GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey †
Abstract
:1. Introduction
2. Study Area
3. Material and Methods
3.1. Generation of Geospatial Datasets
3.2. Analytical Hierarchy Process (AHP)
3.3. Frequency Ratio (FR)
4. Results and Discussion
Validation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Fitts, C. Groundwater Science; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Bagyaraj, M.; Ramkumar, T.; Venkatramanan, S.; Gurugnanam, B. Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal Taluk, South India. Front. Earth Sci. 2013, 7, 65–75. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Rezaei, A. Groundwater qanat potential mapping using frequency ratio and Shannon’s entropy models in the Moghan watershed, Iran. Earth Sci. Inform. 2015, 8, 171–186. [Google Scholar] [CrossRef]
- Das, S. Comparison among influencing factor, frequency ratio, and analytical hierarchy process techniques for groundwater potential zonation in Vaitarna basin, Maharashtra, India. Groundw. Sustain. Dev. 2019, 8, 617–629. [Google Scholar] [CrossRef]
- Todd, D.; Mays, L. Groundwater Hydrology; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Manap, M.A.; Sulaiman, W.N.A.; Ramli, M.F.; Pradhan, B.; Surip, N. A knowledge-driven GIS modeling technique for groundwater potential mapping at the Upper Langat Basin, Malaysia. Arab. J. Geosci. 2013, 6, 1621–1637. [Google Scholar] [CrossRef]
- Senanayake, I.P.; Dissanayake, D.M.D.O.K.; Mayadunna, B.B.; Weerasekera, W.L. An approach to delineate groundwater recharge potential sites in Ambalantota, Sri Lanka using GIS techniques. Geosci. Front. 2016, 7, 115–124. [Google Scholar] [CrossRef]
- Banks, D.; Robins, N. An Introduction to Groundwater in Crystalline Bedrock; Norges geologiske undersøkelse: Trondheim, Norway, 2002. [Google Scholar]
- Mukherjee, S. Targeting saline aquifer by remote sensing and geophysical methods in a part of Hamirpur-Kanpur, India. Hydrogeol. J. 1996, 19, 53–64. [Google Scholar]
- Ganapuram, S.; Kumar, G.T.V.; Krishna, I.V.M.; Kahya, E.; Demirel, M.C. Mapping of groundwater potential zones in the Musi basin using remote sensing data and GIS. Adv. Eng. Softw. 2009, 40, 506–518. [Google Scholar] [CrossRef]
- Oh, H.J.; Kim, Y.S.; Choi, J.K.; Park, E.; Lee, S. GIS mapping of regional probabilistic groundwater potential in the area of Pohang City, Korea. J. Hydrol. 2011, 399, 158–172. [Google Scholar] [CrossRef]
- Das, S.; Pardeshi, S.D. Integration of different influencing factors in GIS to delineate groundwater potential areas using IF and FR techniques: A study of Pravara basin, Maharashtra, India. Appl. Water Sci. 2018, 8, 197. [Google Scholar] [CrossRef]
- Jha, M.K.; Chowdary, V.M.; Chowdhury, A. Groundwater assessment in Salboni Block, West Bengal (India) using remote sensing, geographical information system and multi-criteria decision analysis techniques. Hydrogeol. J. 2010, 18, 1713–1728. [Google Scholar] [CrossRef]
- Nampak, H.; Pradhan, B.; Manap, M.A. Application of GIS based data driven evidential belief function model to predict groundwater potential zonation. J. Hydrol. 2014, 513, 283–300. [Google Scholar] [CrossRef]
- Razandi, Y.; Pourghasemi, H.R.; Neisani, N.S.; Rahmati, O. Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci. Inform. 2015, 8, 867–883. [Google Scholar] [CrossRef]
- Al-Shabeeb, A.A.R.; Al-Adamat, R.; Al-Fugara, H.; AlAyyash, S. Delineating groundwater potential zones within the Azraq Basin of Central Jordan using multi-criteria GIS analysis. Groundw. Sustain. Dev. 2018, 7, 82–90. [Google Scholar] [CrossRef]
- Jasrotia, A.S.; Kumar, R.; Saraf, A.K. Delineation of groundwater recharge sites using integrated remote sensing and GIS in Jammu district, India. Int. J. Remote Sens. 2007, 28, 5019–5036. [Google Scholar] [CrossRef]
- Magesh, N.S.; Chandrasekar, N.; Soundranayagam, J.P. Delineation of groundwater potential zones in Theni district, Tamil Nadu, using remote sensing, GIS and MIF techniques. Geosci. Front. 2012, 3, 189–196. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Moradi Dashtpagerdi, M. Evaluation of four supervised learning methods for groundwater spring potential mapping in Khalkhal region (Iran) using GIS-based features. Hydrogeol. J. 2017, 25, 169–189. [Google Scholar] [CrossRef]
- Ozdemir, A. GIS-based groundwater spring potential mapping in the Sultan Mountains (Konya, Turkey) using frequency ratio, weights of evidence and logistic regression methods and their comparison. J. Hydrol. 2011, 411, 290–308. [Google Scholar] [CrossRef]
- Sener, E.; Davraz, A. Assessment of groundwater vulnerability based on a modified DRASTIC model, GIS and an analytic hierarchy process (AHP) method: The case of Egirdir Lake basin (Isparta, Turkey). Hydrogeol. J. 2013, 21, 701–714. [Google Scholar] [CrossRef]
- Rahmati, O.; Nazari Samani, A.; Mahdavi, M.; Pourghasemi, H.R.; Zeinivand, H. Groundwater potential mapping at Kurdistan region of Iran using analytic hierarchy process and GIS. Arab. J. Geosci. 2015, 8, 7059–7071. [Google Scholar] [CrossRef]
- Hossein, A.; Ardakani, H.; Ekhtesasi, M.R. Groundwater potentiality through Analytic Hierarchy Process (AHP) using remote sensing and Geographic Information System (GIS). J. Geope 2016, 6, 75–88. [Google Scholar]
- Jenifer, M.A.; Jha, M.K. Comparison of Analytic Hierarchy Process, Catastrophe and Entropy techniques for evaluating groundwater prospect of hard-rock aquifer systems. J. Hydrol. 2017, 548, 605–624. [Google Scholar] [CrossRef]
- Guru, B.; Seshan, K.; Bera, S. Frequency ratio model for groundwater potential mapping and its sustainable management in cold desert, India. J. King Saud. Univ.-Sci. 2017, 29, 333–347. [Google Scholar] [CrossRef]
- Şener, E.; Şener, Ş.; Davraz, A. Groundwater potential mapping by combining fuzzy-analytic hierarchy process and GIS in Beyşehir Lake Basin, Turkey. Arab. J. Geosci. 2018, 11, 187. [Google Scholar] [CrossRef]
- Mogaji, K.A.; Lim, H.S.; Abdullah, K. Regional prediction of groundwater potential mapping in a multifaceted geology terrain using GIS-based Dempster–Shafer model. Arab. J. Geosci. 2015, 8, 3235–3258. [Google Scholar] [CrossRef]
- Naghibi, S.A.; Pourghasemi, H.R.; Dixon, B. GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ. Monit. Assess. 2016, 188, 44. [Google Scholar] [CrossRef] [PubMed]
- Zabihi, M.; Pourghasemi, H.R.; Pourtaghi, Z.S.; Behzadfar, M. GIS-based multivariate adaptive regression spline and random forest models for groundwater potential mapping in Iran. Environ. Earth Sci. 2016, 75, 665. [Google Scholar] [CrossRef]
- Chen, W.; Li, H.; Hou, E.; Wang, S.; Wang, G.; Panahi, M.; Li, T.; Peng, T.; Guo, C.; Niu, C.; et al. GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models. Sci. Total Environ. 2018, 634, 853–867. [Google Scholar] [CrossRef]
- Lee, S.; Hong, S.M.; Jung, H.S. GIS-based groundwater potential mapping using artificial neural network and support vector machine models: The case of Boryeong city in Korea. Geocarto. Int. 2018, 33, 847–861. [Google Scholar] [CrossRef]
- Golkarian, A.; Rahmati, O. Use of a maximum entropy model to identify the key factors that influence groundwater availability on the Gonabad Plain, Iran. Environ. Earth Sci. 2018, 77, 369. [Google Scholar] [CrossRef]
- Prasad, R.K.; Mondal, N.C.; Banerjee, P.; Nandakumar, M.V.; Singh, V.S. Deciphering potential groundwater zone in hard rock through the application of GIS. Environ. Geol. 2008, 55, 467–475. [Google Scholar] [CrossRef]
- Dinesh Kumar, P.K.; Gopinath, G.; Seralathan, P. International Journal of Remote Sensing Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India Application of remote sensing and GIS for the demarcation of groundwater. Int. J. Remote Sens. 2007, 28, 5583–5601. [Google Scholar] [CrossRef]
- Saha, D.; Dhar, Y.; Vittala, S.S. Delineation of groundwater development potential zones in parts of marginal Ganga Alluvial Plain in South Bihar, Eastern India. Environ. Monit. Assess. 2010, 165, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Adiat, K.A.N.; Nawawi, M.N.M.; Abdullah, K. Assessing the accuracy of GIS-based elementary multi criteria decision analysis as a spatial prediction tool—A case of predicting potential zones of sustainable groundwater resources. J. Hydrol. 2012, 440–441, 75–89. [Google Scholar] [CrossRef]
- Saaty, T. Decision Making for Leaders: The Analytic Hierarchy Process for Decisions in a Complex World; RWS Publications: Pittsburgh, PA, USA, 1990. [Google Scholar]
- Kumar, A.; Krishna, A.P. Assessment of groundwater potential zones in coal mining impacted hard-rock terrain of India by integrating geospatial and analytic hierarchy process (AHP) approach. Geocarto. Int. 2018, 33, 105–129. [Google Scholar] [CrossRef]
- Hosseinali, F.; Alesheikh, A.A. Weighting spatial information in GIS for copper mining exploration. Am. J. Appl. Sci. 2008, 5, 1187–1198. [Google Scholar] [CrossRef]
- Malczewski, J. GIS and Multicriteria Decision Analysis; John Wiley & Sons: Hoboken, NJ, USA, 1999. [Google Scholar]
- Saaty, T.L. A scaling method for priorities in hierarchical structures. J. Math Psychol. 1977, 15, 234–281. [Google Scholar] [CrossRef]
- Bonham-Carter, F.G. Geographic information systems for geoscientists: Modelling with GIS. Comput. Methods Geosci. 1994, 13, 398. [Google Scholar] [CrossRef]
- Fabbri, A.; Chung, C.-J.F.; Fabbri, A.G. Validation of Spatial Prediction Models for Landslide Hazard Mapping. Nat. Hazards 2003, 30, 451–472. [Google Scholar] [CrossRef]
- Andualem, T.G.; Demeke, G.G. Groundwater potential assessment using GIS and remote sensing: A case study of Guna tana landscape, upper blue Nile Basin, Ethiopia. J. Hydrol. Reg. Stud. 2019, 24, 100610. [Google Scholar] [CrossRef]
- Yesilnacar, E. The Application of Computational Intelligence to Landslide Susceptibility Mapping in Turkey. Ph.D. Thesis, University of Melbourne, Melbourne, Australia, 2005. [Google Scholar]
Factors | Factors | ||||||
---|---|---|---|---|---|---|---|
Lithology | Slope | Drainage Density | Landcover/Land Use | Lineament Density | Rainfall | Soil Depth | |
Lithology | 1.00 | 3.00 | 4.00 | 5.00 | 5.00 | 7.00 | 6.00 |
Slope | 1/3 | 1.00 | 2.00 | 2.00 | 4.00 | 5.00 | 6.00 |
Drainage density | 1/4 | ½ | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 |
Landcover/land use | 1/5 | ½ | 1/2 | 1.00 | 2.00 | 3.00 | 4.00 |
Lineament density | 1/5 | ¼ | 1/3 | 1/2 | 1.00 | 2.00 | 3.00 |
Rainfall | 1/7 | 1/5 | 1/4 | 1/3 | 1/2 | 1.00 | 1.00 |
Soil depth | 1/6 | 1/6 | 1/5 | 1/4 | 1/3 | 1.00 | 1.00 |
Sum | 2.29 | 5.61 | 8.28 | 11.08 | 15.83 | 23.00 | 26.00 |
Factors | Factors | |||||||
---|---|---|---|---|---|---|---|---|
Lithology | Slope | Drainage Density | Landcover/Land Use | Lineament Density | Rainfall | Soil Depth | Weights | |
Lithology | 0.4361 | 0.5341 | 0.4829 | 0.4511 | 0.3158 | 0.3043 | 0.2308 | 0.3936 |
Slope | 0.1454 | 0.1780 | 0.2414 | 0.1805 | 0.2526 | 0.2174 | 0.2308 | 0.2066 |
Drainage density | 0.1090 | 0.0890 | 0.1207 | 0.1805 | 0.1895 | 0.1739 | 0.1923 | 0.1507 |
Landcover/land use | 0.0872 | 0.0890 | 0.0604 | 0.0902 | 0.1263 | 0.1304 | 0.1538 | 0.1054 |
Lineament density | 0.0872 | 0.0445 | 0.0402 | 0.0451 | 0.0632 | 0.0870 | 0.1154 | 0.0689 |
Rainfall | 0.0623 | 0.0356 | 0.0302 | 0.0301 | 0.0316 | 0.0435 | 0.0385 | 0.0388 |
Soil depth | 0.0727 | 0.0297 | 0.0241 | 0.0226 | 0.0211 | 0.0435 | 0.0385 | 0.0360 |
Sum | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 |
No | Factors | Sub-Classes | Rating | Normalized Rates | Weights |
---|---|---|---|---|---|
1 | Lithology | Alluvium | 6 | 0.113 | 0.3936 |
Dolomite | 3 | 0.057 | |||
Claystone | 1 | 0.019 | |||
Limestone | 7 | 0.132 | |||
Sand | 4 | 0.075 | |||
Melange | 2 | 0.038 | |||
Olistostrome | 2 | 0.038 | |||
Travertine | 6 | 0.113 | |||
Talus | 2 | 0.038 | |||
Sandstone | 4 | 0.075 | |||
Pebble | 3 | 0.057 | |||
Chert | 6 | 0.113 | |||
Shale | 1 | 0.019 | |||
Spilitic Basalt | 2 | 0.038 | |||
Peridotite | 2 | 0.038 | |||
Volkanoclastics | 2 | 0.038 | |||
2 | Slope | <16.07 | 5 | 0.333 | 0.2066 |
16.08–32.14 | 4 | 0.267 | |||
32.15–48.22 | 3 | 0.200 | |||
48.23–64.29 | 2 | 0.133 | |||
>64.3 | 1 | 0.067 | |||
3 | Drainage Density | <0.394 | 5 | 0.333 | |
0.395–0.721 | 4 | 0.267 | 0.1507 | ||
0.722–1.07 | 3 | 0.200 | |||
1.08–1.52 | 2 | 0.133 | |||
>1.53 | 1 | 0.067 | |||
4 | Landcover/Land Use | Bare Rocks | 2 | 0.050 | 0.1054 |
Mine Extraction Areas | 3 | 0.075 | |||
Natural Grasslands | 4 | 0.100 | |||
Forests | 7 | 0.175 | |||
Sparse Plants | 5 | 0.125 | |||
Waterbodies | 8 | 0.200 | |||
Agricultural Areas | 5 | 0.125 | |||
Bare Soil | 4 | 0.100 | |||
Urban Areas | 2 | 0.050 | |||
5 | Lineament Density | <0.28 | 1 | 0.067 | 0.0689 |
0.29–0.52 | 2 | 0.133 | |||
0.53–0.75 | 3 | 0.200 | |||
0.76–1.1 | 4 | 0.267 | |||
>1.1 | 5 | 0.333 | |||
6 | Rainfall | <430.93 | 1 | 0.067 | 0.0388 |
430.94–460.45 | 2 | 0.133 | |||
460.46–489.97 | 3 | 0.200 | |||
489.98–519.48 | 4 | 0.267 | |||
>519.49 | 5 | 0.333 | |||
7 | Soil Depth | Shallow | 2 | 0.200 | 0.0360 |
Moderate | 3 | 0.300 | |||
Deep | 5 | 0.500 |
No | Factors | Sub-Classes | No of Pixels | Percentage of Sub-Class | No of Wells | Percentage of Wells | FR |
---|---|---|---|---|---|---|---|
1 | Lithology | Alluvium | 345,076 | 21.25 | 69 | 48.94 | 2.303 |
Dolomite | 1028 | 0.06 | 0 | 0.00 | 0.000 | ||
Claystone | 2737 | 0.17 | 0 | 0.00 | 0.000 | ||
Limestone | 592,052 | 36.46 | 12 | 8.51 | 0.233 | ||
Sand | 3532 | 0.22 | 3 | 2.13 | 9.783 | ||
Melange | 49,510 | 3.05 | 0 | 0.00 | 0.000 | ||
Olistostrome | 16,588 | 1.02 | 0 | 0.00 | 0.000 | ||
Travertine | 211,013 | 12.99 | 48 | 34.04 | 2.620 | ||
Talus | 45,655 | 2.81 | 1 | 0.71 | 0.252 | ||
Sandstone | 220,921 | 13.60 | 7 | 4.96 | 0.365 | ||
Pebble | 11,176 | 0.69 | 0 | 0.00 | 0.000 | ||
Chert | 52,394 | 3.23 | 1 | 0.71 | 0.220 | ||
Shale | 234 | 0.01 | 0 | 0.00 | 0.000 | ||
Spilitic Basalt | 9309 | 0.57 | 0 | 0.00 | 0.000 | ||
Peridotite | 15,059 | 0.93 | 0 | 0.00 | 0.000 | ||
Volkanoclastics | 47,714 | 2.94 | 0 | 0.00 | 0.000 | ||
2 | Slope | <16.07 | 662,532 | 40.80 | 111 | 78.72 | 1.930 |
16.08–32.14 | 391,247 | 24.09 | 16 | 11.35 | 0.471 | ||
32.15–48.22 | 319,286 | 19.66 | 4 | 2.84 | 0.144 | ||
48.23–64.29 | 197,243 | 12.15 | 7 | 4.96 | 0.409 | ||
>64.3 | 53,571 | 3.30 | 3 | 2.13 | 0.645 | ||
3 | Drainage Density | <0.394 | 401,889 | 24.84 | 17 | 12.06 | 0.485 |
0.395–0.721 | 483,391 | 29.87 | 25 | 17.73 | 0.593 | ||
0.722–1.07 | 394,551 | 24.38 | 33 | 23.40 | 0.960 | ||
1.08–1.52 | 256,027 | 15.82 | 41 | 29.08 | 1.838 | ||
>1.53 | 82,206 | 5.08 | 25 | 17.73 | 3.490 | ||
4 | Landcover/Land Use | Bare Rocks | 35,418 | 2.18 | 0 | 0.00 | 0.000 |
Mine Extraction Areas | 9376 | 0.58 | 0 | 0.00 | 0.000 | ||
Natural Grasslands | 82,159 | 5.06 | 8 | 5.67 | 1.121 | ||
Forests | 668,037 | 41.17 | 29 | 20.57 | 0.500 | ||
Sparse Plants | 219,736 | 13.54 | 3 | 2.13 | 0.157 | ||
Waterbodies | 3168 | 0.20 | 0 | 0.00 | 0.000 | ||
Agricultural Areas | 535,478 | 33.00 | 70 | 49.65 | 1.504 | ||
Bare Soil | 5256 | 0.32 | 0 | 0.00 | 0.000 | ||
Urban Areas | 63,977 | 3.94 | 31 | 21.99 | 5.576 | ||
5 | Lineament Density | <0.28 | 59,630 | 14.71 | 51 | 36.17 | 2.460 |
0.29–0.52 | 111,176 | 27.42 | 35 | 24.82 | 0.905 | ||
0.53–0.75 | 123,274 | 30.40 | 37 | 26.24 | 0.863 | ||
0.76–1.1 | 83,001 | 20.47 | 10 | 7.09 | 0.346 | ||
>1.1 | 28,416 | 7.01 | 8 | 5.67 | 0.810 | ||
6 | Rainfall | <430.93 | 53,933 | 3.28 | 6 | 4.26 | 1.298 |
430.94–460.45 | 234,155 | 14.24 | 9 | 6.38 | 0.448 | ||
460.46–489.97 | 674,202 | 40.99 | 46 | 32.62 | 0.796 | ||
489.98–519.48 | 566,163 | 34.42 | 65 | 46.10 | 1.339 | ||
>519.49 | 116,440 | 7.08 | 15 | 10.64 | 1.503 | ||
7 | Soil Depth | Shallow | 717,956 | 44.23 | 72 | 51.06 | 1.155 |
Moderate | 648,620 | 39.96 | 47 | 33.33 | 0.834 | ||
Deep | 256,656 | 15.81 | 22 | 15.60 | 0.987 |
Class | AHP Model | FR Model | ||||
---|---|---|---|---|---|---|
Range | Area (km2) | Area (%) | Range | Area (km2) | Area (%) | |
Very Low | 0.0743–0.1472 | 377.125 | 9.71 | 2.4140–5.6005 | 1807.733 | 46.54 |
Low | 0.1473–0.1717 | 1068.54 | 27.51 | 5.6006–8.6277 | 853.6725 | 21.98 |
Moderate | 0.1718–0.1922 | 1508.575 | 38.84 | 8.6278–12.7702 | 1066.238 | 27.45 |
High | 0.1923–0.243 | 930.17 | 23.95 | 12.7703–22.7280 | 156.8275 | 4.04 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmadi, H.; Kaya, O.A.; Babadagi, E.; Savas, T.; Pekkan, E. GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey. Environ. Sci. Proc. 2021, 5, 11. https://doi.org/10.3390/IECG2020-08741
Ahmadi H, Kaya OA, Babadagi E, Savas T, Pekkan E. GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey. Environmental Sciences Proceedings. 2021; 5(1):11. https://doi.org/10.3390/IECG2020-08741
Chicago/Turabian StyleAhmadi, Hemayatullah, Ozumcan Alara Kaya, Ebru Babadagi, Turan Savas, and Emrah Pekkan. 2021. "GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey" Environmental Sciences Proceedings 5, no. 1: 11. https://doi.org/10.3390/IECG2020-08741
APA StyleAhmadi, H., Kaya, O. A., Babadagi, E., Savas, T., & Pekkan, E. (2021). GIS-Based Groundwater Potentiality Mapping Using AHP and FR Models in Central Antalya, Turkey. Environmental Sciences Proceedings, 5(1), 11. https://doi.org/10.3390/IECG2020-08741