Assessment of Longitudinal Measurement Invariance of Short Versions of the CES-D in Maternal Caregivers
Abstract
1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Measure
2.3. Statistical Analysis
2.4. Ethical Considerations
3. Results
3.1. Participant Characteristics
3.2. Longitudinal Invariance
3.3. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Morris, A.S.; Silk, J.S.; Steinberg, L.; Myers, S.S.; Robinson, L.R. The Role of the Family Context in the Development of Emotion Regulation. Soc. Dev. 2007, 16, 361–388. [Google Scholar] [CrossRef]
- Wu, V.; East, P.; Delker, E.; Blanco, E.; Caballero, G.; Delva, J.; Lozoff, B.; Gahagan, S. Associations Among Mothers’ Depression, Emotional and Learning-Material Support to Their Child, and Children’s Cognitive Functioning: A 16-Year Longitudinal Study. Child Dev. 2018, 90, 1952–1968. [Google Scholar] [CrossRef] [PubMed]
- Tully, E.C.; Iacono, W.G.; McGue, M. An Adoption Study of Parental Depression as an Environmental Liability for Adolescent Depression and Childhood Disruptive Disorders. Am. J. Psychiatry 2008, 165, 1148–1154. [Google Scholar] [CrossRef]
- Meyer, A.; Bress, J.N.; Hajcak, G.; Gibb, B.E. Maternal Depression Is Related to Reduced Error-Related Brain Activity in Child and Adolescent Offspring. J. Clin. Child. Adolesc. Psychol. 2018, 47, 324–335. [Google Scholar] [CrossRef]
- Reising, M.M.; Bettis, A.H.; Dunbar, J.P.; Watson, K.H.; Gruhn, M.; Hoskinson, K.R.; Compas, B.E. Stress, Coping, Executive Function, and Brain Activation in Adolescent Offspring of Depressed and Nondepressed Mothers. Child Neuropsychol. 2018, 24, 638–656. [Google Scholar] [CrossRef]
- Withers, M.C.; Cooper, A.; Rayburn, A.D.; McWey, L.M. Parent-Adolescent Relationship Quality as a Link in Adolescent and Maternal Depression. Child. Youth Serv. Rev. 2016, 70, 309–314. [Google Scholar] [CrossRef]
- Corfield, E.C.; Yang, Y.; Martin, N.G.; Nyholt, D.R. A Continuum of Genetic Liability for Minor and Major Depression. Transl. Psychiatry 2017, 7, e1131. [Google Scholar] [CrossRef] [PubMed]
- Matijasevich, A.; Murray, J.; Cooper, P.J.; Anselmi, L.; Barros, A.J.D.; Barros, F.C.; Santos, I.S. Trajectories of Maternal Depression and Offspring Psychopathology at 6 Years: 2004 Pelotas Cohort Study. J. Affect. Disord. 2015, 174, 424–431. [Google Scholar] [CrossRef]
- Meredith, W.; Teresi, J.A. An Essay on Measurement and Factorial Invariance. Med. Care 2006, 44, S69–S77. [Google Scholar] [CrossRef]
- Putnick, D.L.; Bornstein, M.H. Measurement Invariance Conventions and Reporting: The State of the Art and Future Directions for Psychological Research. Dev. Rev. 2016, 41, 71–90. [Google Scholar] [CrossRef]
- Widaman, K.F.; Ferrer, E.; Conger, R.D. Factorial Invariance within Longitudinal Structural Equation Models: Measuring the Same Construct across Time. Child Dev. Perspect. 2010, 4, 10–18. [Google Scholar] [CrossRef]
- Radloff, L.S. The CES-D Scale: A Self-Report Depression Scale for Research in the General Population. Appl. Psychol. Meas. 1977, 1, 385–401. [Google Scholar] [CrossRef]
- Contrada, R.J.; Boulifard, D.A.; Idler, E.L.; Krause, T.J.; Labouvie, E.W. Course of Depressive Symptoms in Patients Undergoing Heart Surgery: Confirmatory Analysis of the Factor Pattern and Latent Mean Structure of the Center for Epidemiologic Studies Depression Scale. Psychosom. Med. 2006, 68, 922–930. [Google Scholar] [CrossRef]
- Ferro, M.A.; Speechley, K.N. Factor Structure and Longitudinal Invariance of the Center for Epidemiological Studies Depression Scale (CES-D) in Adult Women: Application in a Population-Based Sample of Mothers of Children with Epilepsy. Arch. Womens Ment. Health 2013, 16, 159–166. [Google Scholar] [CrossRef]
- Motl, R.W.; Dishman, R.K.; Birnbaum, A.S.; Lytle, L.A. Longitudinal Invariance of the Center for Epidemiologic Studies-Depression Scale among Girls and Boys in Middle School. Educ. Psychol. Meas. 2005, 65, 90–108. [Google Scholar] [CrossRef]
- Verhoeven, M.; Sawyer, M.G.; Spence, S.H. The Factorial Invariance of the CES-D during Adolescence: Are Symptom Profiles for Depression Stable across Gender and Time? J. Adolesc. 2013, 36, 181–190. [Google Scholar] [CrossRef]
- Shrout, P.E.; Yager, T.J. Reliability and Validity of Screening Scales: Effect of Reducing Scale Length. J. Clin. Epidemiol. 1989, 42, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Santor, D.A.; Coyne, J.C. Shortening the CES-D to Improve Its Ability to Detect Cases of Depression. Psychol. Assess. 1997, 9, 233–243. [Google Scholar] [CrossRef]
- Cole, J.C.; Rabin, A.S.; Smith, T.L.; Kaufman, A.S. Development and Validation of a Rasch-Derived CES-D Short Form. Psychol. Assess. 2004, 16, 360–372. [Google Scholar] [CrossRef]
- Kohout, F.J.; Berkman, L.F.; Evans, D.A.; Cornoni-Huntley, J. Two Shorter Forms of the CES-D Depression Symptoms Index. J. Aging Health 1993, 5, 179–193. [Google Scholar] [CrossRef] [PubMed]
- Park, B.S.; Lee, K.; Shin, C.; Choi, K.; Bae, S.W. Longitudinal Measurement Invariance of the Korean Version of the CES-D-11 Scale. Sage Open 2022, 12, 21582440221117799. [Google Scholar] [CrossRef]
- Raina, P.; Wolfson, C.; Kirkland, S.; Griffith, L.E.; Balion, C.; Cossette, B.; DIonne, I.; Hofer, S.; Hogan, D.; van den Heuvel, E.R.; et al. Cohort Profile: The Canadian Longitudinal Study on Aging (CLSA). Int. J. Epidemiol. 2019, 48, 2066. [Google Scholar] [CrossRef] [PubMed]
- Ni, Y.; Tein, J.Y.; Zhang, M.; Yang, Y.; Wu, G. Changes in Depression among Older Adults in China: A Latent Transition Analysis. J. Affect. Disord. 2017, 209, 3–9. [Google Scholar] [CrossRef]
- Kim, A.J.; Sherry, S.B.; Nealis, L.J.; Mushquash, A.; Lee-Baggley, D.; Stewart, S.H. Do Symptoms of Depression and Anxiety Contribute to Heavy Episodic Drinking? A 3-Wave Longitudinal Study of Adult Community Members. Addict. Behav. 2022, 130, 107295. [Google Scholar] [CrossRef]
- Graham, A.R.; Sherry, S.B.; Stewart, S.H.; Sherry, D.L.; McGrath, D.S.; Fossum, K.M.; Allen, S.L. The Existential Model of Perfectionism and Depressive Symptoms: A Short-Term, Four-Wave Longitudinal Study. J. Couns. Psychol. 2010, 57, 423–438. [Google Scholar] [CrossRef]
- Krauss, S.; Orth, U.; Robins, R.W. Family Environment and Self-Esteem Development: A Longitudinal Study from Age 10 to 16. J. Pers. Soc. Psychol. 2020, 119, 457–478. [Google Scholar] [CrossRef] [PubMed]
- Larsen, J.K.; van den Broek, N.; Verhagen, M.; Burk, W.J.; Vink, J.M. A Longitudinal Study on Changes in Food Parenting Practices during COVID-19 and the Role of Parental Well-Being. Appetite 2023, 180, 106331. [Google Scholar] [CrossRef]
- Runyan, D.K.; Curtis, P.A.; Hunter, W.M.; Black, M.M.; Kotch, J.B.; Bangdiwala, S.; Dubowitz, H.; English, D.; Everson, M.D.; Landsverk, J. Longscan: A Consortium for Longitudinal Studies of Maltreatment and the Life Course of Children. Aggress. Violent Behav. 1998, 3, 275–285. [Google Scholar] [CrossRef]
- Vilagut, G.; Forero, C.G.; Barbaglia, G.; Alonso, J. Screening for Depression in the General Population with the Center for Epidemiologic Studies Depression (Ces-d): A Systematic Review with Meta-Analysis. PLoS ONE 2016, 11, e0155431. [Google Scholar] [CrossRef]
- Andresen, E.M.; Malmgren, J.A.; Carter, W.B.; Patrick, D.L. Screening for depression in well older adults: Evaluation of a short form of the CES-D. Am. J. Prev. Med. 1994, 10, 77–84. [Google Scholar] [CrossRef]
- Muthén, L.K.; Muthén, B.O. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017. [Google Scholar]
- Liu, Y.; Millsap, R.E.; West, S.G.; Tein, J.Y.; Tanaka, R.; Grimm, K.J. Testing Measurement Invariance in Longitudinal Data with Ordered-Categorical Measures. Psychol. Methods 2017, 22, 486–506. [Google Scholar] [CrossRef]
- Sass, D.A.; Schmitt, T.A.; Marsh, H.W. Evaluating Model Fit With Ordered Categorical Data Within a Measurement Invariance Framework: A Comparison of Estimators. Struct. Equ. Model. 2014, 21, 167–180. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; ISBN 3900051003. [Google Scholar]
- Knight, E.D.; Smith, J.B.; Dubowitz, H.; Litrownik, A.J.; Kotch, J.B.; English, D.; Everson, M.D.; Runyan, D.K. Reporting Participants in Research Studies to Child Protective Services: Limited Risk to Attrition. Child Maltreat. 2006, 11, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, T.; Anraku, K.; Hiroe, T.; Takahashi, K.; Kitamura, T.; Hirai, T.; Takahashi, K.; Iida, M. Screening for Depression among First-Visit Psychiatric Patients: Comparison of Different Scoring Methods for the Center for Epidemiologic Studies Depression Scale Using Receiver Operating Characteristic Analyses. Psychiatry Clin. Neurosci. 1997, 51, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Kennedy, S.H. Core Symptoms of Major Depressive Disorder: Relevance to Diagnosis and Treatment. Dialog. Clin. Neurosci. 2008, 10, 271–277. [Google Scholar] [CrossRef] [PubMed]
- Ritschel, L.A.; Cassiello-Robbins, C. Hope and Depression and Personality Disorders. Curr. Opin. Psychol. 2023, 49, 101507. [Google Scholar] [CrossRef]
- van der Giessen, D.; Hollenstein, T.; Hale, W.W.; Koot, H.M.; Meeus, W.; Branje, S. Emotional Variability in Mother-Adolescent Conflict Interactions and Internalizing Problems of Mothers and Adolescents: Dyadic and Individual Processes. J. Abnorm. Child. Psychol. 2014, 43, 339–353. [Google Scholar] [CrossRef]
- Daundasekara, S.S.; Beauchamp, J.E.S.; Hernandez, D.C. Parenting Stress Mediates the Longitudinal Effect of Maternal Depression on Child Anxiety/Depressive Symptoms. J. Affect. Disord. 2021, 295, 33–39. [Google Scholar] [CrossRef]
- Liu, D.; Yu, M.; Zhang, X.; Cui, J.; Yang, H. Adolescent Anxiety and Depression: Perspectives of Network Analysis and Longitudinal Network Analysis. BMC Psychiatry 2024, 24, 619. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Z.; Feng, Y.; Wilson, A.; Chen, R. Changes in Network Centrality of Psychopathology Symptoms between the COVID-19 Outbreak and after Peak. Mol. Psychiatry 2020, 25, 3140–3149. [Google Scholar] [CrossRef]
- Monroe, S.M.; Anderson, S.F. Depression: The Shroud of Heterogeneity. Curr. Dir. Psychol. Sci. 2015, 24, 227–231. [Google Scholar] [CrossRef]
- Blashfield, R.K.; Keeley, J.W.; Flanagan, E.H.; Miles, S.R. The Cycle of Classification: DSM-I Through DSM-5. Annu. Rev. Clin. Psychol. 2014, 10, 25–51. [Google Scholar] [CrossRef]
- Fried, E.I.; Flake, J.K.; Robinaugh, D.J. Revisiting the Theoretical and Methodological Foundations of Depression Measurement. Nat. Rev. Psychol. 2022, 1, 358–368. [Google Scholar] [CrossRef]
- Fischer, R.; Karl, J.A.; Luczak-Roesch, M.; Hartle, L. Why We Need to Rethink Measurement Invariance: The Role of Measurement Invariance for Cross-Cultural Research. Cross Cult. Res. 2025, 59, 147–179. [Google Scholar] [CrossRef]
- Bergenfeld, I.; Kaslow, N.J.; Yount, K.M.; Cheong, Y.F.; Johnson, E.R.; Clark, C.J. Measurement Invariance of the Center for Epidemiologic Studies Scale–Depression Within and Across Six Diverse Intervention Trials. Psychol. Assess. 2023, 35, 805–820. [Google Scholar] [CrossRef]
- Li, C.H. Confirmatory Factor Analysis with Ordinal Data: Comparing Robust Maximum Likelihood and Diagonally Weighted Least Squares. Behav. Res. Methods 2016, 48, 936–949. [Google Scholar] [CrossRef]
- Tse, W.W.Y.; Lai, M.H.C.; Zhang, Y. Does Strict Invariance Matter? Valid Group Mean Comparisons with Ordered-Categorical Items. Behav. Res. Methods 2024, 56, 3117–3139. [Google Scholar] [CrossRef] [PubMed]
- Knight, E.D.; Runyan, D.K.; Dubowitz, H.; Brandford, C.; Kotch, J.; Litrownik, A.; Hunter, W. Methodological and Ethical Challenges Associated With Child Self-Report of Maltreatment. J. Interpers. Violence 2000, 15, 760–775. [Google Scholar] [CrossRef]
- Borsboom, D.; Cramer, A.O.J. Network Analysis: An Integrative Approach to the Structure of Psychopathology. Annu. Rev. Clin. Psychol. 2013, 9, 91–121. [Google Scholar] [CrossRef]
- Santos, H.P.; Kossakowski, J.J.; Schwartz, T.A.; Beeber, L.; Fried, E.I. Longitudinal Network Structure of Depression Symptoms and Self-Efficacy in Low-Income Mothers. PLoS ONE 2018, 13, e0191675. [Google Scholar] [CrossRef]
- Fried, E.I.; van Borkulo, C.D.; Epskamp, S.; Schoevers, R.A.; Tuerlinckx, F.; Borsboom, D. Measuring Depression over Time Or Not? Lack of Unidimensionality and Longitudinal Measurement Invariance in Four Common Rating Scales of Depression. Psychol. Assess. 2016, 28, 1354–1367. [Google Scholar] [CrossRef] [PubMed]
- Blanken, T.F.; van der Zweerde, T.; van Straten, A.; van Someren, E.J.W.; Borsboom, D.; Lancee, J. Introducing Network Intervention Analysis to Investigate Sequential, Symptom-Specific Treatment Effects: A Demonstration in Co-Occurring Insomnia and Depression. Psychother. Psychosom. 2019, 88, 52–54. [Google Scholar] [CrossRef] [PubMed]
# | Item | A | B | C | D | E | F | G |
---|---|---|---|---|---|---|---|---|
1 | Bothered | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
2 | Appetite | 0 | 0 | 0 | 0 | 0 | 0 | 1 |
3 | Blues | 0 | 0 | 1 | 0 | 0 | 1 | 0 |
4 | As good | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
5 | Mind | 0 | 0 | 1 | 0 | 1 | 1 | 0 |
6 | Depressed | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
7 | Effort | 0 | 0 | 1 | 1 | 1 | 1 | 1 |
8 | Hopeful | 0 | 1 | 0 | 0 | 1 | 1 | 0 |
9 | Failure | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
10 | Fearful | 0 | 0 | 0 | 0 | 1 | 1 | 0 |
11 | Sleep | 1 | 0 | 1 | 1 | 1 | 0 | 1 |
12 | Happy | 0 | 1 | 1 | 1 | 1 | 0 | 1 |
13 | Talked less | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
14 | Lonely | 1 | 0 | 0 | 1 | 1 | 1 | 1 |
15 | Unfriendly | 0 | 0 | 0 | 1 | 0 | 1 | 1 |
16 | Enjoyed | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
17 | Crying | 1 | 1 | 0 | 0 | 0 | 0 | 0 |
18 | Felt sad | 0 | 0 | 1 | 1 | 0 | 0 | 1 |
19 | Disliked | 0 | 1 | 0 | 1 | 0 | 0 | 1 |
20 | Get Going | 1 | 0 | 0 | 1 | 1 | 0 | 1 |
Number of items | 5 | 5 | 9 | 10 | 10 | 10 | 11 |
M (SD) or Freq. (%) | |
---|---|
Age | 32.8 (9.9) |
Completed years of education | 11.8 (2.0) |
Race | |
White | 137 (29.0) |
Black | 244 (51.7) |
Hispanic | 24 (5.1) |
Native American | 3 (0.6) |
Asian | 1 (0.2) |
Mixed race/Other | 18 (3.8) |
Marital status | |
Married | 139 (29.4) |
Single | 209 (44.3) |
Separated | 30 (6.4) |
Divorced/Widowed | 49 (10.4) |
Current employment | |
Regular full-time/part-time | 138 (29.2) |
Retired/Disabled | 103 (21.8) |
Student | 29 (6.1) |
Homemaker | 147 (31.1) |
Other | 10 (2.1) |
Family income per year | |
<USD 5000 | 55 (11.7) |
USD 5000–USD 9999 | 118 (25.0) |
USD 10,000–USD 19,999 | 125 (26.5) |
USD 20,000–USD 29,999 | 63 (13.3) |
USD 30,000–USD 49,999 | 37 (7.8) |
>USD 50,000 | 24 (5.1) |
Versions | |||||||
---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | |
Baseline | |||||||
χ2 | 286.178 * | 410.513 * | 1271.744 * | 1715.894 * | 1500.226 * | 1748.924 * | 1949.255 * |
χ2 df | 215 | 215 | 845 | 1065 | 1065 | 1065 | 1310 |
CFI | 0.987 | 0.951 | 0.965 | 0.946 | 0.960 | 0.924 | 0.949 |
RMSEA | 0.027 | 0.045 | 0.034 | 0.037 | 0.030 | 0.038 | 0.033 |
RMSEA 90% C.I. | 0.018–0.035 | 0.038–0.051 | 0.030–0.037 | 0.034–0.040 | 0.027–0.034 | 0.035–0.041 | 0.030–0.036 |
Loading | |||||||
χ2 | 297.170 * | 426.615 * | 1336.005 * | 1783.061 * | 1531.195 * | 1756.686 * | 2024.312 * |
χ2 df | 231 | 231 | 877 | 1101 | 1101 | 1101 | 1350 |
CFI | 0.988 | 0.951 | 0.963 | 0.943 | 0.960 | 0.927 | 0.946 |
RMSEA | 0.025 | 0.043 | 0.034 | 0.037 | 0.029 | 0.037 | 0.033 |
RMSEA 90% C.I. | 0.016–0.033 | 0.037–0.049 | 0.030–0.038 | 0.034–0.040 | 0.026–0.033 | 0.033–0.040 | 0.030–0.036 |
ΔCFI | 0.001 | 0.000 | −0.001 | −0.003 | 0.000 | 0.003 | −0.003 |
ΔRMSEA | −0.002 | −0.002 | 0.000 | 0.000 | −0.001 | −0.001 | 0.000 |
χ2 difference (df) | 13.080 (16) | 28.024 (16) * | 92.401 (32) * | 107.600 (36) * | 48.779 (36) | 44.245 (36) | 110.595 (40) * |
Threshold | |||||||
χ2 | 337.066 * | 524.646 * | 1481.033 * | 1907.638 * | 1624.174 * | 1815.052 * | 2148.992 * |
χ2 df | 267 | 267 | 945 | 1177 | 1177 | 1177 | 1434 |
CFI | 0.988 | 0.935 | 0.956 | 0.939 | 0.959 | 0.929 | 0.943 |
RMSEA | 0.024 | 0.046 | 0.036 | 0.037 | 0.029 | 0.035 | 0.033 |
RMSEA 90% C.I. | 0.015–0.032 | 0.040–0.052 | 0.032–0.039 | 0.034–0.040 | 0.026–0.032 | 0.032–0.038 | 0.030–0.036 |
ΔCFI | 0.000 | −0.016 | −0.007 | −0.004 | −0.001 | 0.002 | −0.003 |
ΔRMSEA | −0.001 | 0.003 | 0.002 | 0.000 | 0.000 | −0.002 | 0.000 |
χ2 difference (df) | 45.457 (36) | 132.440 (36) * | 214.221 (68) * | 199.328 (76) * | 135.432 (76) * | 103.430 (76) * | 206.985 (84) * |
Unique factor | |||||||
χ2 | 379.502 * | 574.682 * | 1503.105 * | 1897.263 * | 1708.459 * | 1902.932 * | 2150.020 * |
χ2 df | 287 | 287 | 981 | 1217 | 1217 | 1217 | 1478 |
CFI | 0.984 | 0.928 | 0.957 | 0.943 | 0.954 | 0.924 | 0.947 |
RMSEA | 0.027 | 0.047 | 0.034 | 0.035 | 0.030 | 0.036 | 0.032 |
RMSEA 90% C.I. | 0.019–0.034 | 0.041–0.052 | 0.031–0.038 | 0.025–0.032 | 0.027–0.033 | 0.027–0.033 | 0.023–0.029 |
ΔCFI | −0.004 | −0.007 | 0.001 | 0.004 | −0.005 | −0.005 | 0.003 |
ΔRMSEA | 0.003 | 0.001 | −0.002 | −0.002 | 0.001 | 0.001 | −0.001 |
χ2 difference (df) | 44.946 (20) * | 63.392 (20) * | 64.485 (36) * | 63.644 (40) * | 104.473 (40) * | 122.101(40) * | 71.919 (44) * |
Version | Items with Probability Difference > 0.05 | Categories | Wave | Comparison |
---|---|---|---|---|
A | None | None | None | Threshold vs. unique |
B | Was not performed. | Not Applicable | Not Applicable | Not Applicable |
C | Enjoyed | 1 and 2 | 16 | Loading vs. configural |
D | Effort | 1 and 2 | 6 | Threshold vs. loading |
E | Bothered | 0 and 1 | 16 | Threshold vs. loading |
Depressed | 0 and 1 | 4 | ||
Hopeful | 2 and 3 | 4 and 16 | ||
Hopeful | 3 | 14 | ||
F | As good | 2 and 3 | 6 | Loading vs. configural |
Effort | 0 | 4 | ||
Hopeful | 2 and 3 | 4, 14 and 16 | ||
G | Appetite | 3 | 16 | Loading vs. configural |
Depressed | 1 and 3 | 16 | ||
Effort | 1 and 2 | 6 | ||
Effort | 3 | 16 | ||
Sleep | 1 and 3 | 16 | ||
Happy | 2 | 16 | ||
Lonely | 3 | 16 | ||
Unfriendly | 0 and 3 | 16 | ||
Enjoyed | 1 and 2 | 4 and 6 | ||
Enjoyed | 0 and 2 | 16 | ||
Felt sad | 1 and 3 | 16 | ||
Disliked | 0 and 3 | 16 | ||
Get Going | 1 and 3 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villalobos-Gallegos, L.; Trejo, S.; Mejía-Cruz, D.; Toledo-Fernández, A.; García, D.A.G. Assessment of Longitudinal Measurement Invariance of Short Versions of the CES-D in Maternal Caregivers. Psychiatry Int. 2025, 6, 126. https://doi.org/10.3390/psychiatryint6040126
Villalobos-Gallegos L, Trejo S, Mejía-Cruz D, Toledo-Fernández A, García DAG. Assessment of Longitudinal Measurement Invariance of Short Versions of the CES-D in Maternal Caregivers. Psychiatry International. 2025; 6(4):126. https://doi.org/10.3390/psychiatryint6040126
Chicago/Turabian StyleVillalobos-Gallegos, Luis, Salvador Trejo, Diana Mejía-Cruz, Aldebarán Toledo-Fernández, and Diana Alejandra González García. 2025. "Assessment of Longitudinal Measurement Invariance of Short Versions of the CES-D in Maternal Caregivers" Psychiatry International 6, no. 4: 126. https://doi.org/10.3390/psychiatryint6040126
APA StyleVillalobos-Gallegos, L., Trejo, S., Mejía-Cruz, D., Toledo-Fernández, A., & García, D. A. G. (2025). Assessment of Longitudinal Measurement Invariance of Short Versions of the CES-D in Maternal Caregivers. Psychiatry International, 6(4), 126. https://doi.org/10.3390/psychiatryint6040126