Application of a Machine Learning Methodology for Data Implementation †
Abstract
:1. Introduction
2. Experiments
2.1. Data
2.2. Methodology
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amanollahi, J.; Tzanis, C.; Abdullah, A.M.; Ramli, M.F.; Pirasteh, S. Development of the models to estimate particulate matter from thermal infrared band of Landsat Enhanced Thematic Mapper. Int. J. Environ. Sci. Technol. 2013, 10, 1245–1254. [Google Scholar] [CrossRef]
- Baklanov, A.; Molina, L.T.; Gauss, M. Megacities, air quality and climate. Atmos. Environ. 2016, 126, 235–249. [Google Scholar] [CrossRef]
- European Environment Agency. Air Quality in Europe—2013 Report: EEA Report No. 9/2013; European Union: Luxembourg, 2013; Available online: http://www.eea.europa.eu/publications/air-quality-in-europe-2013 (accessed on 11 November 2020).
- Can, A.; Dekoninck, L.; Botteldooren, D. Measurement network for urban noise assessment: Comparison of mobile measurements and spatial interpolation approaches. Appl. Acoust. 2014, 83, 32–39. [Google Scholar] [CrossRef]
- Denby, B.; Sundvor, I.; Cassiani, M.; de Smet, P.; de Leeuw, F.; Horálek, J. Spatial Mapping of Ozone and SO2 Trends in Europe. Sci. Total Environ. 2010, 408, 4795–4806. [Google Scholar] [CrossRef] [PubMed]
- Zhan, D.; Kwan, M.P.; Zhang, W.; Yu, X.; Meng, B.; Liu, Q. The driving factors of air quality index in China. J. Clean. Prod. 2018, 197, 1342–1351. [Google Scholar] [CrossRef]
- Silva, L.T.; Mendes, J.F.G. City Noise-Air: An environmental quality index for cities. Sustain. Cities Soc. 2012, 4, 1–11. [Google Scholar] [CrossRef]
- Ganguly, N.D.; Tzanis, C.G.; Philippopoulos, K.; Deligiorgi, D. Analysis of a severe air pollution episode in India during Diwali festival—a nationwide approach. Atmósfera 2019, 32, 225–236. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Koutsogiannis, I.; Philippopoulos, K.; Deligiorgi, D. Recent climate trends over Greece. Atmos. Res. 2019, 230, 104623. [Google Scholar] [CrossRef]
- Tzanis, C.G.; Alimissis, A.; Philippopoulos, K.; Deligiorgi, D. Applying linear and nonlinear models for the estimation of particulate matter variability. Environ. Pollut. 2019, 246, 89–98. [Google Scholar] [CrossRef] [PubMed]
- Deligiorgi, D.; Philippopoulos, K.; Thanou, L.; Karvounis, G. A Comparative Study of Three Spatial Interpolation Methodologies for the Analysis of Air Pollution Concentrations in Athens, Greece. AIP Conf. Proc. 2009, 1203, 445–450. [Google Scholar]
- Tzanis, C.; Varotsos, C.A. Tropospheric aerosol forcing of climate: A case study for the greater area of Greece. Int. J. Remote Sens. 2008, 29, 2507–2517. [Google Scholar]
- Varotsos, C.; Christodoulakis, J.; Tzanis, C.; Cracknell, A.P. Signature of tropospheric ozone and nitrogen dioxide from space: A case study for Athens, Greece. Atmos. Environ. 2014, 89, 721–730. [Google Scholar] [CrossRef]
- Cort, J.W.; Kenji, M. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 2005, 30, 79–82. [Google Scholar] [CrossRef]
- Alimissis, A.; Philippopoulos, K.; Tzanis, C.G.; Deligiorgi, D. Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 2018, 191, 205–213. [Google Scholar] [CrossRef]
- Fallahi, S.; Amanollahi, J.; Tzanis, C.G.; Ramli, M.F. Estimating solar radiation using NOAA/AVHRR and ground measurement data. Atmos. Res. 2018, 199, 93–102. [Google Scholar] [CrossRef]
- Rahimpour, A.; Amanollahi, J.; Tzanis, C.G. Air quality data series estimation based on machine learning approaches for urban environments. Air Qual. Atmos. Health 2020. [Google Scholar] [CrossRef]
- Mirzaei, M.; Amanollahi, J.; Tzanis, C.G. Evaluation of linear, nonlinear, and hybrid models for predicting PM2.5 based on a GTWR model and MODIS AOD data. Air Qual. Atmos. Health 2019, 12, 1215–1224. [Google Scholar] [CrossRef]
Original Gaps | Gaps after Interpolation | Difference | Estimated Percentage (%) | |
---|---|---|---|---|
NO2 | 13,253 | 11,145 | 2108 | 15.91 |
O3 | 10,814 | 7961 | 2853 | 26.38 |
PM10 | 7182 | 3948 | 3234 | 45.03 |
PM2.5 | 4558 | 2524 | 2034 | 44.62 |
SO2 | 7043 | 4746 | 2297 | 32.61 |
Training | Validation | Testing | Total | |
---|---|---|---|---|
NO2 | 47,151 | 10,101 | 10,101 | 67,353 |
O3 | 25,272 | 5412 | 5412 | 36,096 |
PM10 | 13,410 | 2880 | 2880 | 19,170 |
PM2.5 | 37,785 | 8100 | 8100 | 53,985 |
SO2 | 13,925 | 3080 | 3080 | 20,085 |
Input Neurons | Hidden | Output | MAE | Mean | Error (%) | |
---|---|---|---|---|---|---|
NO2 | 13 | 21.7 | 1 | 5.80 | 32.70 | 17.74 |
O3 | 12 | 22.3 | 1 | 6.86 | 58.86 | 11.65 |
PM10 | 10 | 23.6 | 1 | 5.71 | 29.53 | 19.34 |
PM2.5 | 5 | 25.2 | 1 | 5.17 | 23.81 | 21.71 |
SO2 | 5 | 22.5 | 1 | 1.89 | 6.06 | 31.19 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzanis, C.G.; Alimissis, A.; Koutsogiannis, I. Application of a Machine Learning Methodology for Data Implementation. Environ. Sci. Proc. 2021, 4, 11. https://doi.org/10.3390/ecas2020-08156
Tzanis CG, Alimissis A, Koutsogiannis I. Application of a Machine Learning Methodology for Data Implementation. Environmental Sciences Proceedings. 2021; 4(1):11. https://doi.org/10.3390/ecas2020-08156
Chicago/Turabian StyleTzanis, Chris G., Anastasios Alimissis, and Ioannis Koutsogiannis. 2021. "Application of a Machine Learning Methodology for Data Implementation" Environmental Sciences Proceedings 4, no. 1: 11. https://doi.org/10.3390/ecas2020-08156
APA StyleTzanis, C. G., Alimissis, A., & Koutsogiannis, I. (2021). Application of a Machine Learning Methodology for Data Implementation. Environmental Sciences Proceedings, 4(1), 11. https://doi.org/10.3390/ecas2020-08156