Invasive Mechanical Ventilation and Death Was More Likely in Patients with Lower LDL Cholesterol Levels during COVID-19 Hospitalization: A Retrospective Propensity-Matched Cohort Study
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Design, Study Setting, and Patient Population
2.2. Data Sources
2.3. Exposure of Interest and Outcomes
2.4. Statistical Analysis
3. Results
3.1. Baseline Patient Characteristics
3.2. Outcomes
3.3. Logistic Regression Analyses
Mortality
3.4. Invasive Mechanical Ventilation
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharifi, Y.; Payab, M.; Mohammadi-Vajari, E.; Aghili, S.M.M.; Sharifi, F.; Mehrdad, N.; Kashani, E.; Shadman, Z.; Larijani, B.; Ebrahimpur, M. Association between cardiometabolic risk factors and COVID-19 susceptibility, severity and mortality: A review. J. Diabetes Metab. Disord. 2021, 20, 1743–1765. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zheng, Y.; Gou, X.; Pu, K.; Chen, Z.; Guo, Q.; Ji, R.; Wang, H.; Wang, Y.; Zhou, Y. Prevalence of comorbidities and its effects in patients infected with SARS-CoV-2: A systematic review and meta-analysis. Int. J. Infect. Dis. 2020, 94, 91–95. [Google Scholar] [CrossRef]
- Palaiodimos, L.; Ali, R.; Teo, H.O.; Parthasarathy, S.; Karamanis, D.; Chamorro-Pareja, N.; Kokkinidis, D.G.; Kaur, S.; Kladas, M.; Sperling, J.; et al. Obesity, Inflammation, and Mortality in COVID-19: An Observational Study from the Public Health Care System of New York City. J. Clin. Med. 2022, 11, 622. [Google Scholar] [CrossRef] [PubMed]
- Richardson, S.; Hirsch, J.S.; Narasimhan, M.; Crawford, J.M.; McGinn, T.; Davidson, K.W.; Barnaby, D.P.; Becker, L.B.; Chelico, J.D.; Cohen, S.L.; et al. Presenting Characteristics, Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area. JAMA 2020, 323, 2052–2059. [Google Scholar] [CrossRef]
- Lighter, J.; Phillips, M.; Hochman, S.; Sterling, S.; Johnson, D.; Francois, F.; Stachel, A. Obesity in Patients Younger Than 60 Years Is a Risk Factor for COVID-19 Hospital Admission. Clin. Infect. Dis. 2020, 71, 896–897. [Google Scholar] [CrossRef] [Green Version]
- Petrilli, C.M.; Jones, S.A.; Yang, J.; Rajagopalan, H.; O’Donnell, L.; Chernyak, Y.; Tobin, K.A.; Cerfolio, R.J.; Francois, F.; Horwitz, L.I. Factors associated with hospital admission and critical illness among 5279 people with coronavirus disease 2019 in New York City: Prospective cohort study. BMJ 2020, 369, m1966. [Google Scholar] [CrossRef] [PubMed]
- Leong, A.; Cole, J.B.; Brenner, L.N.; Meigs, J.B.; Florez, J.C.; Mercader, J.M. Cardiometabolic risk factors for COVID-19 susceptibility and severity: A Mendelian randomization analysis. PLoS Med. 2021, 18, e1003553. [Google Scholar] [CrossRef]
- Scalsky, R.J.; Chen, Y.J.; Desai, K.; O’Connell, J.R.; Perry, J.A.; Hong, C.C. Baseline cardiometabolic profiles and SARS-CoV-2 infection in the UK Biobank. PLoS ONE 2021, 16, e0248602. [Google Scholar] [CrossRef]
- Aydin, S.S.; Aksakal, E.; Aydinyilmaz, F.; Gulcu, O.; Sarac, I.; Kalkan, K.; Aydemir, S.; Dogan, R.; Aksu, U.; Tanboga, I.H. Relationship Between Blood Lipid Levels and Mortality in Hospitalized COVID-19 Patients. Angiology 2022, 73, 724–733. [Google Scholar] [CrossRef]
- Mahat, R.K.; Rathore, V.; Singh, N.; Singh, N.; Singh, S.K.; Shah, R.K.; Garg, C. Lipid profile as an indicator of COVID-19 severity: A systematic review and meta-analysis. Clin. Nutr. ESPEN 2021, 45, 91–101. [Google Scholar] [CrossRef]
- Kalyanaraman Marcello, R.; Dolle, J.; Grami, S.; Adule, R.; Li, Z.; Tatem, K.; Anyaogu, C.; Apfelroth, S.; Ayinla, R.; Boma, N.; et al. Characteristics and outcomes of COVID-19 patients in New York City’s public hospital system. PLoS ONE 2020, 15, e0243027. [Google Scholar] [CrossRef]
- DeGeorge, J. NYC Health + Hospitals Check-Up: The Impact of COVID-19; NYS Comptroller: New York, NY, USA, 2021; p. 6. [Google Scholar]
- Austin, P.C. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies. Multivariate Behav. Res. 2011, 46, 399–424. [Google Scholar] [CrossRef] [Green Version]
- Austin, P.C. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies. Pharm. Stat. 2011, 10, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Imai, K.; King, G.; Stuart, E.A. Misunderstandings between experimentalists and observationalists about causal inference. J. R. Stat. Soc. Ser. A Stat. Soc. 2008, 171, 481–502. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Wang, H.; Ye, G.; Cao, X.; Xu, X.; Tan, W.; Zhang, Y. Letter to the Editor: Low-density lipoprotein is a potential predictor of poor prognosis in patients with coronavirus disease 2019. Metabolism 2020, 107, 154243. [Google Scholar] [CrossRef] [PubMed]
- Wei, X.; Zeng, W.; Su, J.; Wan, H.; Yu, X.; Cao, X.; Tan, W.; Wang, H. Hypolipidemia is associated with the severity of COVID-19. J. Clin. Lipidol. 2020, 14, 297–304. [Google Scholar] [CrossRef] [PubMed]
- Aparisi, Á.; Iglesias-Echeverría, C.; Ybarra-Falcón, C.; Cusácovich, I.; Uribarri, A.; García-Gómez, M.; Ladrón, R.; Fuertes, R.; Candela, J.; Tobar, J.; et al. Low-density lipoprotein cholesterol levels are associated with poor clinical outcomes in COVID-19. Nutr. Metab. Cardiovasc. Dis. 2021, 31, 2619–2627. [Google Scholar] [CrossRef]
- Sun, J.T.; Chen, Z.; Nie, P.; Ge, H.; Shen, L.; Yang, F.; Qu, X.L.; Ying, X.Y.; Zhou, Y.; Wang, W.; et al. Lipid Profile Features and Their Associations With Disease Severity and Mortality in Patients With COVID-19. Front. Cardiovasc. Med. 2020, 7, 584987. [Google Scholar] [CrossRef] [PubMed]
- Hariyanto, T.I.; Kurniawan, A. Dyslipidemia is associated with severe coronavirus disease 2019 (COVID-19) infection. Diabetes Metab. Syndr. 2020, 14, 1463–1465. [Google Scholar] [CrossRef]
- Atmosudigdo, I.S.; Lim, M.A.; Radi, B.; Henrina, J.; Yonas, E.; Vania, R.; Pranata, R. Dyslipidemia Increases the Risk of Severe COVID-19: A Systematic Review, Meta-analysis, and Meta-regression. Clin. Med. Insights Endocrinol. Diabetes 2021, 14, 1179551421990675. [Google Scholar] [CrossRef]
- Liu, Y.; Pan, Y.; Yin, Y.; Chen, W.; Li, X. Association of dyslipidemia with the severity and mortality of coronavirus disease 2019 (COVID-19): A meta-analysis. Virol. J. 2021, 18, 157. [Google Scholar] [CrossRef]
- Lu, Y.; Liu, D.X.; Tam, J.P. Lipid rafts are involved in SARS-CoV entry into Vero E6 cells. Biochem. Biophys. Res. Commun. 2008, 369, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Bansal, M. Cardiovascular disease and COVID-19. Diabetes Metab. Syndr. 2020, 14, 247–250. [Google Scholar] [CrossRef]
- Clerkin, K.J.; Fried, J.A.; Raikhelkar, J.; Sayer, G.; Griffin, J.M.; Masoumi, A.; Jain, S.S.; Burkhoff, D.; Kumaraiah, D.; Rabbani, L.; et al. COVID-19 and Cardiovascular Disease. Circulation 2020, 141, 1648–1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali Abdelhamid, Y.; Cousins, C.E.; Sim, J.A.; Bellon, M.S.; Nguyen, N.Q.; Horowitz, M.; Chapman, M.J.; Deane, A.M. Effect of Critical Illness on Triglyceride Absorption. JPEN J. Parenter. Enter. Nutr. 2015, 39, 966–972. [Google Scholar] [CrossRef]
- Funderburg, N.T.; Mehta, N.N. Lipid Abnormalities and Inflammation in HIV Inflection. Curr. HIV/AIDS Rep. 2016, 13, 218–225. [Google Scholar] [CrossRef] [Green Version]
- Levels, J.H.; Pajkrt, D.; Schultz, M.; Hoek, F.J.; van Tol, A.; Meijers, J.C.; van Deventer, S.J. Alterations in lipoprotein homeostasis during human experimental endotoxemia and clinical sepsis. Biochim. Biophys. Acta 2007, 1771, 1429–1438. [Google Scholar] [CrossRef] [PubMed]
- Green, P.; Theilla, M.; Singer, P. Lipid metabolism in critical illness. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 111–115. [Google Scholar] [CrossRef] [PubMed]
- Lima, W.G.; Souza, N.A.; Fernandes, S.O.A.; Cardoso, V.N.; Godói, I.P. Serum lipid profile as a predictor of dengue severity: A systematic review and meta-analysis. Rev. Med. Virol. 2019, 29, e2056. [Google Scholar] [CrossRef]
- Apostolou, F.; Gazi, I.F.; Lagos, K.; Tellis, C.C.; Tselepis, A.D.; Liberopoulos, E.N.; Elisaf, M. Acute infection with Epstein-Barr virus is associated with atherogenic lipid changes. Atherosclerosis 2010, 212, 607–613. [Google Scholar] [CrossRef]
- Abu-Farha, M.; Thanaraj, T.A.; Qaddoumi, M.G.; Hashem, A.; Abubaker, J.; Al-Mulla, F. The Role of Lipid Metabolism in COVID-19 Virus Infection and as a Drug Target. Int. J. Mol. Sci. 2020, 21, 3544. [Google Scholar] [CrossRef]
- Makris, D.; Manoulakas, E.; Komnos, A.; Papakrivou, E.; Tzovaras, N.; Hovas, A.; Zintzaras, E.; Zakynthinos, E. Effect of pravastatin on the frequency of ventilator-associated pneumonia and on intensive care unit mortality: Open-label, randomized study. Crit. Care Med. 2011, 39, 2440–2446. [Google Scholar] [CrossRef]
- Tleyjeh, I.M.; Kashour, T.; Hakim, F.A.; Zimmerman, V.A.; Erwin, P.J.; Sutton, A.J.; Ibrahim, T. Statins for the Prevention and Treatment of Infections: A Systematic Review and Meta-analysis. Arch. Intern. Med. 2009, 169, 1658–1667. [Google Scholar] [CrossRef] [Green Version]
- Douglas, I.; Evans, S.; Smeeth, L. Effect of statin treatment on short term mortality after pneumonia episode: Cohort study. BMJ 2011, 342, d1642. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.J.; Qin, J.J.; Cheng, X.; Shen, L.; Zhao, Y.C.; Yuan, Y.; Lei, F.; Chen, M.M.; Yang, H.; Bai, L.; et al. In-Hospital Use of Statins Is Associated with a Reduced Risk of Mortality among Individuals with COVID-19. Cell Metab. 2020, 32, 176–187.e174. [Google Scholar] [CrossRef]
- Rodriguez-Nava, G.; Trelles-Garcia, D.P.; Yanez-Bello, M.A.; Chung, C.W.; Trelles-Garcia, V.P.; Friedman, H.J. Atorvastatin associated with decreased hazard for death in COVID-19 patients admitted to an ICU: A retrospective cohort study. Crit. Care 2020, 24, 429. [Google Scholar] [CrossRef] [PubMed]
- Daniels, L.B.; Sitapati, A.M.; Zhang, J.; Zou, J.; Bui, Q.M.; Ren, J.; Longhurst, C.A.; Criqui, M.H.; Messer, K. Relation of Statin Use Prior to Admission to Severity and Recovery Among COVID-19 Inpatients. Am. J. Cardiol 2020, 136, 149–155. [Google Scholar] [CrossRef] [PubMed]
- Meunier, L.; Meszaros, M.; Pageaux, G.P. Letter to the Editor: Statins and COVID-19: Efficacy Still to Be Proven. Hepatology 2021, 73, 875. [Google Scholar] [CrossRef]
- Velavan, T.P.; Meyer, C.G. Mild versus severe COVID-19: Laboratory markers. Int. J. Infect. Dis. 2020, 95, 304–307. [Google Scholar] [CrossRef]
- Smilowitz, N.R.; Kunichoff, D.; Garshick, M.; Shah, B.; Pillinger, M.; Hochman, J.S.; Berger, J.S. C-reactive protein and clinical outcomes in patients with COVID-19. Eur. Heart J. 2021, 42, 2270–2279. [Google Scholar] [CrossRef] [PubMed]
- Broman, N.; Rantasärkkä, K.; Feuth, T.; Valtonen, M.; Waris, M.; Hohenthal, U.; Rintala, E.; Karlsson, A.; Marttila, H.; Peltola, V.; et al. IL-6 and other biomarkers as predictors of severity in COVID-19. Ann. Med. 2021, 53, 410–412. [Google Scholar] [CrossRef] [PubMed]
- Ng, Q.X.; Ong, N.Y.; Lee, D.Y.X.; Yau, C.E.; Lim, Y.L.; Kwa, A.L.H.; Tan, B.H. Trends in Pseudomonas aeruginosa (P. aeruginosa) Bacteremia during the COVID-19 Pandemic: A Systematic Review. Antibiotics 2023, 12, 409. [Google Scholar] [CrossRef] [PubMed]
Before Matching | After Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Pre-COVID-19 LDL-C | During COVID-19 LDL-C | Total | Pre-COVID-19 LDL-C | During COVID-19 LDL-C | |||||
Variable | n = 3020 | n = 398 | n = 2622 | p-Value | SMD | n = 796 | n = 398 | n = 398 | p-Value | SMD |
Female n (%) | 1100 (36.4) | 166 (41.7) | 934 (35.6) | 0.019 | 0.125 | 330 (41.4) | 166 (41.7) | 164 (41.2) | 0.886 | 0.010 |
Age (years) median (IQR) | 61 (50–72) | 62 (51–73) | 61 (50–71) | 0.087 | 0.092 | 63 (51.5–7) | 62.5 (51–73) | 63.5 (52–74) | 0.654 | 0.031 |
BMI (median (IQR)) | 28.1 (24.5–32.5) | 27.4 (23.3–31.3) | 28.2 (24.7–32.7) | 0.003 | 0.159 | 27.7 (23.8–31.6) | 27.4 (23.3–31.3) | 27.9 (24.5–31.9) | 0.296 | 0.073 |
Comorbidities n (%) | ||||||||||
Hypertension | 497 (16.5) | 93 (23.3) | 404 (15.4) | <0.001 | 0.202 | 190 (23.8) | 93 (23.4) | 97 (24.4) | 0.739 | 0.023 |
Diabetes | 1079 (35.7) | 183 (45.9) | 896 (34.2) | <0.001 | 0.242 | 368 (46.2) | 183 (45.9) | 185 (46.5) | 0.887 | 0.010 |
Heart failure | 155 (5.1) | 27 (6.7) | 128 (4.9) | 0.109 | 0.081 | 53 (6.7) | 27 (6.8) | 26 (6.5) | 0.887 | 0.010 |
CAD | 70 (2.3) | 13 (3.3) | 57 (2.2) | 0.177 | 0.067 | 30 (3.8) | 13 (3.3) | 17 (4.3) | 0.457 | 0.052 |
PAD | 9 (0.3) | 2 (0.5) | 7 (0.3) | 0.422 | 0.038 | 5 (0.6) | 2 (0.5) | 3 (0.8) | 0.654 | 0.031 |
Afib | 120 (3.9) | 21 (5.3) | 99 (3.8) | 0.153 | 0.072 | 45 (5.6) | 21 (5.3) | 24 (6) | 0.645 | 0.032 |
Stroke | 106 (3.5) | 16 (4.0) | 90 (3.4) | 0.553 | 0.031 | 33 (4.2) | 16 (4) | 17 (4.3) | 0.859 | 0.012 |
CKD/ESRD | 217 (7.2) | 47 (11.8) | 170 (6.5) | <0.001 | 0.185 | 97 (12.2) | 47 (11.8) | 50 (12.6) | 0.745 | 0.023 |
COPD | 39 (1.3) | 7 (1.8) | 32 (1.2) | 0.375 | 0.044 | 12 (1.5) | 7 (1.8) | 5 (1.3) | 0.561 | 0.041 |
Asthma | 81 (2.7) | 15 (3.8) | 66 (2.5) | 0.150 | 0.071 | 32 (4) | 15 (3.8) | 17 (4.3) | 0.718 | 0.025 |
HIV or AIDS | 89 (2.9) | 23 (5.8) | 66 (2.5) | <0.001 | 0.163 | 33 (4.2) | 23 (5.8) | 10 (2.5) | 0.021 | 0.164 |
Cirrhosis | 22 (0.7) | 6 (1.5) | 16 (0.6) | 0.050 | 0.087 | 8 (1.) | 6 (1.5) | 2 (0.5) | 0.155 | 0.100 |
LDL-C | ||||||||||
Mean (SD) | 76.5 (0.70) | 81.1 (1.92) | 75.84 (0.8) | 0.011 | 0.136 | 78.24 (1.42) | 81.10 (1.92) | 75.37 (2.10) | 0.044 | 0.142 |
Median (IQR) | 71.6 (49–98.5) | 75.8 (54–103) | 71.00 (48–98) | 72.70 (49.9–101) | 75.80 (54–103) | 68.3 (46–97) | ||||
LDL-C n (%) | 0.019 | 0.126 | 0.011 | 0.181 | ||||||
≤70 | 1463 (48.4) | 171 (42.9) | 1292 (49.3) | 378 (47.5) | 171 (42.9) | 207 (52) | ||||
>70 | 1557 (51.5) | 227 (57) | 1330 (50.7) | 418 (52.5) | 227 (57) | 191 (47.9) |
Before Matching | After Matching | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Pre-COVID-19 Available LDL-C | During COVID-19 Available LDL-C | Total | Pre-COVID-19 Available LDL-C | During COVID-19 Available LDL-C | |||||
Outcomes | n = 3020 | n = 398 | n = 2622 | p-Value | SMD | n = 796 | n = 398 | n = 398 | p-Value | SMD |
Death no. (%) | 0.251 | 0.062 | 1.000 | 0.000 | ||||||
No | 2377 (78.7) | 322 (80.9) | 2055 (78.4) | 644 (80.9) | 322 (80.9) | 322 (80.9) | ||||
Yes | 643 (21.2) | 76 (19.1) | 567 (21.6) | 152 (19.1) | 76 (19.1) | 76 (19.1) | ||||
IMV no. (%) | 0.001 | 0.202 | 0.042 | 0.144 | ||||||
No | 2707 (89.6) | 376 (94.5) | 2331 (88.9) | 737 (92.6) | 376 (94.5) | 361 (90.7) | ||||
Yes | 313 (10.4) | 22 (5.5) | 291 (11.1) | 59 (7.4) | 22 (5.5) | 37 (9.3) | ||||
LDL-C | ||||||||||
Death | ||||||||||
No | n = 2377 | n = 322 | n = 2055 | n = 644 | n = 322 | n = 322 | ||||
Mean (SD) | 80.5 (0.8) | 81.11 (2.2) | 80.43 (0.8) | 0.763 | 0.017 | 80.41 (1.6) | 81.1 (2.2) | 79.7 (2.3) | 0.654 | 0.035 |
Median (IQR) | 75.6 (53–102.4) | 75 (53.8–103) | 75.8 (53–102.2) | 74 (52.1–102.2) | 75 (53.8–103) | 73.6 (51–101.4) | ||||
LDL-C no. (%) | 0.655 | 0.026 | 0.475 | 0.056 | ||||||
≤70 | 1046 (44) | 138 (42.9) | 908 (44.2) | 285 (44.3) | 138 (42.9) | 147 (45.7) | ||||
>70 | 1331 (55.9) | 184 (57.1) | 1147 (55.8) | 359 (57.1) | 184 (57.1) | 175 (54.3) | ||||
Yes | n = 643 | n = 76 | n = 567 | n = 152 | n = 76 | n = 76 | ||||
Mean (SD) | 61.8 (1.4) | 81 (4.24) | 59.21 (1.5) | <0.001 | 0.606 | 69 (3.3) | 81 (4.2) | 57 (4.62) | <0.001 | 0.621 |
Median (IQR) | 57 (37–82) | 77 (56–103.3) | 55 (35.8–8) | 62.1 (38.7–87.2) | 77 (55.9–103.3) | 47 (32.8–66.9) | ||||
LDL-C no. (%) | <0.001 | 0.502 | <0.001 | 0.777 | ||||||
≤70 | 417 (64.9) | 33 (43.4) | 384 (67.7) | 93 (61.2) | 33 (43.4) | 60 (78.9) | ||||
>70 | 226 (35.2) | 43 (56.6) | 183 (32.3) | 59 (38.8) | 43 (56.6) | 16 (21) | ||||
IMV | ||||||||||
No | n = 2707 | n = 376 | n = 2331 | n = 737 | n = 376 | n = 361 | ||||
Mean (SD) | 78.05 (0.7) | 81.44 (1.9) | 77.5 (0.8) | 0.061 | 0.103 | 79.23 (1.5) | 81.44 (1.9) | 79.2 (1.5) | 0.124 | 0.113 |
Median (IQR) | 73.6 (51–99.8) | 75 (54–103.4) | 73 (50.6–9) | 73 (51–102) | 75 (54–103.4) | 71 (48–99) | ||||
LDL-C no. (%) | 0.214 | 0.069 | 0.162 | 0.103 | ||||||
≤ 70 | 1261 (46.6) | 164 (43.6) | 1097 (47) | 340 (46.1) | 164 (43.6) | 176 (48.8) | ||||
> 70 | 1446 (53.4) | 212 (56.4) | 1234 (52.9) | 397 (53.9) | 212 (56.4) | 185 (51.3) | ||||
Yes | n = 313 | n = 22 | n = 291 | n = 59 | n = 22 | n = 37 | ||||
Mean (SD) | 63.41 (2.3) | 75.29 (7.5) | 62.5 (2.4) | 0.156 | 0.334 | 65.78 (5.8) | 75.3 (7.5) | 60.13 (7.9) | 0.207 | 0.357 |
Median (IQR) | 55.2 (83–37) | 80.1 (47–91.2) | 54.4 (36–82.6) | 57 (37–8) | 80.1 (47–91.2) | 47 (34.2–6) | ||||
LDL-C no. (%) | 0.001 | 0.742 | <0.001 | 1.213 | ||||||
≤70 | 202 (64.5) | 7 (31.8) | 195 (67) | 38 (64.4) | 7 (31.8) | 31 (83.8) | ||||
>70 | 111 (35.5) | 15 (68.2) | 96 (32.9) | 21 (35.6) | 15 (68.2) | 6 (16.2) |
Model 1 | Model 2 | |
---|---|---|
PANEL A: Total Cohort (n = 796) | OR, 95% CI, p-Value | OR, 95% CI, p-Value |
Female | 0.61 * (0.40–0.94) p = 0.026 | 0.63 * (0.41–0.98) p = 0.040 |
Age per 10 years | 1.44 ** (1.25–1.67) p < 0.001 | 1.45 ** (1.25–1.67) p < 0.001 |
BMI | 1.07 ** (1.04–1.11) p < 0.001 | 1.07 ** (1.04–1.11) p < 0.001 |
LDL-C | 0.99 * (0.986–0.999) p = 0.036 | |
LDL-C > 70 | 0.52 ** (0.35–0.78) p = 0.001 | |
PANEL B: Pre-COVID-19 LDL-C cohort (n = 398) | ||
Female | 0.64 (0.35–1.18) p = 0.154 | 0.64 (0.35–1.18) p = 0.156 |
Age per 10 years | 1.65 ** (1.32–2.05) p < 0.001 | 1.64 ** (1.32–2.04) p < 0.001 |
BMI | 1.06 * (1.01–1.10) p = 0.010 | 1.06 * (1.01–1.10) p = 0.011 |
LDL-C | 1.00 (0.99–1.01) p = 0.833 | |
LDL-C > 70 | 0.96 (0.54–1.71) p = 0.897 | |
PANEL C: During COVID-19-LDL-C cohort (n = 398) | ||
Female | 0.52 * (0.28–0.98) p = 0.042 | 0.57 (0.31–1.08) p = 0.084 |
Age per 10 years | 1.26 * (1.04–1.53) p = 0.017 | 1.27 * (1.04–1.55) p = 0.018 |
BMI | 1.10 ** (1.05–1.16) p < 0.001 | 1.10 ** (1.04–1.15) p < 0.001 |
LDL-C | 0.98 ** (0.97–0.99) p = 0.006 | |
LDL-C > 70 | 0.22 ** (0.12–0.42) p < 0.001 |
Model 1 | Model 2 | |
---|---|---|
PANEL A: Total Cohort (n = 796) | OR, 95% CI, p-Value | OR, 95% CI, p-Value |
Female | 0.74 (0.41–1.34) p = 0.317 | 0.75 (0.41–1.36) p = 0.342 |
Age per 10 years | 1.13 (0.92–1.40) p = 0.248 | 1.15 (0.92–1.42) p = 0.215 |
BMI | 1.04 * (1.00–1.08) p = 0.039 | 1.04 * (1.00–1.07) p = 0.049 |
LDL-C | 0.99 (0.98–1.00) p = 0.065 | |
LDL-C > 70 | 0.53 * (0.29–0.95) p = 0.034 | |
PANEL B: Pre-COVID-19 LDL-C cohort (n = 398) | ||
Female | 1.46 (0.60–3.54) p = 0.404 | 1.45 (0.60–3.52) p = 0.414 |
Age per 10 years | 1.40 * (1.03–1.92) p = 0.033 | 1.44 * (1.05–1.96) p = 0.024 |
BMI | 1.01 (0.96–1.06) p = 0.697 | 1.01 (0.96–1.06) p = 0.679 |
LDL-C | 1.00 (0.99–1.01) p = 0.543 | |
LDL-C > 70 | 1.81 (0.71–4.57) p = 0.212 | |
PANEL C: During COVID-19-LDL-C cohort (n = 398) | ||
Female | 0.39 * (0.17–0.91) p = 0.029 | 0.45 (0.19–1.03) p = 0.059 |
Age per 10 years | 0.91 (0.71–1.16) p = 0.443 | 0.89 (0.70–1.14) p = 0.352 |
BMI | 1.06 * (1.01–1.11) p = 0.015 | 1.05 * (1.01–1.10) p = 0.018 |
LDL-C | 0.99 (0.97–1.00) p = 0.101 | |
LDL-C > 70 | 0.18 ** (0.07–0.47) p < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mehta, A.; Kharawala, A.; Nagraj, S.; Apple, S.J.; Barzallo, D.; Al Deen Alhuarrat, M.; Moya, C.J.B.; Vikash, S.; Zoumpourlis, P.; Xesfingi, S.; et al. Invasive Mechanical Ventilation and Death Was More Likely in Patients with Lower LDL Cholesterol Levels during COVID-19 Hospitalization: A Retrospective Propensity-Matched Cohort Study. J. Respir. 2023, 3, 39-48. https://doi.org/10.3390/jor3020005
Mehta A, Kharawala A, Nagraj S, Apple SJ, Barzallo D, Al Deen Alhuarrat M, Moya CJB, Vikash S, Zoumpourlis P, Xesfingi S, et al. Invasive Mechanical Ventilation and Death Was More Likely in Patients with Lower LDL Cholesterol Levels during COVID-19 Hospitalization: A Retrospective Propensity-Matched Cohort Study. Journal of Respiration. 2023; 3(2):39-48. https://doi.org/10.3390/jor3020005
Chicago/Turabian StyleMehta, Adhya, Amrin Kharawala, Sanjana Nagraj, Samuel J. Apple, Diego Barzallo, Majd Al Deen Alhuarrat, Cesar Joel Benites Moya, Sindhu Vikash, Panagiotis Zoumpourlis, Sophia Xesfingi, and et al. 2023. "Invasive Mechanical Ventilation and Death Was More Likely in Patients with Lower LDL Cholesterol Levels during COVID-19 Hospitalization: A Retrospective Propensity-Matched Cohort Study" Journal of Respiration 3, no. 2: 39-48. https://doi.org/10.3390/jor3020005
APA StyleMehta, A., Kharawala, A., Nagraj, S., Apple, S. J., Barzallo, D., Al Deen Alhuarrat, M., Moya, C. J. B., Vikash, S., Zoumpourlis, P., Xesfingi, S., Varrias, D., Demirhan, Y. E., Palaiodimos, L., & Karamanis, D. (2023). Invasive Mechanical Ventilation and Death Was More Likely in Patients with Lower LDL Cholesterol Levels during COVID-19 Hospitalization: A Retrospective Propensity-Matched Cohort Study. Journal of Respiration, 3(2), 39-48. https://doi.org/10.3390/jor3020005