Experimental and Numerical Analysis of Regenerative Indirect Evaporative Coolers †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Test Rig
2.2. Mathematical Model of the Indirect Evaporative Cooler
2.3. Validation and Evaluation of the Indirect Evaporative Cooler
3. Results and Discussion
4. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Porumb, B.; Ungureşan, P.; Tutunaru, L.F.; Şerban, A.; BǍlan, M. A Review of Indirect Evaporative Cooling Operating Conditions and Performances. Energy Procedia 2016, 85, 452–460. [Google Scholar] [CrossRef] [Green Version]
- Porumb, B.; Ungureşan, P.; Tutunaru, L.F.; Şerban, A.; BǍlan, M. A Review of Indirect Evaporative Cooling Technology. Energy Procedia 2016, 85, 461–471. [Google Scholar] [CrossRef] [Green Version]
- Pandelidis, D.; Anisimov, S.; Drag, P. Performance comparison between selected evaporative air coolers. Energies 2017, 10, 577. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Huang, X.; Li, L. Comparative study of the cross-flow heat and mass exchangers for indirect evaporative cooling using numerical methods. Energies 2018, 11, 3374. [Google Scholar] [CrossRef] [Green Version]
- Pandelidis, D.; Anisimov, S. Application of a statistical design for analyzing basic performance characteristics of the cross-flow Maisotsenko cycle heat exchanger. Int. J. Heat Mass Transf. 2016, 95, 45–61. [Google Scholar] [CrossRef]
- Duan, Z.; Zhao, X.; Li, J. Design, fabrication and performance evaluation of a compact regenerative evaporative cooler: Towards low energy cooling for buildings. Energy 2017, 140, 506–519. [Google Scholar] [CrossRef]
- Lin, J.; Wang, R.; Li, C.; Wang, S.; Long, J.; Chua, K.J. Towards a thermodynamically favorable dew point evaporative cooler via optimization. Energy Convers. Manag. 2020, 203, 112224. [Google Scholar] [CrossRef]
- Lin, J.; Bui, D.T.; Wang, R.; Chua, K.J. The counter-flow dew point evaporative cooler: Analyzing its transient and steady-state behavior. Appl. Therm. Eng. 2018, 143, 34–47. [Google Scholar] [CrossRef]
- Ali, M.; Ahmad, W.; Sheikh, N.A.; Ali, H.; Kousar, R.; ur Rashid, T. Performance enhancement of a cross flow dew point indirect evaporative cooler with circular finned channel geometry. J. Build. Eng. 2020, 101980. [Google Scholar] [CrossRef]
Range | Tin [°C] | in [g/kg] | Vin [m3/h] | R [-] |
---|---|---|---|---|
Lower value | 33 | 8.5 | 3000 | 0.3 |
Upper value | 43 | 13 | 4500 | 0.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Comino, F.; Romero-Lara, M.J.; Adana, M.R.d. Experimental and Numerical Analysis of Regenerative Indirect Evaporative Coolers. Environ. Sci. Proc. 2021, 9, 21. https://doi.org/10.3390/environsciproc2021009021
Comino F, Romero-Lara MJ, Adana MRd. Experimental and Numerical Analysis of Regenerative Indirect Evaporative Coolers. Environmental Sciences Proceedings. 2021; 9(1):21. https://doi.org/10.3390/environsciproc2021009021
Chicago/Turabian StyleComino, Francisco, María Jesús Romero-Lara, and Manuel Ruiz de Adana. 2021. "Experimental and Numerical Analysis of Regenerative Indirect Evaporative Coolers" Environmental Sciences Proceedings 9, no. 1: 21. https://doi.org/10.3390/environsciproc2021009021