Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Study Design
2.3. Pulmonary Function Measurements
2.4. Image Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cotes, J.E.; Chinn, D.J.; Quanjer, P.H.; Roca, J.; Yernault, J.-C. Standardization of the measurement of transfer factor (diffusing capacity). Eur. Respir. J. 1993, 6, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Hughes, J.M.B.; Pride, N.B. Examination of the carbon monoxide diffusing capacity (D LCO) in relation to its KCO and VA components. Am. J. Respir. Crit. Care Med. 2012, 186, 132–139. [Google Scholar] [CrossRef] [Green Version]
- Shimizu, K. Pathophysiological and Clinical Implication of Diffusing Capacity for CO (DLco) and Krogh Factor (Kco): How Do DLCO and KCO Differentiate Various Lung Diseases? In Structure-Function Relationships in Various Respiratory Systems; Respiratory Disease Series: Diagnostic Tools and Disease Managements; Yamaguchi, K., Ed.; Springer Nature Singapore Pte Ltd.: Singapore, 2020; pp. 221–237. [Google Scholar]
- Stanojevic, S.; Kaminsky, D.A.; Miller, M.R.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur. Respir. J. 2022, 60, 2101499. [Google Scholar] [CrossRef]
- Criner, R.N.; Hatt, C.R.; Galbán, C.J.; Thompson, B.; Aliverti, A.; Barjaktarevic, I.; Cooper, B.G.; Culver, B.; Derom, E.; Hall, G.L.; et al. Relationship between diffusion capacity and small airway abnormality in COPDGene. Respir. Res. 2019, 20, 269. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hughes, J.M.B.; Pride, N.B. Reply: The Usefulness of Kco Is Questionable. Am. J. Respir. Crit. Care Med. 2013, 187, 660–661. [Google Scholar] [CrossRef]
- Otis, A.B.; McKerrow, C.B.; Bartlett, R.A.; Mead, J.; McIlroy, M.B.; Selverstone, N.J.; Radford, E.P. Mechanical factors in distribution of pulmonary ventilation. J. Appl. Physiol. 1956, 8, 427–443. [Google Scholar] [CrossRef]
- Neder, J.A.; O’Donnell, C.D.J.; Cory, J.; Langer, D.; Ciavaglia, C.E.; Ling, Y.; Webb, K.A.; O’Donnell, D.E. Ventilation Distribution Heterogeneity at Rest as a Marker of Exercise Impairment in Mild-to-Advanced COPD, COPD. J. Chronic Obstr. Pulm. Dis. 2015, 12, 252–259. [Google Scholar] [CrossRef] [Green Version]
- Neder, J.A.; Marillier, M.; Bernard, A.-C.; O’Donnell, D.E. Transfer coefficient of the lung for carbon monoxide and the accessible alveolar volume: Clinically useful if used wisely. Breathe 2019, 15, 69–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Long, R.; Maycher, B.; Dhar, A.; Manfreda, J.; Hershfield, E.; Anthonisen, N. Pulmonary tuberculosis treated with directly observed therapy: Serial changes in lung structure and function. Chest 1998, 113, 933–943. [Google Scholar] [CrossRef] [PubMed]
- Kiryukhina, L.D.; Gavrilov, P.; Savin, I.; Tamm, O.; Demidenko, A.; Litvishko, O.; Avetisyan, A.; Vasilyev, I.; Yablonsky, P. Changes in pulmonary function in patients with lung tuberculoma. Eur. Respir. J. 2013, 42 (Suppl. S57), 597. [Google Scholar]
- Kiryukhina, L.; Tabanakova, I.; Volodich, O.; Kokorina, E.; Nefedova, N.; Vasilev, I.; Sokolovich, E.; Yablonskiy, P. Ventilation and diffusion lung capacity dynamics in destructive pulmonary tuberculosis patients with endobronchial valve treatment. Med. Al’jans 2020, 8, 80–87. (In Russian) [Google Scholar]
- Graham, B.L.; Steenbruggen, I.; Miller, M.R.; Barjaktarevic, I.Z.; Cooper, B.G.; Hall, G.L.; Hallstrand, T.S.; Kaminsky, D.A.; McCarthy, K.; McCormack, M.C.; et al. ATS/ERS Task Force. Standardization of Spirometry 2019 Update an Official American Thoracic Society and European Respiratory Society Technical Statement. Am. J. Respir. Crit. Care Med. 2019, 200, 70–88. [Google Scholar] [CrossRef]
- Wanger, J.; Clausen, J.L.; Coates, A.; Pedersen, O.F.; Brusasco, V.; Burgos, F.; Casaburi, R.; Crapo, R.; Enright, P.; Van Der Grinten, C.P.M.; et al. Standardisation of the measurement of lung volumes. Eur. Respir. J. 2005, 26, 511–522. [Google Scholar] [CrossRef]
- Graham, B.L.; Brusasco, V.; Burgos, F.; Cooper, B.G.; Jensen, R.; Kendrick, A.; MacIntyre, N.R.; Thompson, B.R.; Wanger, J. ERS/ATS Standards for single-breath carbon monoxide uptake in the lung. Eur. Respir. J. 2017, 49, 1600016. [Google Scholar] [CrossRef] [Green Version]
- Quanjer, P.H.; Tammeling, G.J.; Cotes, J.E.; Pedersen, O.F.; Peslin, R.; Yernault, J.-C. Lung volumes and forced ventilatory flows. Eur. Respir. J. 1993, 6 (Suppl. S16), 5–40. [Google Scholar] [CrossRef] [Green Version]
- Wade, J.F.; Mortenson, R.; Charles, G.I. Physiologic Evaluation of Bullous Emphysema. Chest 1991, 100, 1151–1154. [Google Scholar] [CrossRef]
- Cotton, D.J.; Graham, B.L. The usefulness of KCO is questionable. Am. J. Respir. Crit. Care Med. 2013, 187, 660. [Google Scholar] [CrossRef]
- Kameneva, M.Y. Syndromes of gas exchange abnormalities in patients with interstitial lung diseases. Bûlleten’fiziologii I Patol. Dyhaniâ 2015, 56, 18–19. (In Russian) [Google Scholar]
- Williams, M.H.; Seriff, N.S.; Akyol, T.; Yoo, O.H. The diffusing capacity of the lung in acute pulmonary tuberculosis. Am. Rev. Respir. Dis. 1961, 84, 814–817. [Google Scholar] [CrossRef]
- Dietiker, F.; Lester, W.; Gottlieb, R.; Burrows, B. Single-breath pulmonary diffusing capacity measurements in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 1961, 84, 807–813. [Google Scholar] [CrossRef]
- Nefedov, V.B.; Ismailova, Z.F.; Dzhenzhera, E.N. Lung diffusion capacity of pulmonary tuberculosis patients. Ter. Arkh. 1987, 59, 65–69. [Google Scholar]
- Choi, C.J.; Choi, W.S.; Lee, S.Y.; Kim, K.-S. The Definition of Past Tuberculosis Affects the Magnitude of Association between Pulmonary Tuberculosis and Respiratory Dysfunction: Korea National Health and Nutrition Examination Survey, 2008–2012. J. Korean Med. Sci. 2017, 32, 789–795. [Google Scholar] [CrossRef]
- Zhukova, E.M. Impact of leading specific and non-specific factors of the development of bronchial obstruction in respiratory tuberculosis patients. Tuberc. Lung Dis. 2015, 5, 72–74. (In Russian) [Google Scholar]
- Vizel, A.A.; Alekseev, A.P.; Shmelev, E.I.; Yaushev, M.F.; Vizel, I.Y. Bronchial Obstruction in Patients with Pulmonary Tuberculosis: Analytical Literature Review. Practical. Pulmonol. 2018, 1, 33–42. (In Russian) [Google Scholar]
- Salorinne, Y.; Stenius-Aarniala, B.; Poppius, H. Effect of ipratropium bromide and fenoterol on airway obstruction in chronic pulmonary tuberculosis. Respiration 1979, 38, 151–154. [Google Scholar] [CrossRef]
- Shmelev, E.I.; Kuklina, G.M. Treatment of bronchial obstruction in patients with lung tuberculosis. Pulmonology 2005, 5, 39–44. (In Russian) [Google Scholar] [CrossRef]
- Park, M.K.; Fontana, J.R.; Babaali, H.; Gilbert-McClain, L.I.; Stylianou, M.; Joo, J.; Moss, J.; Manganiello, V.C. Steroid sparing effects of pentoxifylline in pulmonary sarcoidosis. Sarcoidosis Vasc. Diffuse. Lung Dis. 2009, 26, 121–131. [Google Scholar]
- Feret, W.; Nalewajska, M.; Wojczyński, Ł.; Witkiewicz, W.; Kłos, P.; Dziedziejko, V.; Pawlik, A. Pentoxifylline as a Potential Adjuvant Therapy for COVID-19: Impeding the Burden of the Cytokine Storm. J. Clin. Med. 2021, 10, 5305. [Google Scholar] [CrossRef]
Characteristics | DLCO ≥ LLN n = 96 | DLCO < LLN n = 196 | p |
---|---|---|---|
Male/female gender | 37/59 | 80/116 | ns |
Age years | 30 (25–38) | 31 (27–40) | ns |
Body mass index kg∙m−2 | 21.4 (19.5–24.2) | 20.9 (18.9–23.5) | ns |
Smoking history no/yes, n (%) | 48 (50)/48 (50) | 80 (41)/116 (59) | ns |
Pack-years | 0.3 (0–4.8) | 2 (0–6.0) | 0.029 |
Forms of Pulmonary Tuberculosis | |||
Infiltrative | 20 (21) | 16 (8) | 0.004 |
Tuberculoma | 32 (33) | 30 (15) | 0.001 |
Disseminated | 7 (7) | 21 (11) | ns |
Cavernous | 37 (39) | 129 (66) | <0.001 |
Number of foci | 2.0 (1.5–3.0) | 3.0 (2.0–3.0) | <0.001 |
Volume of maximal focus mm3 (n = 165) | 7550 (5750–13,300) | 13,500 (7800–38,400) | <0.001 |
Total volume of foci mm3 (n = 165) | 13,900 (7600–24,200) | 31,700 (16,700–109,600) | <0.001 |
Destruction zone volume mm3 (n = 165) | 425 (0–10,400) | 8850 (500–45,600) | <0.001 |
FVC% predicted | 107.7 (97.1–115.2) | 88.6 (73.6–102.9) | <0.001 |
FEV1% predicted pre | 100.3 (92.1–113.5) | 79.7 (63.8–98.5) | <0.001 |
FEV1% predicted post | 104.5 (97.1–115.8) | 86.7 (65.8–102.2) | <0.001 |
FEV1/FVC% pre | 81.0 (75.9–88.2) | 77.8 (72.9–84.1) | <0.001 |
FEV1/FVC% post | 84.6 (80.1–90.2) | 81.1 (75.7–86.4) | 0.001 |
MMEF% predicted | 77.9 (58.1–98.5) | 52.2 (32.3–76.1) | <0.001 |
Rtot% predicted | 76.2 (60.2–104.1) | 99.2 (72.9–141.9) | <0.001 |
TLC% predicted | 112.3 (103.9–123.0) | 102.1 (88.4–112.7) | <0.001 |
RV% predicted | 133.2 (114.4–150.9) | 129.7 (109.5–152.0) | ns |
RV/TLC% predicted | 114.0 (105.0–127.9) | 124.5 (109.2–143.0) | <0.001 |
DLCO% predicted | 88.4 (82.9–95.7) | 67.7 (58.3–73.0) | <0.001 |
KCO% predicted | 87.7 (79.8–96.5) | 77.2 (70.8–84.7) | <0.001 |
VA% predicted | 103.5 (96.1–109.3) | 85.2 (73.3–97.9) | <0.001 |
VA < 80% predicted | 1 (1) | 83 (42) | <0.001 |
Air-trapping volume L | 0.33 (0.01–0.65) | 0.55 (0.30–0.92) | <0.001 |
PCF% TLC | 12.0 (6.1–16.2) | 16.2 (12.2–22.9) | <0.001 |
PCF > 15% | 28 (29) | 113 (58) | <0.001 |
VA ≥ 80% Predicted | VA < 80% Predicted | p | |||
---|---|---|---|---|---|
Characteristics | PCF < 15% n = 59 | PCF > 15% n = 54 | PCF < 15% n = 24 | PCF > 15% n = 59 | |
1 | 2 | 3 | 4 | ||
Forms of Pulmonary Tuberculosis | |||||
Infiltrative | 8 (50) | 5 (31) | 2 (13) | 1 (6) | |
Tuberculoma | 13 (43.3) | 13 (43.3) | 1 (3.3) | 3 (10) | |
Disseminated | 6 (28.6) | 7 (33.3) | 3 (14.3) | 5 (23.8) | |
Cavernous | 32 (24.8) | 29 (22.5) | 18 (14.0) | 50 (38.7) | |
Total volume of foci mm3 (n = 113) | 27,400 (14,100–49,600) | 19,600 (14,000–46,600) | 30,650 (15,700–98,400) | 104,050 (30,400–284,250) | p1–2 = 0.643 p1–3 = 0.741 p1–4 < 0.001 p2–3 = 0.603 p1–4 < 0.001 p3–4 = 0.044 |
Destruction zone volume mm3 (n = 113) | 5700 (2–13,200) | 4650 (0–26,400) | 4700 (2900–40,300) | 36,650 (7150–159,225) | p1–2 = 1.000 p1–3 = 0.209 p1–4 < 0.001 p2–3 = 0.257 p2–4 < 0.001 p3–4 = 0.084 |
FVC% predicted | 102.5 (93.3–112.4) | 98.2 (90.7–108.1) | 74.2 (64.9–80.4) | 68.6 (58.5–77.9) | p1–2 = 0.157 p1–3 < 0.001 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 = 0.116 |
FEV1% predicted pre | 98.6 (90.4–105.7) | 91.9 (78,9–102.2) | 71.6 (60.5–76.1) | 59.8 (46.8–69.7) | p1–2 = 0.032 p1–3 < 0.001 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 = 0.003 |
FEV1/FVC% pre | 81.0 (73.9–85.1) | 77.8 (71.5–84.2) | 82.7 (76.7–86.8) | 73.8 (67.5–77.9) | p1–2 = 0.033 p1–3 = 0.700 p1–4 < 0.001 p2–3 = 0.079 p2–4 = 0.004 p3–4 < 0.001 |
MMEF% predicted | 75.7 (50.3–96.1) | 63.4 (46.1–78.2) | 54.4 (34.4–64.7) | 23.9 (20.6–42.4) | p1–2 = 0.018 p1–3 < 0.001 p1–4 < 0.001 p2–3 = 0.132 p2–4 < 0.001 p3–4 < 0.001 |
Rtot% predicted | 75.9 (61.1–96.0) | 93.7 (74.4–124.5) | 112.8 (64.9–140.4) | 154.6 (103.9–204.9) | p1–2 = 0.003 p1–3 = 0.009 p1–4 < 0.001 p2–3 = 0.490 p2–4 < 0.001 p3–4 = 0.004 |
TLC% predicted | 106.3 (100.1–115.4) | 113.7 (106.3–118.4) | 82.8 (72.7–86.3) | 89.4 (81.6–98.8) | p1–2 = 0.004 p1–3 < 0.001 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 = 0.001 |
RV% predicted | 124.0 (109–137.4) | 145.3 (124.7–161.2) | 99.3 (84.5–123.1) | 135.7 (108.6–155.6) | p1–2 < 0.001 p1–3 < 0.001 p1–4 = 0.049 p2–3 < 0.001 p2–4 = 0.047 p3–4 < 0.001 |
RV/TLC% predicted | 109.7 (97.2–125.2) | 124.5 (112.3–140.9) | 122.7 (105.0–139.2) | 142.1 (125.9–170.5) | p1–2 < 0.001 p1–3 = 0.061 p1–4 < 0.001 p2–3 = 0.417 p2–4 < 0.001 p3–4 < 0.001 |
DLCO% predicted | 71.9 (68.2–75.1) | 69.7 (65.6–75.5) | 61.5 (55.9–69.3) | 57.6 (48.6–64.7) | p1–2 = 0.321 p1–3 < 0.001 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 = 0.015 |
DLCO < 60% predicted | 2 (3) | 4 (7) | 9 (38) | 39 (66) | |
VA% predicted | 98.8 (91.5–105.2) | 91.8 (86.9–99.0) | 76.8 (71.9–78.5) | 69.3 (60.9–74.6) | p1–2 = 0.002 p1–3 < 0.001 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 < 0.001 |
KCO% predicted | 72.4 (68.2–78.7) | 76.4 (71.6–81.4) | 83.9 (76.4–90.2) | 81.8 (74.2–93.2) | p1–2 = 0.131 p1–3 = 0.002 p1–4 = 0.01 p2–3 = 0.018 p2–4 = 0.106 p3–4 = 0.485 |
Hemoglobin g∙100 mL−1 | 13.5 (12.6–14.7) | 13.4 (12.5–14.4) | 12.8 (11.9–14.1) | 12.5 (11.1–13.6) | p1–2 = 0.834 p1–3 = 0.064 p1–4 = 0.006 p2–3 = 0.087 p2–4 = 0.010 p3–4 = 0.581 |
Air-trapping volume L | 0.34 (0.14–0.50) | 0.77 (0.61–1.13) | 0.19 (0.07–0.34) | 0.9 (0.57–1.3) | p1–2 < 0.001 p1–3 = 0.035 p1–4 < 0.001 p2–3 < 0.001 p2–4 = 0.355 p3–4 < 0.001 |
PCF% TLC | 11.3 (7.5–13.4) | 19.0 (16.7–22.6) | 10.9 (7.4–12.7) | 25.3 (20.3–30.3) | p1–2 < 0.001 p1–3 = 0.619 p1–4 < 0.001 p2–3 < 0.001 p2–4 < 0.001 p3–4 < 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiryukhina, L.D.; Kokorina, E.V.; Gavrilov, P.V.; Denisova, N.V.; Archakova, L.I.; Yablonskiy, P.K. Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume. J. Respir. 2023, 3, 107-117. https://doi.org/10.3390/jor3020011
Kiryukhina LD, Kokorina EV, Gavrilov PV, Denisova NV, Archakova LI, Yablonskiy PK. Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume. Journal of Respiration. 2023; 3(2):107-117. https://doi.org/10.3390/jor3020011
Chicago/Turabian StyleKiryukhina, Larisa D., Elena V. Kokorina, Pavel V. Gavrilov, Nina V. Denisova, Liudmila I. Archakova, and Petr K. Yablonskiy. 2023. "Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume" Journal of Respiration 3, no. 2: 107-117. https://doi.org/10.3390/jor3020011
APA StyleKiryukhina, L. D., Kokorina, E. V., Gavrilov, P. V., Denisova, N. V., Archakova, L. I., & Yablonskiy, P. K. (2023). Gas Exchange in Patients with Pulmonary Tuberculosis: Relationships with Pulmonary Poorly Communicating Fraction and Alveolar Volume. Journal of Respiration, 3(2), 107-117. https://doi.org/10.3390/jor3020011