4, 286-300. https://doi.org/10.3390/immuno4030018
Majer D, Kujawińska M, Limanówka P, Sędek Ł. How Protein Ubiquitination Can Influence Cytokine Expression—Updated Review on Autoinflammatory VEXAS Syndrome. Immuno. 2024; 4(3):286-300. https://doi.org/10.3390/immuno4030018
Chicago/Turabian StyleMajer, Dominika, Matylda Kujawińska, Piotr Limanówka, and Łukasz Sędek. 2024. "How Protein Ubiquitination Can Influence Cytokine Expression—Updated Review on Autoinflammatory VEXAS Syndrome" Immuno 4, no. 3: 286-300. https://doi.org/10.3390/immuno4030018
APA StyleMajer, D., Kujawińska, M., Limanówka, P., & Sędek, Ł. (2024). How Protein Ubiquitination Can Influence Cytokine Expression—Updated Review on Autoinflammatory VEXAS Syndrome. Immuno, 4(3), 286-300. https://doi.org/10.3390/immuno4030018