Anhedonia in Youth and the Role of Internet-Related Behavior: A Systematic Review
Abstract
:1. Background
1.1. Objective
1.1.1. Primary Aim
1.1.2. Secondary Aims
- To explore the socio-behavioral changes associated with the extensive use of Internet-connected devices, such as smartphones, tablets, and computers, among adolescents and young adults.
- To examine the interaction between depression and IA, investigating whether anhedonia acts as a mediator or moderator in this relationship.
2. Methods
2.1. Protocol Registration
2.2. Search Strategy
2.2.1. PICOS
2.2.2. Query Search
2.3. Inclusion and Exclusion Criteria
- Type of Study: Primary literature only. All other study types (e.g., editorials, commentaries, reviews, and protocol studies) were excluded;
- Population: The focus was on youth aged 8–21 years, encompassing children, adolescents, and young adults. This age range was chosen based on scientific rationale, as it represents the complete transition from pre-pubertal development to legal adulthood, defined as 21 years in many U.S. states. Studies involving adults or mixed-age populations were excluded to maintain specificity.
- ○
- Relevance: Studies pertinent to the objectives of this review. Irrelevant studies were excluded;
- ○
- Temporal Limit: No restrictions on publication date;
- ○
- Language: Primarily in English. Studies in other languages (except Chinese) were considered if deemed relevant based on an English abstract;
- ○
- Internet Usage: At least 3 h per day or 21 h per week using Internet-connected devices; participation in online activities during meals, school hours, or sleep time at least twice a week; spending at least 2 h daily on recreational online activities like social media, gaming, or streaming; and reporting significant negative impacts on daily life, including academic performance or interpersonal relationships, due to Internet use.
2.4. Quality Assessment and Risk of Bias Evaluation
2.5. Data Extraction
2.6. Data Synthesis
3. Results
3.1. Study Selection
3.2. General Characteristics of Included Studies
3.3. Synthesis of Evidence from Included Studies
4. Discussion
4.1. Practical Implications
4.2. Strengths and Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). Comprehensive Mental Heakth Action Plan, 2013–2030. Available online: https://www.who.int/publications/i/item/9789240031029 (accessed on 1 July 2024).
- World Health Organization (WHO). Depression and Other Common Mental Disorders: Global Health Estimates; WHO: Geneva, Switzerland, 2017; Available online: https://iris.who.int/bitstream/handle/10665/254610/WHO-MSD-MER-2017.2-eng.pdf?%20Sequence=1 (accessed on 30 June 2024).
- World Health Organization (WHO). World Mental Health Report: Transforming Mental Health for All. Available online: https://www.who.int/publications/i/item/9789240049338 (accessed on 30 June 2024).
- World Health Organization (WHO). Mental Health ATLAS 2020. Available online: https://www.who.int/publications/i/item/9789240036703 (accessed on 1 July 2024).
- Tolentino, J.C.; Schmidt, S.L. DSM-5 Criteria and Depression Severity: Implications for Clinical Practice. Front. Psychiatry 2018, 9, 450. [Google Scholar] [CrossRef]
- Mathers, C.D.; Loncar, D. Projections of Global Mortality and Burden of Disease from 2002 to 2030. PLoS Med. 2006, 3, e442. [Google Scholar] [CrossRef]
- Al-Hamzawi, A.; Alonso, J.; Bruffaerts, R.; de Almeida, J.M.C.; Chardoul, S.; Chiu, W.T.; Degenhardt, L.; Demler, O.V.; Ferry, F.; Gureje, O.; et al. Age of onset and cumulative risk of mental disorders: A cross-national analysis of population surveys from 29 countries. Lancet Psychiatry 2023, 10, 668–681. [Google Scholar]
- Mitchell, B.L.; Thorp, J.G.; Wu, Y.; Campos, A.I.; Nyholt, D.R.; Gordon, S.D.; Whiteman, D.C.; Olsen, C.M.; Hickie, I.B.; Martin, N.G.; et al. Polygenic Risk Scores Derived from Varying Definitions of Depression and Risk of Depression. JAMA Psychiatry 2021, 78, 1152–1160. [Google Scholar] [CrossRef] [PubMed]
- Solmi, M.; Radua, J.; Olivola, M.; Croce, E.; Soardo, L.; de Pablo, G.S.; Shin, J.I.; Kirkbride, J.B.; Jones, P.; Kim, J.H.; et al. Age at onset of mental disorders worldwide: Large-scale meta-analysis of 192 epidemiological studies. Mol. Psychiatry 2021, 27, 281–295. [Google Scholar] [CrossRef]
- Vaingankar, J.A.; Chong, S.A.; Abdin, E.; Shafie, S.; Chua, B.Y.; Shahwan, S.; Verma, S.; Subramaniam, M. Early age of onset of mood, anxiety and alcohol use disorders is associated with sociodemographic characteristics and health outcomes in adults: Results from a cross-sectional national survey. Soc. Psychiatry Psychiatr. Epidemiol. 2021, 56, 1835–1846. [Google Scholar] [CrossRef]
- Kendall, K.M.; Van Assche, E.; Andlauer, T.F.M.; Choi, K.W.; Luykx, J.J.; Schulte, E.C.; Lu, Y. The genetic basis of major depression. Psychol. Med. 2021, 51, 2217–2230. [Google Scholar] [CrossRef]
- Kanjira, S.C.; Adams, M.J.; Jiang, Y.; Tian, C.; 23andMe Research Team; Lewis, C.M.; Kuchenbaecker, K.; McIntosh, A.M. Polygenic prediction of major depressive disorder and related traits in African ancestries UK Biobank participants. Mol. Psychiatry 2024, 30, 151–157. [Google Scholar] [CrossRef]
- Power, R.A.; Tansey, K.E.; Buttenschon, H.N.; Cohen-Woods, S.; Bigdeli, T.; Hall, L.S.; Kutalik, Z.; Lee, S.H.; Ripke, S.; Steinberg, S.; et al. Genome-wide Association for Major Depression through Age at Onset Stratification: Major Depressive Disorder Working Group of the Psychiatric Genomics Consortium. Biol. Psychiatry 2016, 81, 325–335. [Google Scholar] [CrossRef] [PubMed]
- Delgado-Herrera, M.; Aceves-Gómez, A.C.; Reyes-Aguilar, A. Relationship between gender roles, motherhood beliefs and mental health. PLoS ONE 2024, 19, e0298750. [Google Scholar] [CrossRef] [PubMed]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Arlington, VA, USA, 2013. [Google Scholar]
- Remes, O.; Mendes, J.F.; Templeton, P. Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature. Brain Sci. 2021, 11, 1633. [Google Scholar] [CrossRef] [PubMed]
- Ten Have, M.; Penninx, B.W.J.H.; Tuithof, M.; van Dorsselaer, S.; Kleinjan, M.; Spijker, J.; de Graaf, R. Nieuwe cijfers over de duurvan depressieve episoden in de algemene bevolking; resultaten van nemesis-2 [New numbers on the duration of major and minor depressive episodes in the general population; results from NEMESIS-2]. Tijdschr. Psychiatr. 2018, 60, 364–373. [Google Scholar] [PubMed]
- Jordan, D.G.; Winer, E.S.; Salem, T.; Kilgore, J. Longitudinal evaluation of anhedonia as a mediator of fear of positive evaluation and other depressive symptoms. Cogn. Emot. 2018, 32, 1437–1447. [Google Scholar] [CrossRef]
- Abel, D.B.; Minor, K.S. Social pleasure in daily life: A meta-analysis of experience sampling studies in schizophrenia. Schizophr. Res. 2023, 260, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Mata, J.; Furman, D.J.; Whitmer, A.J.; Gotlib, I.H.; Thompson, R.J. Anticipatory and consummatory pleasure and displeasure in major depressive disorder: An experience sampling study. J. Abnorm. Psychol. 2017, 126, 149–159. [Google Scholar] [CrossRef]
- Serretti, A. Anhedonia and Depressive Disorders. Clin. Psychopharmacol. Neurosci. 2023, 21, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Höflich, A.; Michenthaler, P.; Kasper, S.; Lanzenberger, R. Circuit Mechanisms of Reward, Anhedonia, and Depression. Int. J. Neuropsychopharmacol. 2019, 22, 105–118. [Google Scholar] [CrossRef]
- Zhao, L.; Li, X.; Yang, Q.; Peng, Y.; Jiang, L.; Jia, P.; Shi, W. The longitudinal association between internet addiction and depressive and anxiety symptoms among Chinese adolescents before and during the COVID-19 pandemic. Front. Public Health 2023, 10, 1096660. [Google Scholar] [CrossRef]
- Liang, S.; Wu, Y.; Hanxiaoran, L.; Greenshaw, A.J.; Li, T. Anhedonia in Depression and Schizophrenia: Brain Reward and Aversion Circuits. Neuropsychiatr. Dis. Treat. 2022, 18, 1385–1396. [Google Scholar] [CrossRef]
- Stull, S.W.; Bertz, J.W.; Epstein, D.H.; Bray, B.C.; Lanza, S.T. Anhedonia and Substance Use Disorders by Type, Severity, and with Mental Health Disorders. J. Addict. Med. 2022, 16, e150–e156. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.; Bai, W.; Yue, Y.; Zhang, L.; Mi, W.F.; Li, Y.C.; Liu, H.-Z.; Du, X.; Zeng, Z.-T.; Lu, C.-M.; et al. Mapping network connectivity between internet addiction and residual depressive symptoms in patients with depression. Front. Psychiatry 2022, 13, 997593. [Google Scholar] [CrossRef] [PubMed]
- Eseaton, P.O.; Ijioma, O.; Enosolease, A.U.; Ezomo, J.; Oladunjoye, A.F.; Anugwom, G.; Onyeaka, H.; Ezeafulukwe, C.J.; Edigin, E. Emergency department utilization by pediatric patients with major depressive disorder: A United States national population-based study. Psychiatry Res. Commun. 2024, 4, 100160. [Google Scholar] [CrossRef]
- Thomsen, K.R. Measuring anhedonia: Impaired ability to pursue, experience, and learn about reward. Front. Psychol. 2015, 6, 1409. [Google Scholar] [CrossRef] [PubMed]
- Barkus, E.; Badcock, J.C. A Transdiagnostic Perspective on Social Anhedonia. Front. Psychiatry 2019, 10, 216. [Google Scholar] [CrossRef] [PubMed]
- Hanuka, S.; Olson, E.A.; Admon, R.; Webb, C.A.; Killgore, W.D.S.; Rauch, S.L.; Rosso, I.M.; Pizzagalli, D.A. Reduced anhedonia following internet-based cognitive-behavioral therapy for depression is mediated by enhanced reward circuit activation. Psychol. Med. 2023, 53, 4345–4354. [Google Scholar] [CrossRef]
- Kelly, Á.M. Non-pharmacological Approaches to Cognitive Enhancement. Handb. Exp. Pharmacol. 2015, 228, 417–439. [Google Scholar] [PubMed]
- Devoe, D.J.; Braun, A.; Seredynski, T.; Addington, J. Negative Symptoms and Functioning in Youth at Risk of Psychosis: A Systematic Review and Meta-analysis. Harv. Rev. Psychiatry 2020, 28, 341–355. [Google Scholar] [CrossRef]
- Frey, A.L.; Kaya, M.S.; Adeniyi, I.; McCabe, C. Anhedonia in Relation to Reward and Effort Learning in Young People with Depression Symptoms. Brain Sci. 2023, 13, 341. [Google Scholar] [CrossRef] [PubMed]
- Petrelli, F.; Grappasonni, I.; Evangelista, D.; Pompei, P.; Broglia, G.; Cioffi, P.; Kracmarova, L.; Scuri, S. Mental and physical effects of energy drinks consumption in an Italian young people group: A pilot study. J. Prev. Med. Hyg. 2018, 59, E80–E87. [Google Scholar] [CrossRef]
- Prabhakar, J.; Nielson, D.M.; Stringaris, A. Origins of Anhedonia in Childhood and Adolescence. Curr. Top. Behav. Neurosci. 2022, 58, 43–60. [Google Scholar] [CrossRef]
- Spacilova, L.; Klusonova, H.; Petrelli, F.; Signorelli, C.; Visnovsky, P.; Grappasonni, I. Substance use and knowledge among Italian high school students. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 2009, 153, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Devoe, D.J.; Farris, M.S.; Townes, P.; Addington, J. Interventions and social functioning in youth at risk of psychosis: A systematic review and meta-analysis. Early Interv. Psychiatry 2019, 13, 169–180. [Google Scholar] [CrossRef]
- Mandi’c, S.; Ricijaš, N.; Hundri’c, D.D. Effects of Gender and Social Network Use on High School Students’ Emotional Well-Being during COVID-19. Psychiatry Int. 2024, 5, 154–168. [Google Scholar] [CrossRef]
- Kiani, P.; Hendriksen, P.A.; Balikji, J.; Severeijns, N.R.; Sips, A.S.M.; Bruce, G.; Garssen, J.; Verster, J.C. COVID-19 Lockdown Effects on Mood: Impact of Sex, Age, and Underlying Disease. Psychiatry Int. 2023, 4, 307–323. [Google Scholar] [CrossRef]
- Wei, X.; An, F.; Liu, C.; Li, K.; Wu, L.; Ren, L.; Liu, X. Escaping negative moods and concentration problems play bridge roles in the symptom network of problematic smartphone use and depression. Front. Public Health 2023, 10, 981136. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, D.; Chen, S.; Chi, X. Network analysis of internet addiction and depression among Chinese college students during the COVID-19 pandemic: A longitudinal study. Comput. Hum. Behav. 2022, 138, 107424. [Google Scholar] [CrossRef] [PubMed]
- Gaya, A.R.; Brum, R.; Brites, K.; Gaya, A.; Schneiders, L.d.B.; Junior, M.A.D.; López-Gil, J.F. Electronic device and social network use and sleep outcomes among adolescents: The EHDLA study. BMC Public Health 2023, 23, 919. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, G.; Biondini, F.; Sguanci, M.E.; Nguyen, C.T.T.; Palomares, S.M.; Mancin, S.; Petrelli, F. Systematic Review Protocol: Anhedonia in Youth and the Role of Internet-Related Behavior. Psychiatry Int. 2024, 5, 447–457. [Google Scholar] [CrossRef]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Deeks, J.J.; Bossuyt, P.M.; Leeflang, M.M.; Takwoingi, Y. Cochrane Handbook for Systematic Reviews of Diagnostic Test Accuracy. Version 2.0 (Updated July 2023). Cochrane. 2023. Available online: https://training.cochrane.org/handbook-diagnostic-test-accuracy (accessed on 20 July 2024).
- Cangelosi, G. Anhedonia in Young and the role of Internet Related Behaviour. OSF 2024. [Google Scholar] [CrossRef]
- Selph, S.S.; McDonagh, M.S. Depression in Children and Adolescents: Evaluation and Treatment. Am. Fam. Physician 2019, 100, 609–617. [Google Scholar] [PubMed]
- American Psychological Association (APA). Clinical Practice Guideline for the Treatment of Depression Across Three Age Cohorts. 2019. Available online: https://www.apa.org/depression-guideline (accessed on 25 June 2024).
- National Institute for Health and Care Excellence (NICE). Depression in Children and Young People: Identification and Management. NICE Guideline. Available online: https://www.nice.org.uk/guidance/ng134 (accessed on 15 July 2024).
- Mendeley. Available online: https://www.mendeley.com/?interaction_required=true (accessed on 25 May 2024).
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, G.; Mancin, S.; Pantanetti, P.; Nguyen, C.T.T.; Morales Palomares, S.; Biondini, F.; Sguanci, M.; Petrelli, F. Lifestyle Medicine Case Manager Nurses for Type Two Diabetes Patients: An Overview of a Job Description Framework—A Narrative Review. Diabetology 2024, 5, 375–388. [Google Scholar] [CrossRef]
- Cangelosi, G.; Palomares, S.M.; Pantanetti, P.; De Luca, A.; Biondini, F.; Nguyen, C.T.T.; Mancin, S.; Sguanci, M.; Petrelli, F. COVID-19, Nutrients and Lifestyle Eating Behaviors: A Narrative Review. Diseases 2024, 12, 193. [Google Scholar] [CrossRef] [PubMed]
- Cangelosi, G.; Mancin, S.; Morales Palomares, S.; Pantanetti, P.; Quinzi, E.; Debernardi, G.; Petrelli, F. Impact of School Nurse on Managing Pediatric Type 1 Diabetes with Technological Devices Support: A Systematic Review. Diseases 2024, 12, 173. [Google Scholar] [CrossRef]
- Critical Appraisal Skills Programme (CASP). Available online: https://casp-uk.net/casp-tools-checklists/ (accessed on 30 June 2024).
- Yu, Q.; Wang, X.; Cao, Y.; Lu, J.; Gao, F.; Fan, J.; Zhu, X. Social anhedonia affects the trajectory of internet addiction in the college students: A latent growth curve analysis. J. Affect. Disord. 2023, 326, 83–88. [Google Scholar] [CrossRef]
- Cai, H.; Bai, W.; Sha, S.; Zhang, L.; Chow, I.H.I.; Lei, S.M.; Lok, G.K.; Cheung, T.; Su, Z.; Hall, B.J.; et al. Identification of central symptoms in Internet addictions and depression among adolescents in Macau: A network analysis. J. Affect. Disord. 2022, 302, 415–423. [Google Scholar] [CrossRef]
- Tan, M.; Shallis, A.; Barkus, E. Social anhedonia and social functioning: Loneliness as a mediator. PsyCh J. 2020, 9, 280–289. [Google Scholar] [CrossRef] [PubMed]
- Christodoulou, G.; Majmundar, A.; Chou, C.P.; Pentz, M.A. Anhedonia, screen time, and substance use in early adolescents: A longitudinal mediation analysis. J. Adolesc. 2020, 78, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Guillot, C.R.; Bello, M.S.; Tsai, J.Y.; Huh, J.; Leventhal, A.M.; Sussman, S. Longitudinal Associations between Anhedonia and Internet-Related Addictive Behaviors in Emerging Adults. Comput. Hum. Behav. 2016, 62, 475–479. [Google Scholar] [CrossRef] [PubMed]
- Akkın Gürbüz, H.G.; Demir, T.; Gökalp Özcan, B.; Kadak, M.T.; Poyraz, B.Ç. Use of social network sites among depressed adolescents. Behav. Inf. Technol. 2016, 36, 517–523. [Google Scholar] [CrossRef]
- Lee, J.Y.; Shin, K.M.; Cho, S.M.; Shin, Y.M. Psychosocial risk factors associated with internet addiction in Korea. Psychiatry Investig. 2014, 11, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Freichel, R.; Lenartowicz, A.; Douw, L.; Kruschwitz, J.D.; Banaschewski, T.; Barker, G.J.; Bokde, A.L.; Desrivières, S.; Flor, H.; Grigis, A.; et al. Unraveling robust brain-behavior links of depressive complaints through granular network models for understanding heterogeneity. J. Affect. Disord. 2024, 359, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhao, C.; Zhao, H.; Qiao, J. Abnormal functional connectivity of the nucleus accumbens subregions mediates the association between anhedonia and major depressive disorder. BMC Psychiatry 2023, 23, 282. [Google Scholar] [CrossRef] [PubMed]
- Bore, M.C.; Liu, X.; Gan, X.; Wang, L.; Xu, T.; Ferraro, S.; Li, L.; Zhou, B.; Zhang, J.; Vatansever, D.; et al. Distinct neurofunctional alterations during motivational and hedonic processing of natural and monetary rewards in depression—A neuroimaging meta-analysis. Psychol. Med. 2024, 54, 639–651. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Zhou, E.; Nie, Z.; Deng, Z.; Gong, Q.; Ma, S.; Kang, L.; Yao, L.; Cheng, J.; Liu, Z. Exploring mechanisms of anhedonia in depression through neuroimaging and data-driven approaches. J. Affect. Disord. 2024, 363, 409–419. [Google Scholar] [CrossRef]
- Gallus, S.; Lugo, A.; Borroni, E.; Vignoli, T.; Lungaro, L.; Caio, G.; De Giorgio, R.; Zolic, G.; Caputoc, F. Symptoms of Protracted Alcohol Withdrawal in Patients with Alcohol Use Disorder: A Comprehensive Systematic Review. Curr. Neuropharmacol. 2023, 21, 409–416. [Google Scholar] [CrossRef]
- Christensen, E.; Albertella, L.; Chamberlain, S.R.; Suo, C.; Brydevall, M.; Grant, J.E.; Yücel, M.; Lee, R.S.C. A comprehensive evaluation of the neurocognitive predictors of problematic alcohol use, eating, pornography, and internet use: A 6-month longitudinal study. J. Behav. Addict. 2024, 13, 823–840. [Google Scholar] [CrossRef]
- Mestre-Bach, G.; Potenza, M.N. Neural mechanisms linked to treatment outcomes and recovery in substance-related and addictive disorders. Dialogues Clin. Neurosci. 2023, 25, 75–91. [Google Scholar] [CrossRef]
- Wong, S.; Le, G.H.; Phan, L.; Rhee, T.G.; Ho, R.; Meshkat, S.; Teopiz, K.M.; Kwan, A.T.; Mansur, R.B.; Rosenblat, J.D.; et al. Effects of anhedonia on health-related quality of life and functional outcomes in major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2024, 356, 684–698. [Google Scholar] [CrossRef]
- Dolan, S.C.; Khindri, R.; Franko, D.L.; Thomas, J.J.; Reilly, E.E.; Eddy, K.T. Anhedonia in eating disorders: A meta-analysis and systematic review. Int. J. Eat. Disord. 2022, 55, 161–175. [Google Scholar] [CrossRef]
- Horne, S.J.; Topp, T.E.; Quigley, L. Depression and the willingness to expend cognitive and physical effort for rewards: A systematic review. Clin. Psychol. Rev. 2021, 88, 102065. [Google Scholar] [CrossRef]
- Trøstheim, M.; Eikemo, M.; Meir, R.; Hansen, I.; Paul, E.; Kroll, S.L.; Garland, E.L.; Leknes, S. Assessment of Anhedonia in Adults With and Without Mental Illness: A Systematic Review and Meta-analysis. JAMA Netw. Open 2020, 3, e2013233. [Google Scholar] [CrossRef]
- Atherton, B.D.; Nevels, R.M.; Moore, M.T. Predicting symptoms of depression from social anhedonia and emotion regulation. J. Nerv. Ment. Dis. 2015, 203, 170–174. [Google Scholar] [CrossRef] [PubMed]
- Alsayednasser, B.; Widnall, E.; O’Mahen, H.; Wright, K.; Warren, F.; Ladwa, A.; Khazanov, G.K.; Byford, S.; Kuyken, W.; Watkins, E.; et al. How well do Cognitive Behavioural Therapy and Behavioural Activation for depression repair anhedonia? A secondary analysis of the COBRA randomized controlled trial. Behav. Res. Ther. 2022, 159, 104185. [Google Scholar] [CrossRef] [PubMed]
- Marin, M.G.; Nuñez, X.; de Almeida, R.M.M. Internet Addiction and Attention in Adolescents: A Systematic Review. Cyberpsychology Behav. Soc. Netw. 2021, 24, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, Y.; Furuyashiki, T. The impact of stress on immune systems and its relevance to mental illness. Neurosci. Res. 2022, 175, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, A.K.; Fouad, I.; Kelly, S.J.; El Fawal, B.; Ahmed, G.K. Prevalence and determinants of Internet Addiction among medical students and its association with depression. J. Affect. Disord. 2022, 314, 94–102. [Google Scholar] [CrossRef]
- Lindenberg, K.; Kindt, S.; Szász-Janocha, C. Effectiveness of Cognitive Behavioral Therapy-Based Intervention in Preventing Gaming Disorder and Unspecified Internet Use Disorder in Adolescents: A Cluster Randomized Clinical Trial. JAMA Netw. Open 2022, 5, e2148995. [Google Scholar] [CrossRef]
- Kimura, Y.; Yokota, S.; Watanabe, K.; Kubo, Y.; Nakamura, M. Effectiveness of Unguided Internet-Based Cognitive Behavioral Therapy for Subthreshold Social Anxiety Disorder in Adolescents and Young Adults: Multicenter Randomized Controlled Trial. JMIR Pediatr. Parent. 2024, 7, e55786. [Google Scholar] [CrossRef]
- Waite, P.; Marshall, T.; Creswell, C. A randomized controlled trial of internet-delivered cognitive behaviour therapy for adolescent anxiety disorders in a routine clinical care setting with and without parent sessions. Child Adolesc. Ment. Health 2019, 24, 242–250. [Google Scholar] [CrossRef]
- Yap, M.B.H.; Mahtani, S.; Rapee, R.M.; Nicolas, C.; Lawrence, K.A.; Mackinnon, A.; Jorm, A.F. A Tailored Web-Based Intervention to Improve Parenting Risk and Protective Factors for Adolescent Depression and Anxiety Problems: Postintervention Findings from a Randomized Controlled Trial. J. Med. Internet Res. 2018, 20, e17. [Google Scholar] [CrossRef] [PubMed]
- Geirhos, A.; Domhardt, M.; Lunkenheimer, F.; Temming, S.; Holl, R.W.; Minden, K.; Warschburger, P.; Meissner, T.; Mueller-Stierlin, A.S.; Baumeister, H. Feasibility and potential efficacy of a guided internet- and mobile-based CBT for adolescents and young adults with chronic medical conditions and comorbid depression or anxiety symptoms (youthCOACHCD): A randomized controlled pilot trial. BMC Pediatr. 2022, 22, 69. [Google Scholar] [CrossRef] [PubMed]
- Swartz, H.A.; Novick, D.M. Psychotherapy in the Digital Age: What We Can Learn From Interpersonal Psychotherapy. Am. J. Psychother. 2020, 73, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Plackett, R.; Blyth, A.; Schartau, P. The Impact of Social Media Use Interventions on Mental Well-Being: Systematic Review. J. Med. Internet Res. 2023, 25, e44922. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mann, F.; Lloyd-Evans, B.; Ma, R.; Johnson, S. Associations between loneliness and perceived social support and outcomes of mental health problems: A systematic review. BMC Psychiatry 2018, 18, 156. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.M.B.; Rasmussen, A.R.; Reavley, N.J.; Bøggild, H.; Overgaard, C. The social route to mental health: A systematic review and synthesis of theories linking social relationships to mental health to inform interventions. SSM Ment. Health 2021, 1, 100042. [Google Scholar] [CrossRef]
Authors | Year of Publication, Country | Type of Study | Population | Setting | Key Findings | Results |
---|---|---|---|---|---|---|
Yu et al. [57] | 2023 China | Cohort study | N = 3577 mean age = 18.01 (65.4% female) | College students | Social and physical anhedonia | Social anhedonia predicted higher initial IA levels (p < 0.001) and a slower decline (p < 0.05). No significant associations for physical anhedonia |
Cai et al. [58] | 2022 China | Cohort study | N = 1009 mean age = 15.32 (50.8% males) | Adolescents | Depression symptoms | Gender did not significantly affect the network structure |
Tan et al. [59] | 2020 USA | Cohort study | N = 824 mean age = 21.03 (72.3% female) | Psychology students | RSAS, SFS, UCLA Loneliness Scale 3, DASS-21 | Results indicated negative correlations between RSAS and SFS scores. Mediation analyses showed that loneliness partially mediated the relationship for all subscales except Recreational Activities, while fully mediating overall social functioning |
Christodoulou et al. [60] | 2020 USA | Cohort study | N = 709 9–11 age (534 males) | Early adolescents | Relationship between screen time and substance use and anhedonia | Anhedonia mediates the link between screen time and substance use, with an increased screen time leading to desensitization and a heightened risk |
Casey et al. [61] | 2016 USA | Cohort study | N = 503 mean age = 20.8 (47.7% males) | Former alternative high school students | Associations between anhedonia and IA | The results indicated that trait anhedonia was associated with increased levels of compulsive Internet use and addiction to online activities and video games |
Akkın Gürbüz et al. [62] | 2016 Turkey | Case–control | 53 cases (depressed) 55 controls (not depressed) Mean age = 15.2 (65 female) | Adolescents | SNSs and depression | Depressed adolescents spent more time on the Internet and SNSs, reporting higher depressive disclosures, including anhedonia, guilt, irritability, and suicidal thoughts |
Lee et al. [63] | 2014 South Korea | Case–control | Case 1 (Addiction N = 29) Case 2 (over-user N = 449) Control (normal user N = 739) 13–15 age (525 males) | Middle school students | Prevalence of IA and identifying related psychosocial risk factors and instances of depression | The study found 2.38% were addicted, 36.89% over-users, and 60.72% normal users, with attention problems and delinquent behavior as predictive factors |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cangelosi, G.; Biondini, F.; Sguanci, M.; Nguyen, C.T.T.; Ferrara, G.; Diamanti, O.; Palomares, S.M.; Mancin, S.; Petrelli, F. Anhedonia in Youth and the Role of Internet-Related Behavior: A Systematic Review. Psychiatry Int. 2025, 6, 1. https://doi.org/10.3390/psychiatryint6010001
Cangelosi G, Biondini F, Sguanci M, Nguyen CTT, Ferrara G, Diamanti O, Palomares SM, Mancin S, Petrelli F. Anhedonia in Youth and the Role of Internet-Related Behavior: A Systematic Review. Psychiatry International. 2025; 6(1):1. https://doi.org/10.3390/psychiatryint6010001
Chicago/Turabian StyleCangelosi, Giovanni, Federico Biondini, Marco Sguanci, Cuc Thi Thu Nguyen, Gaetano Ferrara, Orejeta Diamanti, Sara Morales Palomares, Stefano Mancin, and Fabio Petrelli. 2025. "Anhedonia in Youth and the Role of Internet-Related Behavior: A Systematic Review" Psychiatry International 6, no. 1: 1. https://doi.org/10.3390/psychiatryint6010001
APA StyleCangelosi, G., Biondini, F., Sguanci, M., Nguyen, C. T. T., Ferrara, G., Diamanti, O., Palomares, S. M., Mancin, S., & Petrelli, F. (2025). Anhedonia in Youth and the Role of Internet-Related Behavior: A Systematic Review. Psychiatry International, 6(1), 1. https://doi.org/10.3390/psychiatryint6010001