Estimating the Potential Evapotranspiration of Egypt Using a Regional Climate Model and a High-Resolution Reanalysis Dataset †
Abstract
:1. Introduction
- Examine the influence of the lateral boundary condition (EIN15 and NNRP2) on the simulated PET with respect to ERA5−land−derived product (hereafter ERA5; [12]).
- Address the added value of the calibrated HS equation (relative to the original version) in comparison with the ERA5.
- Validate the calibrated HS equation (versus the original version) by examining the climatological annual cycle of the simulated PET with respect to ERA5 at locations defined by [3].
2. Materials and Methods
2.1. Study Area
2.2. Model Description and Experiment Design
2.3. Validation Data
- ERA5 ([21]): It provides hourly estimates of a large number of atmospheric, land, and oceanic climate variables with 0.25° horizontal grid spacing and 137 vertical levels (up to a height of 80 km). For the purpose of the present study, monthly means were aggregated to the seasonal time scale.
- ERA5land ([22]): This product provides the surface meteorological variables at high resolution (0.1 degrees) using the land surface model of the ERA5 (titled ECMWF Scheme for Surface Exchanges over Land incorporating land surface hydrology; H-TESSEL).
- Please note that both ERA5 and ERA5land were used to evaluate the simulated SW and T2m of the RegCM4 (since these fields were used as inputs of the HS equation) to take into account the influence of the horizontal grid spacing of the reanalysis product.
- 3.
- Station observation is a major source to monitor the PET changes both spatially and temporally. However, availability of long-term records was not sufficient to evaluate the RegCM4 performance (before and after calibrating the HS equation) in this study. Recently, a new high-resolution global gridded PET (hPET) product was developed [12]. This product uses the hourly meteorological variables provided by the offline land model of the ERA5 reanalysis product [21]. Additionally, it adopts the PM equation to compute the PET and it is integrated over the period 1981–2021 in 0.1-degree grid spacing over the global land area. In the present study, monthly mean PET data were used to evaluate the RegCM4 performance both spatially and for locations defined by [3] in Section 1.
3. Results
3.1. Influence of Lateral Boundary Condition
3.2. Added Value of the Calibrated HS Equation
4. Discussion and Conclusions
- Revising the short/longwave radiation scheme, tuning the parameters of the boundary layer scheme to possibly reduce the uncertainty of the simulated SW, T2m and, eventually PET.
- Adapting a bias-correction technique (e.g., [3]) to correct the simulated PET over a location of interest.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdullah, S.S.; Malek, M.A.; Abdullah, N.S.; Kisi, O.; Yap, K.S. Extreme learning machines: A new approach for prediction of reference evapotranspiration. J. Hydrol. 2015, 527, 184–195. [Google Scholar] [CrossRef]
- Allen, G.R.; Pereira, S.L.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Report 56; Food and Agricultural Organization of the United Nations (FAO): Rome, Italy, 1998; 300p. [Google Scholar]
- Anwar, S.A.; Salah, Z.; Khaled, W.; Zakey, A.S. Projecting the Potential Evapotranspiration in Egypt Using a High-Resolution Regional Climate Model (RegCM4). Environ. Sci. Proc. 2022, 19, 43. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Samani, Z.A. Reference crop evapotranspiration from temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Hargreaves, G.L.; Allen, R.G. History and evaluation of Hargreaves evapotranspiration equation. J. Irrigat. Drain. Eng. 2003, 129, 53–63. [Google Scholar] [CrossRef]
- Irmak, S.; Irmak, A.; Allen, R.G.; Jones, J.W. Solar and Net Radiation-Based Equations to Estimate Reference Evapotranspiration in Humid Climates. J. Irrig. Drain. Eng. 2003, 129, 5. [Google Scholar] [CrossRef]
- Er-Raki, S.; Chehbouni, A.; Khabba, S.; Simonneaux, V.; Jarlan, L.; Ouldbba, A.; Rodriguez, J.C.; Allen, R. Assessment of reference evapotranspiration methods in semi-arid regions: Can weather forecast data be used as alternate of ground meteorological parameters? J. Arid. Environ. 2010, 74, 1587–1596. [Google Scholar] [CrossRef] [Green Version]
- Potop, V.; Boroneant, C. Assessment of Potential Evapotranspiration at Chisinau Station; Mendel a Bioklimatologie: Brno, Czech Republic, 2014; pp. 3–5. [Google Scholar]
- Sperna Weiland, F.C.; Tisseuil, C.; Dürr, H.H.; Vrac, M.; Van Beek, L.P.H. Selecting the optimal method to calculate daily global reference potential evaporation from CFSR reanalysis data for application in a hydrological model study. Hydrol. Earth Syst. Sci. 2012, 16, 983–1000. [Google Scholar] [CrossRef] [Green Version]
- Anwar, S.A.; Mamadou, O.; Diallo, I.; Sylla, M.B. On the influence of vegetation cover changes and vegetation-runoff systems on the simulated summer potential evapotranspiration of tropical Africa using RegCM4. Earth Syst. Environ. 2021, 5, 883–897. [Google Scholar] [CrossRef]
- Cobaner, M.; Citakoğlu, H.; Haktanir, T.; Kisi, O. Modifying Hargreaves–Samani equation with meteorological variables for estimation of reference evapotranspiration in Turkey. Hydrol. Res. 2017, 48, 480–497. [Google Scholar] [CrossRef]
- Singer, M.; Asfaw, D.; Rosolem, R.; Cuthbert, M.O.; Miralles, D.G.; MacLeod, D.; Michaelides, K. Hourly potential evapotranspiration (hPET) at 0.1degs grid resolution for the global land surface from 1981-present. Sci. Data 2021, 8, 224. [Google Scholar] [CrossRef]
- Giorgi, F.; Coppola, E.; Solmon, F.; Mariotti, L.; Sylla, M.B.; Bi, X.; Elguindi, N.; Diro, G.T.; Nair, V.; Giuliani, G.; et al. BrankovicRegCM4: Model description and preliminary tests over multiple CORDEX domains. Clim. Res. 2012, 52, 7–29. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Pal, J.S.; Bi, X.; Sloan, L.; Elguindi, N.; Solmon, F. Introduction to the TAC special issue: The RegCNET network. Theor. Appl. Clim. 2006, 86, 1–4. [Google Scholar] [CrossRef]
- Anwar, S.A.; Diallo, I. Modelling the Tropical African Climate using a state-of-the-art coupled regional climate-vegetation model. Clim. Dyn. 2022, 58, 97–113. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.K.; Hnilo, J.J.; Fiorino, M.; Potter, G.L. NCEP-DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1643. [Google Scholar] [CrossRef] [Green Version]
- Emanuel, K.A. A scheme for representing cumulus convection in large-scale models. J. Atmos. Sci. 1991, 48, 2313–2335. [Google Scholar] [CrossRef]
- Clough, S.A.; Shephard, M.W.; Mlawer, E.J.; Delamere, J.S. Atmospheric radiative transfer modeling: A summary of the AER codes, Short Communication. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Holtslag, A.A.M.; Boville, B.A. Local versus nonlocal boundary layer diffusion in a global model. J. Clim. 1993, 6, 1825–1842. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 1993, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Wang, G.; Yu, M.; Pal, J.S.; Mei, R.; Bonan, G.B.; Levis, S.; Thornton, P.E. On the development of a coupled regional climate–vegetation model RCM–CLM–CN–DV and its validation in Tropical Africa. Clim. Dyn. 2016, 46, 515–539. [Google Scholar] [CrossRef]
- Erfanian, A.; Wang, G.; Yu, M.; Anyah, R. Multi-Model Ensemble Simulations of Present and Future Climates over West Africa: Impacts of Vegetation Dynamics. J. Adv. Model. Earth Syst. 2016, 8, 1411–1431. [Google Scholar] [CrossRef]
- Awal, R.; Rahman, A.; Fares, A.; Habibi, H. Calibration and Evaluation of Empirical Methods to Estimate Reference Crop Evapotranspiration in West Texas. Water 2022, 14, 3032. [Google Scholar] [CrossRef]
- Anwar, S.A.; Diallo, I. A RCM investigation of the influence of vegetation status and runoff scheme on the summer Gross Primary Production of Tropical Africa. Theor. Appl. Climatol. 2021, 145, 1407–1420. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anwar, S.A.; Lazić, I. Estimating the Potential Evapotranspiration of Egypt Using a Regional Climate Model and a High-Resolution Reanalysis Dataset. Environ. Sci. Proc. 2023, 25, 29. https://doi.org/10.3390/ECWS-7-14253
Anwar SA, Lazić I. Estimating the Potential Evapotranspiration of Egypt Using a Regional Climate Model and a High-Resolution Reanalysis Dataset. Environmental Sciences Proceedings. 2023; 25(1):29. https://doi.org/10.3390/ECWS-7-14253
Chicago/Turabian StyleAnwar, Samy Ashraf, and Irida Lazić. 2023. "Estimating the Potential Evapotranspiration of Egypt Using a Regional Climate Model and a High-Resolution Reanalysis Dataset" Environmental Sciences Proceedings 25, no. 1: 29. https://doi.org/10.3390/ECWS-7-14253
APA StyleAnwar, S. A., & Lazić, I. (2023). Estimating the Potential Evapotranspiration of Egypt Using a Regional Climate Model and a High-Resolution Reanalysis Dataset. Environmental Sciences Proceedings, 25(1), 29. https://doi.org/10.3390/ECWS-7-14253