Epigenetic Alterations in Hepatic Histone H3K4me2 Associated with Metabolic Side Effects of Olanzapine and Clozapine
Abstract
1. Introduction
2. Materials and Methods
2.1. Animal, Drug Administration and Sample Collection
2.2. Chromatin Immunoprecipitation Coupled with Next-Generation Sequencing (ChIP-Seq)
2.3. Bioinformation Analysis
3. Results
3.1. H3K4me2 Contributes to Altered Hepatic Gene Expression Following Chronic Olanzapine and Clozapine Treatment
3.2. Olanzapine and Clozapine Differentially Modulate H3K4me2 Enrichment Across Lipid-Metabolism-Related Pathways
3.3. Modulation of Glucose Metabolism Pathways by Antipsychotic-Associated H3K4me2 Methylation
3.4. Differential Modulation of H3K4me2 Enrichment by Olanzapine and Clozapine Affects Metabolic-Disorder-Associated Signalling Pathways
3.5. Chronic Olanzapine and Clozapine Treatment Induce Distinct Alterations in Hepatic Insulin Resistance Pathways
3.6. Differential Effects of Olanzapine and Clozapine on Hepatic H3K4me2 Histone Modifications—ChIP-Seq Profiles
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ACC | acetyl-CoA carboxylase |
Akt | protein kinase B |
AMPK | AMP-activated protein kinase |
ChIP | chromatin immunoprecipitation |
ChIP-Seq | chromatin immunoprecipitation coupled with next-generation sequencing |
ChREBP | carbohydrate response element binding protein |
CPT1 | carnitine palmitoyl transferase 1 |
ERα | oestrogen receptor-α |
Fatp5 | fatty acid transport protein 5 |
FoxO3a | Forkhead box O3a |
Glut2 | glucose transporter 2 |
GnRH | gonadotropin-releasing hormone |
H3K4me | methylation of K4 on histone 3 |
HOMA-IR | homeostasis model assessment—insulin resistance |
KEGG | Kyoto Encyclopedia of Genes and Genomes |
Insr | insulin receptor |
PI3K | phosphoinositide 3-kinase |
PPAR | peroxisome proliferator-activated receptor |
Rap1 | Ras-associated protein 1 |
SGAs | second-generation antipsychotic drugs |
SREBP | sterol regulatory element-binding protein |
Tnfr | tumour necrosis factor receptor |
References
- Vermeulen, J.; Van Rooijen, G.; Doedens, P.; Numminen, E.; Van Tricht, M.; De Haan, L. Antipsychotic medication and long-term mortality risk in patients with schizophrenia; a systematic review and meta-analysis. Psychol. Med. 2017, 47, 2217–2228. [Google Scholar] [CrossRef]
- Nesvåg, R.; Hartz, I.; Bramness, J.G.; Hjellvik, V.; Handal, M.; Skurtveit, S. Mental disorder diagnoses among children and adolescents who use antipsychotic drugs. Eur. Neuropsychopharmacol. 2016, 26, 1412–1418. [Google Scholar] [CrossRef]
- Munkholm, K.; Jørgensen, K.J.; Paludan-Müller, A.S. Continuing antipsychotic medication for patients with psychotic depression in remission. J. Am. Med. Assoc. 2019, 322, 2443. [Google Scholar] [CrossRef]
- Citrome, L.; McEvoy, J.P.; Todtenkopf, M.S.; McDonnell, D.; Weiden, P.J. A commentary on the efficacy of olanzapine for the treatment of schizophrenia: The past, present, and future. Neuropsychiatr. Dis. Treat. 2019, 15, 2559–2569. [Google Scholar] [CrossRef] [PubMed]
- Huhn, M.; Nikolakopoulou, A.; Schneider-Thoma, J.; Krause, M.; Samara, M.; Peter, N.; Arndt, T.; Bäckers, L.; Rothe, P.; Cipriani, A.; et al. Comparative Efficacy and Tolerability of 32 Oral Antipsychotics for the Acute Treatment of Adults with Multi-Episode Schizophrenia: A Systematic Review and Network Meta-Analysis. Focus (Am. Psychiatr. Publ.) 2020, 18, 443–455. [Google Scholar] [CrossRef]
- Pandey, A.; Kalita, K.N. Treatment-resistant schizophrenia: How far have we traveled? Front. Psychiatry 2022, 13, 994425. [Google Scholar] [CrossRef] [PubMed]
- Correll, C.U.; Agid, O.; Crespo-Facorro, B.; de Bartolomeis, A.; Fagiolini, A.; Seppälä, N.; Howes, O.D. A Guideline and Checklist for Initiating and Managing Clozapine Treatment in Patients with Treatment-Resistant Schizophrenia. CNS Drugs 2022, 36, 659–679. [Google Scholar] [CrossRef] [PubMed]
- Pillinger, T.; AMcCutcheon, R.; Vano, L.; Mizuno, Y.; Arumuham, A.; Hindley, G.; Beck, K.; Natesan, S.; Efthimiou, O.; Cipriani, A.; et al. Comparative effects of 18 antipsychotics on metabolic function in patients with schizophrenia, predictors of metabolic dysregulation, and association with psychopathology: A systematic review and network meta-analysis. Lancet Psychiatry 2020, 7, 64–77. [Google Scholar] [CrossRef]
- Tondo, L.; Baldessarini, R.J. Discontinuing psychotropic drug treatment. BJPsych Open 2020, 6, e24. [Google Scholar] [CrossRef]
- Wu, Y.-L.; Lin, Z.-J.; Li, C.-C.; Lin, X.; Shan, S.-K.; Guo, B.; Zheng, M.-H.; Li, F.; Yuan, L.-Q.; Li, Z.-H. Epigenetic regulation in metabolic diseases: Mechanisms and advances in clinical study. Signal Transduct. Target. Ther. 2023, 8, 98. [Google Scholar] [CrossRef]
- Morgan, M.A.J.; Shilatifard, A. Reevaluating the roles of histone-modifying enzymes and their associated chromatin modifications in transcriptional regulation. Nat. Genet. 2020, 52, 1271–1281. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.-L.; Lo, Y.-C.; Kao, C.-F. H3K4 Methylation in Aging and Metabolism. Epigenomes 2021, 5, 14. [Google Scholar] [CrossRef] [PubMed]
- Mannar, V.; Boro, H.; Patel, D.; Agstam, S.; Dalvi, M.; Bundela, V. Epigenetics of the Pathogenesis and Complications of Type 2 Diabetes Mellitus. Eur. Endocrinol. 2023, 19, 46–53. [Google Scholar] [CrossRef]
- Frond, D.; Rettig, A.; Burghardt, K. Epigenetic insights of olanzapine-induced insulin resistance. Epigenomics 2025, 17, 507–509. [Google Scholar] [CrossRef] [PubMed]
- Swathy, B.; Banerjee, M. Understanding epigenetics of schizophrenia in the backdrop of its antipsychotic drug therapy. Epigenomics 2017, 9, 721–736. [Google Scholar] [CrossRef]
- Su, Y.; Liu, X.; Lian, J.; Deng, C. Epigenetic histone modulations of PPARγ and related pathways contribute to olanzapine-induced metabolic disorders. Pharmacol. Res. 2020, 155, 104703. [Google Scholar] [CrossRef]
- Liu, X.; Wu, Z.; Lian, J.; Hu, C.-H.; Huang, X.-F.; Deng, C. Time-dependent changes and potential mechanisms of glucose-lipid metabolic disorders associated with chronic clozapine or olanzapine treatment in rats. Sci. Rep. 2017, 7, 2762. [Google Scholar] [CrossRef]
- Fernø, J.; Vik-Mo, A.O.; Jassim, G.; Håvik, B.; Berge, K.; Skrede, S.; Gudbrandsen, O.A.; Waage, J.; Lunder, N.; Mørk, S.; et al. Acute clozapine exposure in vivo induces lipid accumulation and marked sequential changes in the expression of SREBP, PPAR, and LXR target genes in rat liver. Psychopharmacology 2009, 203, 73–84. [Google Scholar] [CrossRef]
- Boyda, H.N.; Tse, L.; Procyshyn, R.M.; Honer, W.G.; Barr, A.M. Preclinical models of antipsychotic drug-induced metabolic side effects. Trends Pharmacol. Sci. 2010, 31, 484–497. [Google Scholar] [CrossRef]
- Cooper, G.; Harrold, J.; Halford, J.; Goudie, A. Chronic clozapine treatment in female rats does not induce weight gain or metabolic abnormalities but enhances adiposity: Implications for animal models of antipsychotic-induced weight gain. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 2008, 32, 428–436. [Google Scholar] [CrossRef]
- Peuskens, J.; De Hert, M.; Mortimer, A. SOLIANOL Study Group. Metabolic control in patients with schizophrenia treated with amisulpride or olanzapine. Int. Clin. Psychopharmacol. 2007, 22, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Perez-Iglesias, R.; Mata, I.; Pelayo-Teran, J.M.; Amado, J.A.; Garcia-Unzueta, M.T.; Berja, A.; Martinez-Garcia, O.; Vazquez-Barquero, J.L.; Crespo-Facorro, B. Glucose and lipid disturbances after 1 year of antipsychotic treatment in a drug-naïve population. Schizophr. Res. 2009, 107, 115–121. [Google Scholar] [CrossRef]
- Rui, L. Energy metabolism in the liver. Compr. Physiol. 2014, 4, 177–197. [Google Scholar] [CrossRef]
- Su, Y.; Lian, J.; Deng, C. Dataset of histone H3K4me2 modified genes in the liver of female Sprague-Dawley rats with chronic antipsychotic drugs of olanzapine or clozapine. Data Brief 2025, 59, 111425. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, T.; Meyer, C.A.; Eeckhoute, J.; Johnson, D.S.; Bernstein, B.E.; Nusbaum, C.; Myers, R.M.; Brown, M.; Li, W.; et al. Model-based Analysis of ChIP-Seq (MACS). Genome Biol. 2008, 9, R137. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; He, Q.-Y. ChIPseeker: An R/Bioconductor package for ChIP peak annotation, comparison and visualization. Bioinformatics 2015, 31, 2382–2383. [Google Scholar] [CrossRef]
- Yu, G.; Wang, L.-G.; Han, Y.; He, Q.-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS J. Integr. Biol. 2012, 16, 284–287. [Google Scholar] [CrossRef]
- Prentki, M.; Madiraju, S.R.M. Glycerolipid Metabolism and Signaling in Health and Disease. Endocr. Rev. 2008, 29, 647–676. [Google Scholar] [CrossRef]
- Huang, W.; Cao, G.; Deng, C.; Chen, Y.; Wang, T.; Chen, D.; Cai, Z. Adverse effects of triclosan on kidney in mice: Implication of lipid metabolism disorders. J. Environ. Sci. 2023, 124, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Park, W.J. Unsaturated Fatty Acids, Desaturases, and Human Health. J. Med. Food 2014, 17, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Liang, W.; Huang, Y.; Tan, X.; Wu, J.; Duan, J.; Zhang, H.; Yin, B.; Li, Y.; Zheng, P.; Wei, H.; et al. Alterations of glycerophospholipid and fatty acyl metabolism in multiple brain regions of schizophrenia microbiota recipient mice. Neuropsychiatr. Dis. Treat. 2019, 15, 3219–3229. [Google Scholar] [CrossRef] [PubMed]
- Han, S.; Schroeder, E.A.; Silva-García, C.G.; Hebestreit, K.; Mair, W.B.; Brunet, A. Mono-unsaturated fatty acids link H3K4me3 modifiers to C. elegans lifespan. Nature 2017, 544, 185–190. [Google Scholar] [CrossRef]
- Kim, M.K.; Kim, S.H.; Yu, H.S.; Park, H.G.; Kang, U.G.; Ahn, Y.M.; Kim, Y.S. The effect of clozapine on the AMPK-ACC-CPT1 pathway in the rat frontal cortex. Int. J. Neuropsychopharmacol. 2012, 15, 907–917. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, X.; Bhardwaj, S.K.; Zhou, X.; Little, P.J.; Quirion, R.; Srivastava, L.K.; Zheng, W. The Atypical Antipsychotic Agent, Clozapine, Protects Against Corticosterone-Induced Death of PC12 Cells by Regulating the Akt/FoxO3a Signaling Pathway. Mol. Neurobiol. 2017, 54, 3395–3406. [Google Scholar] [CrossRef]
- Fehsel, K. Metabolic Side Effects from Antipsychotic Treatment with Clozapine Linked to Aryl Hydrocarbon Receptor (AhR) Activation. Biomedicines 2024, 12, 2294. [Google Scholar] [CrossRef]
- Mauvais-Jarvis, F.; Clegg, D.J.; Hevener, A.L. The Role of Estrogens in Control of Energy Balance and Glucose Homeostasis. Endocr. Rev. 2013, 34, 309–338. [Google Scholar] [CrossRef]
- Aronoff, S.L.; Berkowitz, K.; Shreiner, B.; Want, L. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectr. 2004, 17, 183–190. [Google Scholar] [CrossRef]
- Jiang, G.; Zhang, B.B. Glucagon and regulation of glucose metabolism. Am. J. Physiol. Metab. 2003, 284, E671–E678. [Google Scholar] [CrossRef]
- Roland, A.V.; Moenter, S.M. Regulation of gonadotropin-releasing hormone neurons by glucose. Trends Endocrinol. Metab. 2011, 22, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Cao, H. Adipocytokines in obesity and metabolic disease. J. Endocrinol. 2014, 220, T47–T59. [Google Scholar] [CrossRef] [PubMed]
- Klonou, A.; Chlamydas, S.; Piperi, C. Structure, Activity and Function of the MLL2 (KMT2B) Protein Lysine Methyltransferase. Life 2021, 11, 823. [Google Scholar] [CrossRef]
- Bjune, J.-I.; Strømland, P.P.; Jersin, R.Å.; Mellgren, G.; Dankel, S.N. Metabolic and Epigenetic Regulation by Estrogen in Adipocytes. Front. Endocrinol. 2022, 13, 828780. [Google Scholar] [CrossRef] [PubMed]
- Vanderkruk, B.; Maeshima, N.; Pasula, D.J.; An, M.; McDonald, C.L.; Suresh, P.; Luciani, D.S.; Lynn, F.C.; Hoffman, B.G. Methylation of histone H3 lysine 4 is required for maintenance of beta cell function in adult mice. Diabetologia 2023, 66, 1097–1115. [Google Scholar] [CrossRef]
- Smith, G.C.; Vickers, M.H.; Cognard, E.; Shepherd, P.R. Clozapine and quetiapine acutely reduce glucagon-like peptide-1 production and increase glucagon release in obese rats: Implications for glucose metabolism and food choice behaviour. Schizophr. Res. 2009, 115, 30–40. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Deng, C.; Cao, S.; Gong, J.; Wang, B.-C.; Hu, C.-H. Acute effects of oral olanzapine treatment on the expression of fatty acid and cholesterol metabolism-related gene in rats. Life Sci. 2015, 128, 72–78. [Google Scholar] [CrossRef]
- Green, W. Child & Adolescent Clinical Psychopharmacology, 3rd ed.; Lippincott Williams & Wilkins: Ambler, PA, USA, 2001. [Google Scholar]
- Manjunath, K.; Venkateswarlu, V. Validated HPLC method for determination of clozapine in rat serum and its application to pharmacokinetics. Indian J. Pharm. Sci. 2005, 67, 448–452. [Google Scholar]
- Northwood, K.; Pearson, E.; Arnautovska, U.; Kisely, S.; Pawar, M.; Sharma, M.; Vitangcol, K.; Wagner, E.; Warren, N.; Siskind, D. Optimising plasma clozapine levels to improve treatment response: An individual patient data meta-analysis and receiver operating characteristic curve analysis. Br. J. Psychiatry 2023, 222, 241–245. [Google Scholar] [CrossRef]
- Kapur, S.; VanderSpek, S.C.; Brownlee, B.A.; Nobrega, J.N. Antipsychotic dosing in preclinical models is often unrepresentative of the clinical condition: A suggested solution based on in vivo occupancy. J. Pharmacol. Exp. Ther. 2003, 305, 625–631. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lian, J.; Su, Y.; Pai, N.; Deng, C. Epigenetic Alterations in Hepatic Histone H3K4me2 Associated with Metabolic Side Effects of Olanzapine and Clozapine. Psychiatry Int. 2025, 6, 128. https://doi.org/10.3390/psychiatryint6040128
Lian J, Su Y, Pai N, Deng C. Epigenetic Alterations in Hepatic Histone H3K4me2 Associated with Metabolic Side Effects of Olanzapine and Clozapine. Psychiatry International. 2025; 6(4):128. https://doi.org/10.3390/psychiatryint6040128
Chicago/Turabian StyleLian, Jiamei, Yueqing Su, Nagesh Pai, and Chao Deng. 2025. "Epigenetic Alterations in Hepatic Histone H3K4me2 Associated with Metabolic Side Effects of Olanzapine and Clozapine" Psychiatry International 6, no. 4: 128. https://doi.org/10.3390/psychiatryint6040128
APA StyleLian, J., Su, Y., Pai, N., & Deng, C. (2025). Epigenetic Alterations in Hepatic Histone H3K4me2 Associated with Metabolic Side Effects of Olanzapine and Clozapine. Psychiatry International, 6(4), 128. https://doi.org/10.3390/psychiatryint6040128