Climate Monitoring and Black Carbon Detection Using Raspberry Pi with Machine Learning †
Abstract
:1. Introduction
2. Data and Methodology
3. Principle of Operation
Components Used
- Raspberry Pi;
- MQ2 sensor;
- DHT11 sensor;
- LCD;
- BMP135 gas sensor module;
- PM7003 sensor.
4. Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banerjee, I.; Naskar, R.; Deb, K.; Saha, D.; Bhattacharjee, S.; Roy, D.K. Advanced air quality monitoring system using Raspberry pi. In Proceedings of the 2019 International Conference on Opto-Electronics and Applied Optics (Optronix), Kolkata, India, 18–20 March 2019; pp. 1–4. [Google Scholar]
- Gulia, S.; Nagendra, S.S.; Khare, M.; Khanna, I. Urban air quality management—A review. Atmos. Pollut. Res. 2015, 6, 286–304. [Google Scholar] [CrossRef]
- Kutzner, R.D.; von Schneidemesser, E.; Kuik, F.; Quedenau, J.; Weatherhead, E.C.; Schmale, J. Long-term monitoring of black carbon across Germany. Atmos. Environ. 2018, 185, 41–52. [Google Scholar] [CrossRef]
- Tragos, E.Z.; Angelakis, V.; Fragkiadakis, A.; Gundlegard, D.; Nechifor, C.-S.; Oikonomou, G.; Pöhls, H.C.; Gavras, A. Enabling reliable and secure IoT-based smart city applications. In Proceedings of the 2014 IEEE International Conference on Pervasive Computing and Communication Workshops (PERCOM WORKSHOPS), Budapest, Hungary, 24–28 March 2014; pp. 111–116. [Google Scholar]
- Wang, A.; Xu, J.; Tu, R.; Saleh, M.; Hatzopoulou, M. Potential of machine learning for prediction of traffic related air pollution. Transp. Res. Part D Transp. Environ. 2020, 88, 102599. [Google Scholar] [CrossRef]
- Chen, X.; Liu, X.; Xu, P. IOT-based air pollution monitoring and forecasting system. In Proceedings of the 2015 International Conference on Computer and Computational Sciences (ICCCS), Greater Noida, India, 27–29 January 2015; pp. 257–260. [Google Scholar]
- Krewski, D.; Jerrett, M.; Burnett, R.T.; Ma, R.; Hughes, E.; Shi, Y.; Turner, M.C.; Pope, C.A., 3rd; Thurston, G.; Calle, E.E.; et al. Extended follow-up and spatial analysis of the American Cancer Society study linking particulate air pollution and mortality. Res. Rep. Health Eff. Inst. 2009, 140, 5–114. [Google Scholar]
- Kumar, S.; Jasuja, A. Air quality monitoring system based on IoT using Raspberry Pi. In Proceedings of the 2017 International Conference on Computing, Communication and Automation (ICCCA), Greater Noida, India, 5–6 May 2017; pp. 1341–1346. [Google Scholar]
- Kirthima, A.M.; Raghunath, A. Air quality monitoring system using Raspberry Pi and web socket. Int. J. Comput. Appl. 2017, 975, 8887. [Google Scholar]
- Jiang, Y.; Shi, Y.; Patterson, D.J.; Yvonne, R.; Xie, X. MAQS: A personalized mobile sensing system for indoor air quality monitoring. In Proceedings of the 13th International Conference on Ubiquitous Computing, Beijing, China, 17–21 September 2011; pp. 271–280. [Google Scholar]
- Zheng, K.; Zhao, S.; Yang, Z.; Xiong, X.; Xiang, W. Design and implementation of LPWA-based air quality monitoring system. IEEE Access 2016, 4, 3238–3245. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Hoek, G.; Simic-Lawson, M.; Fischer, P.; van Bree, L.; Brink, H.T.; Keuken, M.; Atkinson, R.W.; Anderson, H.R.; Brunekreef, B.; et al. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2.5. Environ. Health Perspect. 2011, 119, 1691–1699. [Google Scholar] [CrossRef] [PubMed]
- FLaden; Neas, L.M.; Dockery, D.W.; Schwartz, J. Association of fine particulate matter from different sources with daily mortality in six US cities. Environ. Health Perspect. 2000, 108, 941–947. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chandrakala, M.; Lakshmaiah, M.V. Climate Monitoring and Black Carbon Detection Using Raspberry Pi with Machine Learning. Environ. Sci. Proc. 2023, 27, 38. https://doi.org/10.3390/ecas2023-15481
Chandrakala M, Lakshmaiah MV. Climate Monitoring and Black Carbon Detection Using Raspberry Pi with Machine Learning. Environmental Sciences Proceedings. 2023; 27(1):38. https://doi.org/10.3390/ecas2023-15481
Chicago/Turabian StyleChandrakala, Madiga, and M. V. Lakshmaiah. 2023. "Climate Monitoring and Black Carbon Detection Using Raspberry Pi with Machine Learning" Environmental Sciences Proceedings 27, no. 1: 38. https://doi.org/10.3390/ecas2023-15481
APA StyleChandrakala, M., & Lakshmaiah, M. V. (2023). Climate Monitoring and Black Carbon Detection Using Raspberry Pi with Machine Learning. Environmental Sciences Proceedings, 27(1), 38. https://doi.org/10.3390/ecas2023-15481