An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data †
Abstract
:1. Introduction
2. Material and Methods
2.1. Study Area and Data Feasibility
2.2. Spatial Model for Soil Metrics
3. Result and Discussion
3.1. Soil Moisture and Textural Index
3.2. Fluoride
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Unde, M.P.; Patil, R.U.; Dastoor, P.P. The untold story of fluoridation: Revisiting the changing perspectives. Indian J. Occup. Environ. Med. 2018, 22, 121. [Google Scholar] [PubMed]
- Singh, G.; Kumari, B.; Sinam, G.; Kumar, N.; Mallick, S. Fluoride distribution and contamination in the water, soil and plants continuum and its remedial technologies, an Indian perspective—A review. Environ. Pollut. 2018, 239, 95–108. [Google Scholar] [CrossRef] [PubMed]
- Yardımcı, B.; Uzer, A.; Apak, R. Spectrophotometric fluoride determination using St. John’s wort extract as a green chromogenic complexant for Al (III). ACS Omega 2022, 7, 45432–45442. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.; Zhang, H.H.; Xia, B.; Xu, D.R. Total fluoride in Guangdong soil profiles, China: Spatial distribution and vertical variation. Environ. Int. 2007, 33, 302–308. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; Sinam, G.; Kriti Pandey, M.; Kumari, B.; Kulsoom, M. Soil pollution by fluoride in India: Distribution, chemistry and analytical methods. In Environmental Concerns and Sustainable Development: Volume 2: Biodiversity, Soil and Waste Management; Springer: Berlin/Heidelberg, Germany, 2020; pp. 307–324. [Google Scholar]
- Shahabfar, A.; Ghulam, A.; Eitzinger, J. Drought monitoring in Iran using the perpendicular drought indices. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 119–127. [Google Scholar] [CrossRef]
- Hazaymeh, K.; Hassan, Q.K. A remote sensing-based agricultural drought indicator and its implementation over a semi-arid region, Jordan. J. Arid. Land 2017, 9, 319–330. [Google Scholar] [CrossRef]
- Chandrasekar, K.; Sesha Sai, M.V.R.; Roy, P.S.; Dwevedi, R.S. Land Surface Water Index (LSWI) response to rainfall and NDVI using the MODIS Vegetation Index product. Int. J. Remote Sens. 2010, 31, 3987–4005. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, H.; Wang, C.; Tang, Y.; Zhang, B.; Wu, F.; Wang, J.; Zhang, Z. Soil moisture estimation based on the distributed scatterers adaptive filter over the QTP permafrost region using sentinel-1 and high-resolution TerraSAR-X data. Int. J. Remote Sens. 2021, 42, 902–928. [Google Scholar] [CrossRef]
- Kornelsen, K.C.; Coulibaly, P. Advances in soil moisture retrieval from synthetic aperture radar and hydrological applications. J. Hydrol. 2013, 476, 460–489. [Google Scholar] [CrossRef]
- Yu, F.; Zhao, Y. A new semi-empirical model for soil moisture content retrieval by ASAR and TM data in vegetation-covered areas. Sci. China Earth Sci. 2011, 54, 1955–1964. [Google Scholar] [CrossRef]
- Wang, Y.-L.; Liu, Y.-G.; Schmitt, R.A. (Appendix 1) Element Concentrations in Sediment and Basalt Samples from DSDP Holes 75-530A and 75-530B. PANGAEA. 1986. Available online: https://doi.pangaea.de/10.1594/PANGAEA.707253 (accessed on 17 November 2023).
- Mialon, A.; Richaume, P.; Leroux, D.; Bircher, S.; Al Bitar, A.; Pellarin, T.; Wigneron, J.P.; Kerr, Y.H. Comparison of Dobson and Mironov dielectric models in the SMOS soil moisture retrieval algorithm. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3084–3094. [Google Scholar] [CrossRef]
- Ravi, K.P.; Periasamy, S. Integrated SAR simulation to categorize the stressed and salt-tolerant crops using Sentinel-1 data. Geocarto Int. 2022, 37, 3659–3678. [Google Scholar] [CrossRef]
- Sreenivas, K.; Venkataratnam, L.; Rao, P.N. Dielectric properties of salt-affected soils. Int. J. Remote Sens. 1995, 16, 641–649. [Google Scholar] [CrossRef]
- Jacob, M.V.; Hartnett, J.G.; Mazierska, J.; Krupka, J.; Tobar, M.E. Dielectric characterisation of Barium Fluoride at cryogenic temperatures using TE011 and quasi TE0mn mode dielectric resonators. Cryogenics 2006, 46, 730–735. [Google Scholar] [CrossRef]
- Jacob, M.V. Low temperature microwave characterisation of lithium fluoride at different frequencies. Sci. Technol. Adv. Mater. 2005, 6, 944–949. [Google Scholar] [CrossRef]
- Filipponi, F. Sentinel-1 GRD preprocessing workflow. In Proceedings of the 3rd International Electronic Conference on Remote Sensing, Online, 22 May–5 June 2019; p. 11. [Google Scholar]
- Singh, B.; Dolk, M.M.; Shen, Q.; Camps-Arbestain, M. Biochar pH, electrical conductivity and liming potential. In Biochar a Guide to Analytical Methods; CSIRO Publishing: Clayton, Australia, 2017; Volume 23. [Google Scholar]
- Pagliano, E.; Meija, J.; Ding, J.; Sturgeon, R.E.; D’Ulivo, A.; Mester, Z. Novel ethyl-derivatization approach for the determination of fluoride by headspace gas chromatography/mass spectrometry. Anal. Chem. 2013, 85, 877–881. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; Periasamy, S.; Ravi, K.P. Integrated SAR Vegetation Index for Rabi And Kharif Crops. In Proceedings of the IGARSS 2022—2022 IEEE International Geoscience and Remote Sensing Symposium, Kuala Lumpur, Malaysia, 17–22 July 2022; pp. 6406–6409. [Google Scholar]
- Újvári, G.; Kok, J.F.; Varga, G.; Kovács, J. The physics of wind-blown loess: Implications for grain size proxy interpretations in Quaternary paleoclimate studies. Earth-Sci. Rev. 2016, 154, 247–278. [Google Scholar] [CrossRef]
- Sun, J.; Ge, X.; Chu, D.; Zhang, L.; Meng, H.; Zheng, Y. Effects of sediment diameter and concentration on cavitation characteristics and mechanism. Tribol. Int. 2022, 171, 107543. [Google Scholar] [CrossRef]
- Li, X. Developing Highly Efficient Oxygen Evolution Reaction Electrocatalysts by Electronic Structure Regulation on Transition Metal Oxides. Ph.D Thesis, University of Wollongong, Wollongong NSW, Australia, 2020. [Google Scholar]
- Onipe, T.; Edokpayi, J.N.; Odiyo, J.O. Geochemical characterization and assessment of fluoride sources in groundwater of Siloam area, Limpopo Province, South Africa. Sci. Rep. 2021, 11, 14000. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krishnan, V.; Asaithambi, M. An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data. Environ. Sci. Proc. 2024, 29, 40. https://doi.org/10.3390/ECRS2023-16318
Krishnan V, Asaithambi M. An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data. Environmental Sciences Proceedings. 2024; 29(1):40. https://doi.org/10.3390/ECRS2023-16318
Chicago/Turabian StyleKrishnan, Vijayasurya, and Manimaran Asaithambi. 2024. "An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data" Environmental Sciences Proceedings 29, no. 1: 40. https://doi.org/10.3390/ECRS2023-16318
APA StyleKrishnan, V., & Asaithambi, M. (2024). An Attempt: A Modified Semi-Empirical Approach Based on Retrieving Soil Fluoride from Agricultural Patches Using Sentinel-1 SAR Data. Environmental Sciences Proceedings, 29(1), 40. https://doi.org/10.3390/ECRS2023-16318