Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms †
Abstract
:1. Introduction
2. Material and Methods
2.1. Case Study
2.2. Methods
3. Results
4. Validation
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lehmann, N.; Bamber, J.; Zhu, X. Global Decadal Sea Surface Height Forecast with Conformal Prediction. In Proceedings of the EGU23, the 25th EGU General Assembl, Vienna, Austria, 23–28 April 2023. [Google Scholar] [CrossRef]
- Bašić, T. Introductory Chapter: Satellite Altimetry—Overview [Internet]. In Satellite Altimetry—Theory, Applications, and Recent Advances; IntechOpen: London, UK, 2023. [Google Scholar] [CrossRef]
- Vaze, P.; Fournier, S.; Willis, J.K. Reshaping Earth: How the TOPEX and Jason satellites revolutionized oceanography and redefined climate science. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–7. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Lakes, T.; Omarzadeh, D.; Sharifi, A.; Blaschke, T.; Karimzadeh, S. Scenario-based analysis of the impacts of lake drying on food production in the Lake Urmia Basin of Northern Iran. Sci. Rep. 2022, 12, 6237. [Google Scholar] [CrossRef]
- Andersen, O.; Knudsen, P.; Kenyon, S.; Factor, J.; Holmes, S. Global gravity field from recent satellites (DTU15)—Arctic improvements. First Break 2017, 35, 37–40. [Google Scholar] [CrossRef]
- Vazini Ahghar, E.; Shah-Hosseini, R.; Nazari, B.; Dodangeh, P.; Mousavi, S. Assessment of drought in agricultural areas by combining meteorological data and remote sensing data. Proceedings 2023, 87, 28. [Google Scholar] [CrossRef]
- Eghrari, Z.; Delavar, M.R.; Zare, M.; Beitollahi, A.; Nazari, B. Land subsidence susceptibility mapping using machine learning algorithms. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-4/W1-2022, 129–136. [Google Scholar] [CrossRef]
- Eghrari, Z.; Delavar, M.; Zare, M.; Mousavi, M.; Nazari, B.; Ghaffarian, S. Groundwater level prediction using deep recurrent neural networks and uncertainty assessment. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-1/W1-2023, 493–500. [Google Scholar] [CrossRef]
- Ranjgar, B.; Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Natural Hazard Susceptibility Mapping Using Ubiquitous Geospatial Artificial Intelligence (Ubiquitous GeoAI) Concept: A Case Study on Forest Fire Susceptibility Mapping. In Current Overview on Science and Technology Research; B P International: London, UK, 2022; Volume 7, pp. 100–119. [Google Scholar] [CrossRef]
- Seyed Mousavi, S.M.; Akhoondzadeh, M. A quick seasonal detection and assessment of international shadegan wetland water body extent using google earth engine cloud platform. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-4/W1-2022, 699–706. [Google Scholar] [CrossRef]
- Mohammadi, A.; Karimzadeh, S.; Jalal, S.J.; Kamran, K.V.; Shahabi, H.; Homayouni, S.; Al-Ansari, N. A Multi-Sensor Comparative Analysis on the Suitability of Generated DEM from Sentinel-1 SAR Interferometry Using Statistical and Hydrological Models. Sensors 2020, 20, 7214. [Google Scholar] [CrossRef]
- Kamran, K.V.; Makky, N.; Charandabi, N.K. Investigating the Flooded Area of Bangladesh by Sentinel_1 and CHIRPS Images in the GEE System; IntercontinentalGeoinformation Days (IGD): Baku, Azerbaijan, 2023; Volume 6, pp. 83–88. [Google Scholar]
- Izanlou, S.; Amerian, Y.; Seyed Mousavi, S.M. GNSS-derived precipitable water vapor modeling using machine learning methods. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2023, X-4/W1-2022, 307–313. [Google Scholar] [CrossRef]
- Schmitt, M.; Ahmadi, S.A.; Xu, Y.; Taşkın, G.; Verma, U.; Sica, F.; Hänsch, R. There Are No Data Like More Data: Datasets for deep learning in Earth observation. IEEE Geosci. Remote Sens. Mag. 2022, 11, 63–97. [Google Scholar] [CrossRef]
- Li, X.; Zhang, T.; Yang, D.; Wang, G.; He, Z.; Li, L. Research on lake water level and its response to watershed climate change in Qinghai Lake from 1961 to 2019. Front. Environ. Sci. 2023, 11, 1130443. [Google Scholar] [CrossRef]
- Tochimoto, E.; Iizuka, S. Impact of warm sea surface temperature over a Kuroshio large meander on extreme heavy rainfall caused by an extratropical cyclone. Atmos. Sci. Lett. 2023, 24, e1135. [Google Scholar] [CrossRef]
- Qi, Z.; Shi, Z.; Rasmussen, T.C. Time- and frequency-domain determination of aquifer hydraulic properties using water- level responses to natural perturbations: A case study of the Rongchang Well, Chongqing, southwestern China. J. Hydrol. 2023, 617, 128820, ISSN 0022-1694. [Google Scholar] [CrossRef]
- Ruma, J.; Adnan, M.D.; Dewan, A.; Rahman, R. Particle swarm optimization based LSTM networks for water level forecasting: A case study on Bangladesh river network. Results Eng. 2023, 17, 100951, ISSN 2590-1230. [Google Scholar] [CrossRef]
- Xin, L.; Hu, S.; Wang, F.; Xie, W.; Hu, D.; Dong, C. Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height. Front. Mar. Sci. 2023, 10, 1079286. [Google Scholar] [CrossRef]
- Saller, A.; Winterbottom, C. Deep marine diagenesis, offshore Hawaii and Enewetak, with implications for older carbonates. Depos. Rec. 2023, 9, 526–572. [Google Scholar] [CrossRef]
- Moore, J.G.; Campbell, J.F. Age of tilted reefs, Hawaii. J. Geophys. Res. Solid Earth 1987, 92, 2641–2648. [Google Scholar] [CrossRef]
- Roblou, L.; Lyard, F.; Le Henaff, M.; Maraldi, C. X-track, a new processing tool for altimetry in coastal oceans. In Proceedings of the 2007 IEEE International Geoscience and Remote Sensing Symposium, Barcelona, Spain, 23–28 July 2007; pp. 5129–5133. [Google Scholar] [CrossRef]
- Dastranj, H.; Tavakoli, F.; Soltanpour, A. Investigating the Water Level and Volume Variations of Lake Urmia Using Satellite Images and Satellite Altimetry; Research Paper; Department of Surveying Engineering, Shahrood Branch, Islamic Azad University: Shahrood, Iran, 2018; pp. 149–163. [Google Scholar] [CrossRef]
- Elsahebi, M.; Hossen, H. Performance Evaluation of GIS Interpolation Techniques to Generate 3D Bed Surfaces Profiles of Lake Nubia. Aswan Univ. J. Environ. Stud. 2023, 4, 139–152. [Google Scholar] [CrossRef]
- Mo, T.; Li, S.; Li, G. An interpretable machine learning model for predicting cavity water depth and cavity length based on XGBoost–SHAP. J. Hydroinform. 2023, 25, 1488–1500. [Google Scholar] [CrossRef]
- Li, Z.; Li, C.; Guan, T.; Shang, S. Underwater Object Detection Based on Improved Transformer and Attentional Supervised Fusion. Inf. Technol. Control 2023, 52, 397–415. [Google Scholar] [CrossRef]
- Cameron, A.C.; Windmeijer, F.A. An R-squared measure of goodness of fit for some common nonlinear regression models. J. Econom. 1997, 77, 329–342. [Google Scholar] [CrossRef]
- Barnston Anthony, G.; Van den Dool, H.M. A degeneracy in cross-validated skill in regression-based forecasts. J. Clim. 1993, 6, 963–977. [Google Scholar] [CrossRef]
Mission | Band | Year |
---|---|---|
ECMWF/ERA5/MONTHLY | surface_pressure | 2019 |
OpenLandMap Precipitation Monthly | Jan Precipitation monthly,… | |
GCOM-C/SGLI L3 Sea Surface Temperature (V1) | SST_AVE | |
Jason-2/OSTM | C-band |
Model | Parameter | Validation |
---|---|---|
MLP | RMSE_R2 | 0.2451_0.9255 |
XGBOOST | RMSE_R2 | 0.1832_0.9520 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makky, N.; Valizadeh Kamran, K.; Karimzadeh, S. Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms. Environ. Sci. Proc. 2024, 29, 83. https://doi.org/10.3390/ECRS2023-16864
Makky N, Valizadeh Kamran K, Karimzadeh S. Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms. Environmental Sciences Proceedings. 2024; 29(1):83. https://doi.org/10.3390/ECRS2023-16864
Chicago/Turabian StyleMakky, Nilufar, Khalil Valizadeh Kamran, and Sadra Karimzadeh. 2024. "Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms" Environmental Sciences Proceedings 29, no. 1: 83. https://doi.org/10.3390/ECRS2023-16864
APA StyleMakky, N., Valizadeh Kamran, K., & Karimzadeh, S. (2024). Impact of Global Warming on Water Height Using XGBOOST and MLP Algorithms. Environmental Sciences Proceedings, 29(1), 83. https://doi.org/10.3390/ECRS2023-16864