Boosting Prefrontal Brain Responsiveness by Interoceptive Attentiveness during Synchronized Breathing, Motor, and Cognitive Task
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample of Participants
2.2. Procedure
“During this task, we ask you to focus your attention on your breath. Try to observe how you feel and if there are any variations in your breath as you perform the task”.
2.3. Breath, Motor, and Cognitive Synchronization Tasks
2.4. Manipulation Checks
2.5. Measurement of Brain Activity by fNIRS
2.6. Statistical Analysis
3. Results
3.1. Manipulation Checks
3.2. fNIRS Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Schulz, S.M. Neural Correlates of Heart-Focused Interoception: A Functional Magnetic Resonance Imaging Meta-Analysis. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160018. [Google Scholar] [CrossRef] [PubMed]
- Tsakiris, M.; De Preester, H. The Interoceptive Mind: From Homeostasis to Awareness; Oxford University Press: Oxford, UK, 2018. [Google Scholar]
- Brener, J.; Ring, C. Towards a Psychophysics of Interoceptive Processes: The Measurement of Heartbeat Detection. Philos. Trans. R. Soc. B Biol. Sci. 2016, 371, 20160015. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Wu, Q.; Egan, L.; Gu, X.; Liu, P.; Gu, H.; Yang, Y.; Luo, J.; Wu, Y.; Gao, Z.; et al. Anterior Insular Cortex Plays a Critical Role in Interoceptive Attention. eLife 2019, 8, e42265. [Google Scholar] [CrossRef] [PubMed]
- Farb, N.A.S.; Segal, Z.V.; Anderson, A.K. Mindfulness Meditation Training Alters Cortical Representations of Interoceptive Attention. Soc. Cogn. Affect. Neurosci. 2013, 8, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Weng, H.Y.; Feldman, J.L.; Leggio, L.; Napadow, V.; Park, J.; Price, C.J. Interventions and Manipulations of Interoception. Trends Neurosci. 2021, 44, 52–62. [Google Scholar] [CrossRef] [PubMed]
- Boyadzhieva, A.; Kayhan, E. Keeping the Breath in Mind: Respiration, Neural Oscillations, and the Free Energy Principle. Front. Neurosci. 2021, 15, 647579. [Google Scholar] [CrossRef] [PubMed]
- Arch, J.J.; Craske, M.G. Mechanisms of Mindfulness: Emotion Regulation Following a Focused Breathing Induction. Behav. Res. Ther. 2006, 44, 1849–1858. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Angioletti, L. One’s Interoception Affects the Representation of Seeing Others’ Pain: A Randomized Controlled QEEG Study. Pain. Res. Manag. 2021, 2021, 5585060. [Google Scholar] [CrossRef] [PubMed]
- Paul, G.; Elam, B.; Verhulst, S.J. A Longitudinal Study of Students’ Perceptions of Using Deep Breathing Meditation to Reduce Testing Stresses. Teach. Learn. Med. 2007, 19, 287–292. [Google Scholar] [CrossRef]
- Varga, S.; Heck, D.H. Rhythms of the Body, Rhythms of the Brain: Respiration, Neural Oscillations, and Embodied Cognition. Conscious. Cogn. 2017, 56, 77–90. [Google Scholar] [CrossRef]
- Grossman, P. Defining Mindfulness by How Poorly I Think I Pay Attention During Everyday Awareness and Other Intractable Problems for Psychology’s (Re)Invention of Mindfulness: Comment on Brown et al. (2011). Psychol. Assess. 2011, 23, 1034–1040. [Google Scholar] [CrossRef]
- Farmer, H.; Tsakiris, M. The Bodily Social Self: A Link Between Phenomenal and Narrative Selfhood. Rev. Philos. Psychol. 2012, 3, 125–144. [Google Scholar] [CrossRef]
- McKay, L.C.; Evans, K.C.; Frackowiak, R.S.J.; Corfield, D.R. Neural Correlates of Voluntary Breathing in Humans. J. Appl. Physiol. 2003, 95, 1170–1178. [Google Scholar] [CrossRef] [PubMed]
- Herrero, J.L.; Khuvis, S.; Yeagle, E.; Cerf, M.; Mehta, A.D. Breathing above the Brain Stem: Volitional Control and Attentional Modulation in Humans. J. Neurophysiol. 2018, 119, 145–159. [Google Scholar] [CrossRef] [PubMed]
- Mitsea, E.; Drigas, A.; Skianis, C. Breathing, Attention & Consciousness in Sync: The Role of Breathing Training, Metacognition & Virtual Reality. Tech. Soc. Sci. J. 2022, 29, 79–97. [Google Scholar]
- Mateika, J.H.; Duffin, J. A Review of the Control of Breathing during Exercise. Eur. J. Appl. Physiol. Occup. Physiol. 1995, 71, 1–27. [Google Scholar] [CrossRef] [PubMed]
- Charman, T. Commentary: Glass Half Full or Half Empty? Testing Social Communication Interventions for Young Children with Autism—Reflections on Landa, Holman, O’Neill, and Stuart (2011). J. Child. Psychol. Psychiatry 2011, 52, 22–23. [Google Scholar] [CrossRef] [PubMed]
- Delaherche, E.; Chetouani, M.; Mahdhaoui, A.; Saint-Georges, C.; Viaux, S.; Cohen, D. Interpersonal Synchrony: A Survey of Evaluation Methods Across Disciplines. IEEE Trans. Affect. Comput. 2012, 3, 349–365. [Google Scholar] [CrossRef]
- Fitzpatrick, P.; Romero, V.; Amaral, J.L.; Duncan, A.; Barnard, H.; Richardson, M.J.; Schmidt, R.C. Social Motor Synchronization: Insights for Understanding Social Behavior in Autism. J. Autism Dev. Disord. 2017, 47, 2092–2107. [Google Scholar] [CrossRef]
- Mrazek, M.D.; Smallwood, J.; Schooler, J.W. Mindfulness and Mind-Wandering: Finding Convergence through Opposing Constructs. Emotion 2012, 12, 442–448. [Google Scholar] [CrossRef]
- Eisenbeck, N.; Luciano, C.; Valdivia-Salas, S. Effects of a Focused Breathing Mindfulness Exercise on Attention, Memory, and Mood: The Importance of Task Characteristics. Behav. Change 2018, 35, 54–70. [Google Scholar] [CrossRef]
- Rivest-Gadbois, E.; Boudrias, M.H. What Are the Known Effects of Yoga on the Brain in Relation to Motor Performances, Body Awareness and Pain? A Narrative Review. Complement. Ther. Med. 2019, 44, 129–142. [Google Scholar] [CrossRef]
- Kashkouli Nejad, K.; Sugiura, M.; Nozawa, T.; Kotozaki, Y.; Furusawa, Y.; Nishino, K.; Nukiwa, T.; Kawashima, R. Supramarginal Activity in Interoceptive Attention Tasks. Neurosci. Lett. 2015, 589, 42–46. [Google Scholar] [CrossRef]
- Tang, Y.-Y.; Ma, Y.; Fan, Y.; Feng, H.; Wang, J.; Feng, S.; Lu, Q.; Hu, B.; Lin, Y.; Li, J.; et al. Central and Autonomic Nervous System Interaction Is Altered by Short-Term Meditation. Proc. Natl. Acad. Sci. USA 2009, 106, 8865–8870. [Google Scholar] [CrossRef]
- Dickenson, J.; Berkman, E.T.; Arch, J.; Lieberman, M.D. Neural Correlates of Focused Attention during a Brief Mindfulness Induction. Soc. Cogn. Affect. Neurosci. 2013, 8, 40–47. [Google Scholar] [CrossRef]
- Farb, N.A.S.; Segal, Z.V.; Mayberg, H.; Bean, J.; Mckeon, D.; Fatima, Z.; Anderson, A.K. Attending to the Present: Mindfulness Meditation Reveals Distinct Neural Modes of Self-Reference. Soc. Cogn. Affect. Neurosci. 2007, 2, 313–322. [Google Scholar] [CrossRef]
- Kilpatrick, L.A.; Suyenobu, B.Y.; Smith, S.R.; Bueller, J.A.; Goodman, T.; Creswell, J.D.; Tillisch, K.; Mayer, E.A.; Naliboff, B.D. Impact of Mindfulness-Based Stress Reduction Training on Intrinsic Brain Connectivity. Neuroimage 2011, 56, 290–298. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L.; Wang, D.X.; Zhang, Y.R.; Tang, Y.Y. Enhancing Attention by Synchronizing Respiration and Fingertip Pressure: A Pilot Study Using Functional Near-Infrared Spectroscopy. Front. Neurosci. 2019, 13, 1209. [Google Scholar] [CrossRef] [PubMed]
- Balconi, M.; Angioletti, L. Interoception as a Social Alarm Amplification System. What Multimethod (EEG-FNIRS) Integrated Measures Can Tell Us about Interoception and Empathy for Pain? Neuropsychol. Trends 2021, 29, 39–64. [Google Scholar] [CrossRef]
- Zhang, Z.; Olszewska-Guizzo, A.; Husain, S.F.; Bose, J.; Choi, J.; Tan, W.; Wang, J.; Tran, B.X.; Wang, B.; Jin, Y.; et al. Brief Relaxation Practice Induces Significantly More Prefrontal Cortex Activation during Arithmetic Tasks Comparing to Viewing Greenery Images as Revealed by Functional Near-Infrared Spectroscopy (FNIRS). Int. J. Environ. Res. Public. Health 2020, 17, 8366. [Google Scholar] [CrossRef] [PubMed]
- Milz, P.; Faber, P.L.; Lehmann, D.; Kochi, K.; Pascual-Marqui, R.D. sLORETA Intracortical Lagged Coherence during Breath Counting in Meditation-Naïve Participants. Front. Hum. Neurosci. 2014, 8, 303. [Google Scholar] [CrossRef] [PubMed]
- Kondo, H.; Osaka, N.; Osaka, M. Cooperation of the Anterior Cingulate Cortex and Dorsolateral Prefrontal Cortex for Attention Shifting. Neuroimage 2004, 23, 670–679. [Google Scholar] [CrossRef] [PubMed]
- Stephan, K.M.; Thaut, M.H.; Wunderlich, G.; Schicks, W.; Tian, B.; Tellmann, L.; Schmitz, T.; Herzog, H.; McIntosh, G.C.; Seitz, R.J.; et al. Conscious and Subconscious Sensorimotor Synchronization-Prefrontal Cortex and the Influence of Awareness. Neuroimage 2002, 15, 345–352. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Z.; Song, B.; Pan, Y.; Cheng, X.; Zhu, Y.; Hu, Y. How to Calculate and Validate Inter-Brain Synchronization in a Fnirs Hyperscanning Study. J. Vis. Exp. 2021, 2021, e62801. [Google Scholar] [CrossRef]
- Balconi, M.; Pezard, L.; Nandrino, J.-L.; Vanutelli, M.E. Two Is Better than One: The Effects of Strategic Cooperation on Intra- and Inter-Brain Connectivity by FNIRS. PLoS ONE 2017, 12, e0187652. [Google Scholar] [CrossRef]
- Balconi, M.; Angioletti, L. Interoceptive Attentiveness Induces Significantly More PFC Activation during a Synchronized Linguistic Task Compared to a Motor Task as Revealed by Functional Near-Infrared Spectroscopy. Brain Sci. 2022, 12, 301. [Google Scholar] [CrossRef]
- Faul, F.; Erdfelder, E.; Lang, A.G.; Buchner, A. G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods 2007, 39, 175–191. [Google Scholar] [CrossRef]
- Oostenveld, R.; Praamstra, P. The Five Percent Electrode System for High-Resolution EEG and ERP Measurements. Clin. Neurophysiol. 2001, 112, 713–719. [Google Scholar] [CrossRef]
- Vanutelli, M.E.; Gatti, L.; Angioletti, L.; Balconi, M. Affective synchrony and autonomic coupling during cooperation: A hyperscanning study. BioMed Res. Int. 2017, 2017, 3104564. [Google Scholar] [CrossRef] [PubMed]
- Zimeo Morais, G.A.; Balardin, J.B.; Sato, J.R. FNIRS Optodes’ Location Decider (FOLD): A Toolbox for Probe Arrangement Guided by Brain Regions-of-Interest. Sci. Rep. 2018, 8, 3341. [Google Scholar] [CrossRef]
- Rorden, C.; Brett, M. Stereotaxic Display of Brain Lesions. Behav. Neurol. 2000, 12, 191–200. [Google Scholar] [CrossRef] [PubMed]
- Giacometti, P.; Perdue, K.L.; Diamond, S.G. Algorithm to Find High Density EEG Scalp Coordinates and Analysis of Their Correspondence to Structural and Functional Regions of the Brain. J. Neurosci. Methods 2014, 229, 84–96. [Google Scholar] [CrossRef] [PubMed]
- Koessler, L.; Maillard, L.; Benhadid, A.; Vignal, J.P.; Felblinger, J.; Vespignani, H.; Braun, M. Automated Cortical Projection of EEG Sensors: Anatomical Correlation via the International 10-10 System. Neuroimage 2009, 46, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Pinti, P.; Aichelburg, C.; Lind, F.; Power, S.; Swingler, E.; Merla, A.; Hamilton, A.; Gilber, S.; Burgess, P.; Tachtsidis, I. Using Fiberless, Wearable Fnirs to Monitor Brain Activity in Real-World Cognitive Tasks. J. Vis. Exp. 2015, 106, e53336. [Google Scholar] [CrossRef] [PubMed]
- Naseer, N.; Hong, K.S. Classification of Functional Near-Infrared Spectroscopy Signals Corresponding to the Right- and Left-Wrist Motor Imagery for Development of a Brain-Computer Interface. Neurosci. Lett. 2013, 553, 84–89. [Google Scholar] [CrossRef]
- Naseer, N.; Hong, M.J.; Hong, K.S. Online Binary Decision Decoding Using Functional Near-Infrared Spectroscopy for the Development of Brain-Computer Interface. Exp. Brain Res. 2014, 232, 555–564. [Google Scholar] [CrossRef]
- Cheng, X.; Li, X.; Hu, Y. Synchronous Brain Activity during Cooperative Exchange Depends on Gender of Partner: A FNIRS-Based Hyperscanning Study. Hum. Brain Mapp. 2015, 36, 2039–2048. [Google Scholar] [CrossRef]
- Amodio, D.M.; Frith, C.D. Meeting of Minds: The Medial Frontal Cortex and Social Cognition. Nat. Rev. Neurosci. 2006, 7, 268–277. [Google Scholar] [CrossRef]
- Kelsen, B.A.; Sumich, A.; Kasabov, N.; Liang, S.H.Y.; Wang, G.Y. What Has Social Neuroscience Learned from Hyperscanning Studies of Spoken Communication? A Systematic Review. Neurosci. Biobehav. Rev. 2022, 132, 1249–1262. [Google Scholar] [CrossRef] [PubMed]
- Crivelli, D.; Di Ruocco, M.; Balena, A.; Balconi, M. The Empowering Effect of Embodied Awareness Practice on Body Structural Map and Sensorimotor Activity: The Case of Feldenkrais Method. Brain Sci. 2021, 11, 1599. [Google Scholar] [CrossRef]
- Wulf, G. Attentional Focus and Motor Learning: A Review of 15 Years. Int. Rev. Sport. Exerc. Psychol. 2013, 6, 77–104. [Google Scholar] [CrossRef]
- Schücker, L.; Parrington, L. Thinking about Your Running Movement Makes You Less Efficient: Attentional Focus Effects on Running Economy and Kinematics. J. Sports Sci. 2019, 37, 638–646. [Google Scholar] [CrossRef] [PubMed]
- Raimo, S.; Boccia, M.; Di Vita, A.; Iona, T.; Cropano, M.; Ammendolia, A.; Colao, R.; Iocco, M.; Angelillo, V.; Guariglia, C.; et al. Interoceptive Awareness in Focal Brain-Damaged Patients. Neurol. Sci. 2020, 41, 1627–1631. [Google Scholar] [CrossRef] [PubMed]
Manipulation Checks |
---|
|
Breath | Motor | Cognitive | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | IA | Control | IA | Control | IA | |||||||
M | SD | M | SD | M | SD | M | SD | M | SD | M | SD | |
item 1 | 9.00 | 1.14 | 8.56 | 1.41 | 9.17 | 0.90 | 8.44 | 1.34 | 8.89 | 1.10 | 8.39 | 1.77 |
item 2 | 7.13 | 1.87 | 7.81 | 1.76 | 7.89 | 1.63 | 8.11 | 1.37 | 8.22 | 1.08 | 7.72 | 1.66 |
item 3 | 8.63 | 1.37 | 8.56 | 1.41 | 9.00 | 1.00 | 8.72 | 1.19 | 8.39 | 1.42 | 8.22 | 1.65 |
item 4 | 6.18 | 2.67 | 7.00 | 2.44 | 8.09 | 1.44 | 7.91 | 1.92 | 7.91 | 2.54 | 8.00 | 2.04 |
item 5 | 7.63 | 1.94 | 7.56 | 2.06 | 8.06 | 1.61 | 7.72 | 1.76 | 7.61 | 2.29 | 7.61 | 2.43 |
item 6 | 5.69 | 2.92 | 6.31 | 2.78 | 6.17 | 2.65 | 6.33 | 2.69 | 6.72 | 2.70 | 6.28 | 2.45 |
item 7 | 8.31 | 1.01 | 7.63 | 1.53 | 8.72 | 1.15 | 8.39 | 1.34 | 7.94 | 1.35 | 7.89 | 1.05 |
item 8 | 6.19 | 1.92 | 6.63 | 1.81 | 6.61 | 1.77 | 6.78 | 2.10 | 6.89 | 1.82 | 6.83 | 1.74 |
item 9 | 8.19 | 1.20 | 7.69 | 1.52 | 8.50 | 1.12 | 8.22 | 1.18 | 8.11 | 1.52 | 7.72 | 1.24 |
item 10 | 8.31 | 1.12 | 7.75 | 1.63 | 8.72 | 1.04 | 8.39 | 1.38 | 8.39 | 1.01 | 8.56 | 1.07 |
item 11 | 8.44 | 0.97 | 7.94 | 1.51 | 5.78 | 1.96 | 6.00 | 1.56 | 5.78 | 2.02 | 5.61 | 2.26 |
item 12 | 8.31 | 1.07 | 7.81 | 1.76 | 5.56 | 1.83 | 5.78 | 1.47 | 5.35 | 1.68 | 5.39 | 2.21 |
item 13 | 7.75 | 1.73 | 7.38 | 1.71 | 7.89 | 1.20 | 7.00 | 2.03 | 7.44 | 1.54 | 7.44 | 1.83 |
item 14 | 8.56 | 1.03 | 8.06 | 1.30 | 8.67 | 0.88 | 8.28 | 1.45 | 8.06 | 1.31 | 7.11 | 1.59 |
item 15 | 8.38 | 0.76 | 8.25 | 1.06 | 8.72 | 0.93 | 8.39 | 1.06 | 8.06 | 1.47 | 7.28 | 1.33 |
item 16 | 144.38 | 63.89 | 163.75 | 57.38 | 187.78 | 65.03 | 198.89 | 70.39 | 198.33 | 78.05 | 208.33 | 83.95 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Angioletti, L.; Balconi, M. Boosting Prefrontal Brain Responsiveness by Interoceptive Attentiveness during Synchronized Breathing, Motor, and Cognitive Task. Psychiatry Int. 2024, 5, 241-252. https://doi.org/10.3390/psychiatryint5020017
Angioletti L, Balconi M. Boosting Prefrontal Brain Responsiveness by Interoceptive Attentiveness during Synchronized Breathing, Motor, and Cognitive Task. Psychiatry International. 2024; 5(2):241-252. https://doi.org/10.3390/psychiatryint5020017
Chicago/Turabian StyleAngioletti, Laura, and Michela Balconi. 2024. "Boosting Prefrontal Brain Responsiveness by Interoceptive Attentiveness during Synchronized Breathing, Motor, and Cognitive Task" Psychiatry International 5, no. 2: 241-252. https://doi.org/10.3390/psychiatryint5020017
APA StyleAngioletti, L., & Balconi, M. (2024). Boosting Prefrontal Brain Responsiveness by Interoceptive Attentiveness during Synchronized Breathing, Motor, and Cognitive Task. Psychiatry International, 5(2), 241-252. https://doi.org/10.3390/psychiatryint5020017