A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Neoplastic B-Cell Line Sample Preparation
2.2. Multiple Myeloma Sample Collection and Preparation
2.3. Library Preparation and Sequencing
2.4. Pan-Clonality Assay Immune Repertoire Data Analysis
3. Results
3.1. Pan-Clonality Assay BCR Targets
3.2. Clonotype Lineage Detection in Neoplastic B-Cell Lines
3.3. Range of DNA Input Concentrations and Limits of Detection
3.4. Reproducibility
3.5. Clonotype Lineage Detection in Multiple Myeloma Samples
3.6. Identification of Subgroups in Multiple Myeloma Samples
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gazzola, A.; Mannu, C.; Rossi, M.; Laginestra, M.A.; Sapienza, M.R.; Fuligni, F.; Etebari, M.; Melle, F.; Sabattini, E.; Agostinelli, C.; et al. The evolution of clonality testing in the diagnosis and monitoring of hematological malignancies. Ther. Adv. Hematol. 2014, 5, 35–47. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Redmond, D.; Miyaguchi, A.; Nam, A.S.; Nie, K.; Mathew, S.; Elemento, O.; Tam, W. Exploring tumor clonal evolution in bone marrow of patients with diffuse large B-cell lymphoma by deep IGH sequencing and its potential relevance in relapse. Blood Cancer J. 2019, 9, 69. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.; Weaver, C.; Janeway, C. Janeway’s Immunobiology, 9th ed.; Garland Science: New York, NY, USA, 2017. [Google Scholar]
- Yaari, G.; Kleinstein, S.H. Practical guidelines for B-cell receptor repertoire sequencing analysis. Genome Med. 2015, 7, 121. [Google Scholar] [CrossRef]
- Rustad, E.H.; Hultcrantz, M.; Yellapantula, V.D.; Akhlaghi, T.; Ho, C.; Arcila, M.E.; Roshal, M.; Patel, A.; Chen, D.; Devlin, S.M.; et al. Baseline identification of clonal V(D)J sequences for DNA-based minimal residual disease detection in multiple myeloma. PLoS ONE 2019, 14, e0211600. [Google Scholar] [CrossRef] [PubMed]
- Evans, P.A.S.; Pott, C.; Groenen, P.J.T.A.; Salles, G.; Davi, F.; Berger, F.; Garcia, J.F.; van Krieken, J.H.J.M.; Pals, S.; Kluin, P.; et al. Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 2007, 21, 207–214. [Google Scholar] [CrossRef]
- van Dongen, J.J.M.; Langerak, A.W.; Brüggemann, M.; Evans, P.A.S.; Hummel, M.; Lavender, F.L.; Delabesse, E.; Davi, F.; Schuuring, E.; García-Sanz, R.; et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 2003, 17, 2257–2317. [Google Scholar] [CrossRef]
- Langerak, A.W.; Groenen, P.J.T.A.; Brüggemann, M.; Beldjord, K.; Bellan, C.; Bonello, L.; Boone, E.; Carter, G.I.; Catherwood, M.; Davi, F.; et al. EuroClonality/BIOMED-2 guidelines for interpretation and reporting of Ig/TCR clonality testing in suspected lymphoproliferations. Leukemia 2012, 26, 2159–2171. [Google Scholar] [CrossRef]
- Scheijen, B.; Meijers, R.W.J.; Rijntjes, J.; van der Klift, M.Y.; Möbs, M.; Steinhilber, J.; Steinhilber, J.; Reigl, T.; Brand, M.v.D.; Kotrová, M.; et al. Next-generation sequencing of immunoglobulin gene rearrangements for clonality assessment: A technical feasibility study by EuroClonality-NGS. Leukemia 2019, 33, 2227–2240. [Google Scholar] [CrossRef]
- Stewart, J.P.; Gazdova, J.; Darzentas, N.; Wren, D.; Proszek, P.; Fazio, G.; Songia, S.; Alcoceba, M.; Sarasquete, M.E.; Villarese, P.; et al. Validation of the EuroClonality-NGS DNA capture panel as an integrated genomic tool for lymphoproliferative disorders. Blood Adv. 2021, 5, 3188–3198. [Google Scholar] [CrossRef]
- van den Brand, M.; Rijntjes, J.; Möbs, M.; Steinhilber, J.; van der Klift, M.Y.; Heezen, K.C.; Kroeze, L.I.; Reigl, T.; Porc, J.; Darzentas, N.; et al. Next-Generation Sequencing–Based Clonality Assessment of Ig Gene Rearrangements: A Multicenter Validation Study by EuroClonality-NGS. J. Mol. Diagn. 2021, 23, 1105–1115. [Google Scholar] [CrossRef]
- Ho, C.; Syed, M.; Roshal, M.; Petrova-Drus, K.; Moung, C.; Yao, J.; Quesada, A.E.; Benhamida, J.; Vanderbilt, C.; Liu, Y.; et al. Routine Evaluation of Minimal Residual Disease in Myeloma Using Next-Generation Sequencing Clonality Testing. J. Mol. Diagn. 2021, 23, 181–199. [Google Scholar] [CrossRef] [PubMed]
- Arcila, M.E.; Yu, W.; Syed, M.; Kim, H.; Maciag, L.; Yao, J.; Ho, C.; Petrova, K.; Moung, C.; Salazar, P.; et al. Establishment of Immunoglobulin Heavy (IGH) Chain Clonality Testing by Next-Generation Sequencing for Routine Characterization of B-Cell and Plasma Cell Neoplasms. J. Mol. Diagn. 2019, 21, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Van den Brand, M.; Möbs, M.; Otto, F.; Kroeze, L.I.; Gonzalez de Castro, D.; Stamatopoulos, K.; Davi, F.; Bravetti, C.; Kolijn, P.M.; Vlachonikola, E.; et al. EuroClonality-NGS Recommendations for Evaluation of B-Cell Clonality Analysis by Next-Generation Sequencing: A Structured Approach with the DEPART Algorithm. J. Mol. Diagn. 2023, 25, 729–739. [Google Scholar] [CrossRef] [PubMed]
- van Bladel, D.A.G.; van der Last-Kempkes, J.L.M.; Scheijen, B.; Groenen, P.J.T.A. Next-Generation Sequencing-Based Clonality Detection of Immunoglobulin Gene Rearrangements in B-Cell Lymphoma. In Methods in Molecular Biology; Humana Press Inc.: Totowa, NJ, USA, 2022; Volume 2453, pp. 7–42. [Google Scholar] [CrossRef]
- Brüggemann, M.; Kotrová, M.; Knecht, H.; Bartram, J.; Boudjogrha, M.; Bystry, V.; Bystry, V.; Fazio, G.; Froňková, E.; Giraud, M.; et al. Standardized next-generation sequencing of immunoglobulin and T-cell receptor gene recombinations for MRD marker identification in acute lymphoblastic leukaemia; a EuroClonality-NGS validation study. Leukemia 2019, 33, 2241–2253. [Google Scholar] [CrossRef] [PubMed]
- Glenn, S.T.; Galbo, P.M.; Luce, J.D.; Miles, K.M.; Singh, P.K.; Glynias, M.J.; Morrison, C. Development and Implementation of an Automated and Highly Accurate Reporting Process for NGS-Based Clonality Testing. Oncotarget 2023, 14, 450–461. [Google Scholar] [CrossRef] [PubMed]
- Ha, J.; Lee, H.; Shin, S.; Cho, H.; Chung, H.; Jang, J.E.; Kim, S.-J.; Cheong, J.-W.; Lee, S.-T.; Kim, J.S.; et al. Ig Gene Clonality Analysis Using Next-Generation Sequencing for Improved Minimal Residual Disease Detection with Significant Prognostic Value in Multiple Myeloma Patients. J. Mol. Diagn. 2022, 24, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Chen, J.; Wang, L.; Dai, Y.; Diao, H. Basic research and clinical application of immune repertoire sequencing. Int. J. Clin. Exp. Med. 2016, 9, 18868–18882. [Google Scholar]
- Ghia, P.; Stamatopoulos, K.; Belessi, C.; Moreno, C.; Stilgenbauer, S.; Stevenson, F.; Davi, F.; Rosenquist, R. ERIC recommendations on IGHV gene mutational status analysis in chronic lymphocytic leukemia. Leukemia 2007, 21, 1–3. [Google Scholar] [CrossRef]
- Storb, U.; Ming Shen, H.; Michael, N.; Kim, N. Somatic hypermutation of immunoglobulin and non–immunoglobulin genes. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 2001, 356, 13–19. [Google Scholar] [CrossRef]
- Rawstron, A.C.; Orfao, A.; Beksac, M.; Bezdickova, L.; Brooimans, R.A.; Bumbea, H.; Dalva, K.; Fuhler, G.; Gratama, J.; Hose, D.; et al. Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 2008, 93, 431–438. [Google Scholar] [CrossRef]
- Rajkumar, S.V.; Dimopoulos, M.A.; Palumbo, A.; Blade, J.; Merlini, G.; Mateos, M.-V.; Kumar, S.; Hillengass, J.; Kastritis, E.; Richardson, P.; et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 2014, 15, e538–e548. [Google Scholar] [CrossRef]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised International Staging System for Multiple Myeloma: A Report from International Myeloma Working Group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Lefranc, M.-P. IMGT, the International ImMunoGeneTics Information System. Cold Spring Harb. Protoc. 2011, 2011, pdb.top115. [Google Scholar] [CrossRef]
- Looney, T.J.; Duose, D.Y.; Lowman, G.; Linch, E.; Hajjar, J.; Topacio-Hall, D.; Xu, M.; Zheng, J.; Alshawa, A.; Tapia, C.; et al. Haplotype Analysis of the T-Cell Receptor Beta (TCRB) Locus by Long-Amplicon TCRB Repertoire Sequencing. J. Immunother. Precis. Oncol. 2019, 2, 137–143. [Google Scholar] [CrossRef]
- Tan, K.-T.; Ding, L.-W.; Sun, Q.-Y.; Lao, Z.-T.; Chien, W.; Ren, X.; Xiao, J.-F.; Loh, X.Y.; Xu, L.; Lill, M.; et al. Profiling the B/T cell receptor repertoire of lymphocyte derived cell lines. BMC Cancer 2018, 18, 940. [Google Scholar] [CrossRef]
- Matsuo, Y.; Drexler, H.G. Establishment and characterization of human B cell precursor-leukemia cell lines. Leuk. Res. 1998, 22, 567–579. [Google Scholar] [CrossRef] [PubMed]
- Oncomine Human Immune Repertoire User Guide (For Use in Hematology Research); Thermo Fisher Scientific: Waltham, MA, USA, 2021; MAN0019231, Rev. B.0.
- Merriman, B.; Ion Torrent R&D Team; Rothberg, J.M. Progress in Ion Torrent semiconductor chip based sequencing. Electrophoresis 2012, 33, 3397–3417. [Google Scholar] [CrossRef] [PubMed]
- Looney, T.J.; Topacio-Hall, D.; Lowman, G.; Conroy, J.; Morrison, C.; Oh, D.; Fong, L.; Zhang, L. TCR Convergence in Individuals Treated with Immune Checkpoint Inhibition for Cancer. Front. Immunol. 2020, 10, 2985. [Google Scholar] [CrossRef]
- Guo, L.; Wang, Z.; Anderson, C.M.; Doolittle, E.; Kernag, S.; Cotta, C.V.; Ma, X.-J.; Cook, J.R. Ultrasensitive automated RNA in situ hybridization for kappa and lambda light chain mRNA detects B-cell clonality in tissue biopsies with performance comparable or superior to flow cytometry. Mod. Pathol. 2018, 31, 385–394. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; González, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.; Paiva, B.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood 2014, 123, 3073–3079. [Google Scholar] [CrossRef] [PubMed]
- Rustad, E.H.; Misund, K.; Bernard, E.; Coward, E.; Yellapantula, V.D.; Hultcrantz, M.; Ho, C.; Kazandjian, D.; Korde, N.; Mailankody, S.; et al. Stability and uniqueness of clonal immunoglobulin CDR3 sequences for MRD tracking in multiple myeloma. Am. J. Hematol. 2019, 94, 1364–1373. [Google Scholar] [CrossRef]
- Hultcrantz, M.; Rustad, E.H.; Yellapantula, V.; Arcila, M.; Ho, C.; Syed, M.H.; Ho, C.; Kazandjian, D.; Korde, N.; Mailankody, S.; et al. Baseline VDJ clonotype detection using a targeted sequencing NGS assay: Allowing for subsequent MRD assessment. Blood Cancer J. 2020, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Bashford-Rogers, R.J.M.; Smith, K.G.C.; Thomas, D.C. Antibody repertoire analysis in polygenic autoimmune diseases. Immunology 2018, 155, 3–17. [Google Scholar] [CrossRef]
- Pugh-Bernard, A.E.; Silverman, G.J.; Cappione, A.J.; Villano, M.E.; Ryan, D.H.; Insel, R.A.; Sanz, I. Regulation of inherently autoreactive VH4-34 B cells in the maintenance of human B cell tolerance. J. Clin. Investig. 2001, 108, 1061–1070. [Google Scholar] [CrossRef] [PubMed]
- Funkhouser, W.K.; Warnke, R.A. Preferential IgH V4-34 gene segment usage in particular subtypes of B-cell lymphoma detected by antibody 9G4. Hum. Pathol. 1998, 29, 1317–1321. [Google Scholar] [CrossRef]
- Kostareli, E.; Hadzidimitriou, A.; Stavroyianni, N.; Darzentas, N.; Athanasiadou, A.; Gounari, M.; Bikos, V.; Agathagelidis, A.; Touloumenidou, T.; Zorbas, I.; et al. Molecular evidence for EBV and CMV persistence in a subset of patients with chronic lymphocytic leukemia expressing stereotyped IGHV4-34 B-cell receptors. Leukemia 2009, 23, 919–924. [Google Scholar] [CrossRef] [PubMed]
- Medina, A.; Jiménez, C.; Sarasquete, M.E.; González, M.; Chillón, M.C.; Balanzategui, A.; Prieto-Conde, I.; García-Álvarez, M.; Puig, N.; González-Calle, V.; et al. Molecular profiling of immunoglobulin heavy-chain gene rearrangements unveils new potential prognostic markers for multiple myeloma patients. Blood Cancer J. 2020, 10, 14. [Google Scholar] [CrossRef]
- Ferrero, S.; Capello, D.; Svaldi, M.; Boi, M.; Gatti, D.; Drandi, D.; Rossi, D.; Barbiero, S.; Mantoan, B.; Mantella, E.; et al. Multiple myeloma shows no intra-disease clustering of immunoglobulin heavy chain genes. Haematologica 2012, 97, 849–853. [Google Scholar] [CrossRef]
- Rosenquist, R.; Ghia, P.; Hadzidimitriou, A.; Sutton, L.-A.; Agathangelidis, A.; Baliakas, P.; Darzentas, N.; Giudicelli, V.; Lefranc, M.-P.; Langerak, A.W.; et al. Immunoglobulin gene sequence analysis in chronic lymphocytic leukemia: Updated ERIC recommendations. Leukemia 2017, 31, 1477–1481. [Google Scholar] [CrossRef]
- Guo, J.; McKenna, S.L.; O’Dwyer, M.E.; Cahill, M.R.; O’Driscoll, C.M. RNA interference for multiple myeloma therapy: Targeting signal transduction pathways. Expert Opin. Ther. Targets 2016, 20, 107–121. [Google Scholar] [CrossRef]
- Munguía-Fuentes, R.; Maqueda-Alfaro, R.A.; Chacón-Salinas, R.; Flores-Romo, L.; Yam-Puc, J.C. Germinal Center Cells Turning to the Dark Side: Neoplasms of B Cells, Follicular Helper T Cells, and Follicular Dendritic Cells. Front. Oncol. 2021, 10, 587809. [Google Scholar] [CrossRef] [PubMed]
- Cowan, G.; Weston-Bell, N.J.; Bryant, D.; Seckinger, A.; Hose, D.; Zojer, N.; Sahota, S.S. Massive parallel IGHV gene sequencing reveals a germinal center pathway in origins of human multiple myeloma. Oncotarget 2015, 6, 13229–13240. [Google Scholar] [CrossRef] [PubMed]
Cell Line | IGH | IGK | IGL | IGK-KDE | Cint-KDE | IGH FR3(d)-J | IGH FR2-J |
---|---|---|---|---|---|---|---|
WSU-NHL | - | IGKV1-16 IGKV1-17 | IGLV3-25 | - | Cint-IGKdel | - | - |
CA46 | IGHV5-10-1 ** | IGKV2-28 | - | - | - | IGHV5-51 | IGHV5-51 |
Toledo | - | IGKV1-33 | IGLV3-21 IGLV2-14 | - | Cint-IGKdel | - | - |
GA-10 | IGHV4-34 ** | IGKV2-28 | - | - | - | IGHV4-34 | IGHV4-34 |
Daudi | - | - | - | - | Cint-IGKdel | IGHV3-74 | IGHV3-74 |
U266B1 | - | - | IGLV2-8 | - | Cint-IGKdel | - | - |
GM14952 | IGHV3-48 IGHV1-46 | - | IGLV2-14 IGLV2-23 | - | Cint-IGKdel | IGHV4-39 IGHV1-46 | IGHV4-39 IGHV3-74 |
Ramos | IGHV3-33 IGHV4-28 * | - | IGLV2-23 IGLV2-18 | - | - | IGHV4-34 | IGHV4-34 |
RL | - | - | - | - | Cint-IGKdel | IGHV3-23 | IGHV3-23 |
HS611.T | IGHV4-39 | IGKV3-20 IGKV1-39 | - | - | Cint-IGKdel | IGHV4-4 | - |
SU-DHL-6 | - | - | - | - | - | - | - |
BDCM | IGHV3-23 | - | IGLV4-60 | IGKV2-28-IGKdel | Cint-IGKdel | IGHV3-23 | - |
SU-DHL-8 | - | - | IGLV1-36 | - | - | - | IGHV3-23 |
GM04154 | IGHV3-23 | - | IGLVI-70 | - | - | IGHV3-23 | IGHV3-23 |
IM9 | - | - | IGKV1-16 | - | - | IGHV3-9 | - |
MM.1R | IGHV3-30 | - | IGLV2-18 | - | Cint-IGKdel | IGHV3-30 | - |
NALM-1 | IGHV3-9 | IGKV2D-29 | - | - | - | IGHV3-9 | IGHV3-9 |
DS-1B | - | - | - | - | - | - | - |
HT | - | IGKV3-11 | - | - | - | IGHV3-53 * | - |
JVM-2 | IGHV3-9 | - | IGLV2-14 | - | - | IGHV3-9 | IGHV3-9 |
LP1 | - | - | IGLV3-21 | IGKV2-30-IGKdel | - | IGHV3-30 | IGHV3-30 |
JM1 | - | - | IGLV3-10 IGLV3-1 | - | Cint-IGKdel | - | - |
Pfeiffer | IGHV3-66 | - | - | - | - | IGHV3-11 | IGHV3-7 |
MC116 | - | - | IGLV2-14 | - | Cint-IGKdel | - | - |
TMM | IGHV1-24 | - | - | IGKV2-30-IGKdel | - | IGHV1-24 | - |
NU-DUL-1 | - | IGKV1-17 IGKV1-39 | IGLVI-70 IGLV4-60 | - | - | - | - |
BCP-1 | IGHV3-23 ** | - | - | - | - | IGHV3-23 | IGHV3-23 |
Sample # | Diagnosis | Plasma Cells (%) | Light Chain Restriction | Clonotype Lineages Detected | ||||
---|---|---|---|---|---|---|---|---|
IGH | IGK | IGL | IGK-KDE | Cint-KDE | ||||
MM1 | MM | 60 | lambda | 1 | 1 | 1 | 1 | 1 |
MM2 | MM | 30 | lambda | 1 | - | - | 2 | - |
MM3 | SMM | 18 | lambda | 1 | - | 1 | 1 | - |
MM4 | MM | 18 | lambda | - | - | - | - | - |
MM5 | MM | 80 | lambda | 1 | - | 1 | 2 | - |
MM6 | MM | 33 | lambda | - | 1 | - | 1 | 1 |
MM7 | MM | 20 | lambda | 2 | 1 | 1 | - | - |
MM8 | MM | 20 | lambda | 1 | - | 1 | - | - |
MM9 | MM | 40 | lambda | - | - | - | - | - |
MM10 | MM | 60 | lambda | 2 | 2 | - | - | - |
MM11 | MM | 80 | lambda | 1 | 2 | 1 | 1 | - |
MM12 | MM | 70 | lambda | - | - | - | 1 | - |
MM13 | MM | 30 | lambda | 1 | - | 1 | 1 | 1 |
MM14 | MM | 40 | lambda | - | 1 | 1 | - | 1 |
MM15 | MM | 10 | lambda | 1 | 1 | - | - | - |
MM16 | MM | 90 | lambda | - | - | 2 | - | - |
MM17 | MM | 26 | kappa | 1 | 1 | - | - | - |
MM18 | MM | 90 | kappa | 1 | 1 | - | - | - |
MM19 | MM | 60 | kappa | 2 | 2 | - | - | - |
MM20 | MM | 12 | kappa | 1 | - | - | - | - |
MM21 | MM | 15 | kappa | - | 2 | - | - | - |
MM22 | MM | 30 | kappa | 1 | 1 | - | - | - |
MM23 | MM | 25 | kappa | 1 | 1 | - | - | - |
MM24 | MM | 80 | kappa | 1 | 1 | - | - | - |
MM25 | MM | 60 | kappa | - | - | - | 1 | - |
MM26 | MM | 40 | kappa | 2 | 1 | - | - | 1 |
MM27 | MM | 70 | kappa | 1 | 1 | - | - | - |
MM28 | MM | 65 | kappa | - | - | - | - | - |
MM29 | MM | 65 | kappa | - | 2 | - | - | - |
MM30 | MM | 50 | kappa | 2 | 1 | - | - | - |
MM31 | MM | 60 | kappa | 1 | 1 | - | - | - |
MM32 | MM | 15 | kappa | 1 | 1 | - | - | - |
MM33 | MM | 85 | kappa | 1 | 1 | - | 1 | - |
MM34 | MM | 20 | kappa | 1 | 2 | - | - | - |
MM35 | MM + MBL | 10 | kappa | 3 | 3 | - | - | 1 |
MM36 | MM | 30 | kappa | 1 | 1 | - | - | 1 |
MM37 | MM | 20 | kappa | - | - | - | - | 1 |
MM38 | MM | 70 | kappa | 1 | - | - | 1 | - |
MM39 | MM | 90 | kappa | - | 2 | - | - | - |
MM40 | MM | 90 | kappa | 1 | 1 | - | - | - |
MM41 | MGUS | 8 | kappa | 1 | 2 | - | - | - |
MM42 | MM | 50 | kappa | 1 | - | - | - | - |
MM43 | MGUS | 8 | kappa * | 1 | 1 | - | - | - |
MM44 | MM | 30 | kappa * | 2 | 1 | - | - | 1 |
MM45 | MM | 80 | kappa | 1 | 2 | - | - | - |
Clonal rearrangement detection rate at each BCR locus #: | 33/45 (73%) | 30/45 (67%) | 9/45 (20%) | 11/45 (24%) | 9/45 (20%) | |||
Samples with at least one clonotype lineage marker: | 42/45 = 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastushok, L.; Sarda, S.; Mochoruk, K.; Hill, W.; Pickle, L.T.; Toro, M.; Gonzalez, C.; Ostresh, S.; Looney, T.J.; Yang, C.; et al. A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing. J. Mol. Pathol. 2024, 5, 45-65. https://doi.org/10.3390/jmp5010004
Pastushok L, Sarda S, Mochoruk K, Hill W, Pickle LT, Toro M, Gonzalez C, Ostresh S, Looney TJ, Yang C, et al. A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing. Journal of Molecular Pathology. 2024; 5(1):45-65. https://doi.org/10.3390/jmp5010004
Chicago/Turabian StylePastushok, Landon, Shrutii Sarda, Karen Mochoruk, Wayne Hill, Loni T. Pickle, Michelle Toro, Carolina Gonzalez, Stephanie Ostresh, Timothy J. Looney, Chenchen Yang, and et al. 2024. "A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing" Journal of Molecular Pathology 5, no. 1: 45-65. https://doi.org/10.3390/jmp5010004
APA StylePastushok, L., Sarda, S., Mochoruk, K., Hill, W., Pickle, L. T., Toro, M., Gonzalez, C., Ostresh, S., Looney, T. J., Yang, C., Stakiw, J., Bosch, M. J., Goubran, H., Geyer, C. R., Lowman, G. M., & DeCoteau, J. F. (2024). A Novel Single-Tube Next Generation Sequencing Assay for B-Cell Receptor Clonality Testing. Journal of Molecular Pathology, 5(1), 45-65. https://doi.org/10.3390/jmp5010004