Air Pollution Derivatives Linked to Changes in Urban Mobility Patterns during COVID-19: The Cartagena Case Study †
Abstract
:1. Introduction
2. Methodology
2.1. Area of Study and Data Source
2.2. GIS Indicators of Urban Mobility Spatial Patterns and Environmental Impact Assessment
2.2.1. Private Vehicle Use Density Index (PVUD)
2.2.2. Index of the Evolution of Public Transport Use (IPTU)
2.2.3. Healthy Mobility Density Index (HMD)
2.2.4. Evolution of Air Quality Index (EAQI)
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, H.; Ji, Y.; Wu, Z.; Peng, L.; Bao, J.; Peng, Z.; Li, H. Atmospheric volatile halogenated hydrocarbons in air pollution episodes in an urban area of Beijing: Characterization, health risk assessment and sources apportionment. Sci. Total Environ. 2022, 806, 150283. [Google Scholar] [CrossRef] [PubMed]
- Renzi, M.; Marchetti, S.; de’Donato, F.; Pappagallo, M.; Scortichini, M.; Davoli, M.; Frova, L.; Michelozzi, P.; Stafoggia, M. Acute Effects of Particulate Matter on All-Cause Mortality in Urban, Rural, and Suburban Areas, Italy. Int. J. Environ. Res. Public Health 2021, 18, 12895. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, M.; Svensson, N.; Eklund, M.; Dahl Öberg, J.; Vehabovic, A. Well-to-wheel greenhouse gas emissions of heavy-duty transports: Influence of electricity carbon intensity. Transp. Res. Part D Transp. Environ. 2021, 93, 102757. [Google Scholar] [CrossRef]
- Deenapanray, P.N.K.; Khadun, N.A. Land transport greenhouse gas mitigation scenarios for Mauritius based on modelling transport demand. Transp. Res. Interdiscip. Perspect. 2021, 9, 100299. [Google Scholar] [CrossRef]
- Guo, L.; Luo, J.; Yuan, M.; Huang, Y.; Shen, H.; Li, T. The influence of urban planning factors on PM2.5 pollution exposure and implications: A case study in China based on remote sensing, LBS, and GIS data. Sci. Total Environ. 2019, 659, 1585–1596. [Google Scholar] [CrossRef] [PubMed]
- Castells-Quintana, D.; Dienesch, E.; Krause, M. Air pollution in an urban world: A global view on density, cities and emissions. Ecol. Econ. 2021, 189, 107153. [Google Scholar] [CrossRef]
- Bächler, P.; Müller, T.K.; Warth, T.; Yildiz, T.; Dittler, A. Impact of ambient air filters on PM concentration levels at an urban traffic hotspot (Stuttgart, Am Neckartor). Atmos. Pollut. Res. 2021, 12, 101059. [Google Scholar] [CrossRef]
- Meng, M.-R.; Cao, S.-J.; Kumar, P.; Tang, X.; Feng, Z. Spatial distribution characteristics of PM2.5 concentration around residential buildings in urban traffic-intensive areas: From the perspectives of health and safety. Saf. Sci. 2021, 141, 105318. [Google Scholar] [CrossRef]
- Fachinger, F.; Drewnick, F.; Borrmann, S. How villages contribute to their local air quality—The influence of traffic- and biomass combustion-related emissions assessed by mobile mappings of PM and its components. Atmos. Environ. 2021, 263, 118648. [Google Scholar] [CrossRef]
- Kazancoglu, Y.; Ozbiltekin-Pala, M.; Ozkan-Ozen, Y.D. Prediction and evaluation of greenhouse gas emissions for sustainable road transport within Europe. Sustain. Cities Soc. 2021, 70, 102924. [Google Scholar] [CrossRef]
- Quintyne, K.I.; Kelly, C.; Sheridan, A.; Kenny, P.; O’Dwyer, M. COVID-19 transport restrictions in Ireland: Impact on air quality and respiratory hospital admissions. Public Health 2021, 198, 156–160. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Ayllon, S.; Hontoria, E.; Munier, N. The Contribution of MCDM to SUMP: The Case of Spanish Cities during 2006–2021. Int. J. Environ. Res. Public Health 2022, 19, 294. [Google Scholar]
- Singh, V.; Mishra, V. Environmental impacts of coronavirus disease 2019 (COVID-19). Bioresour. Technol. Rep. 2021, 15, 100744. [Google Scholar] [CrossRef] [PubMed]
GIS Indicators | PUVD—EAQI | IPTU—EAQI | HMD—EAQI |
---|---|---|---|
Bivariate Global Moran’s I | |||
Global Moran’s Index | 0.59/0.66/0.65 | 0.61/0.71/0.75 | 0.60/0.71/0.18 |
z-score | 55.2/68.7/70.1 | 37.0/44.6/43.5 | 38.8/60.2/15.5 |
p-value | 0.01/0.01/0.01 | 0.01/0.01/0.01 | 0.01/0.01/0.01 |
Mobility Indicators | Low EAQI Values (<10) | Low—Intermediate EAQI Values (11–25) | ||||||
B | Std. Error | t | Sign. | B | Std. Error | t | Sign. | |
−0.265 | 0.003 | −1.454 | 0.000 * | −0.196 | 0.005 | −2.316 | 0.000 * | |
0.067 | 0.004 | 1.255 | 0.000 * | 0.260 | 0.005 | 5.521 | 0.000 * | |
0.249 | 0.003 | 2.286 | 0.000 * | 0.117 | 0.006 | 3.090 | 0.000 * | |
Akaike’s information criterion (AIC): 25,287.6 | AIC: 20,180.9 | |||||||
Multiple R-squared: 0.43 | Multiple R-squared: 0.18 | |||||||
Adjusted R-squared: 0.42 | Adjusted R-squared: 0.17 | |||||||
F-statistic: 70.78 Prob (>F) (3,3) degrees of freedom: 0 | F-statistic: 126.32 Prob (>F) (3,3) DF: 0 | |||||||
Mobility indicators | Intermediate—High EAQI values (26–40) | High values EAQI values (>40) | ||||||
B | Std. error | t | Sign. | B | Std. Error | t | Sign. | |
0.176 | 0.005 | 1.218 | 0.000 * | 0.337 | 0.004 | 3.120 | 0.000 * | |
0.107 | 0.006 | 2.144 | 0.000 * | −0.053 | 0.003 | −4.631 | 0.000 * | |
−0.127 | 0.003 | −4.713 | 0.000 * | −0.301 | 0.007 | −5.355 | 0.000 * | |
Akaike’s information criterion (AIC): 19,573.0 | AIC: 24,745.6 | |||||||
Multiple R-squared: 0.19 | Multiple R-squared: 0.41 | |||||||
Adjusted R-squared: 0.18 | Adjusted R-squared: 0.41 | |||||||
F-statistic: 148.55 Prob (>F) (3,3) degrees of freedom: 0 | F-statistic: 66.71 Prob (>F) (3,3) DF: 0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Ayllón, S. Air Pollution Derivatives Linked to Changes in Urban Mobility Patterns during COVID-19: The Cartagena Case Study. Environ. Sci. Proc. 2022, 24, 3. https://doi.org/10.3390/ECERPH-4-13108
García-Ayllón S. Air Pollution Derivatives Linked to Changes in Urban Mobility Patterns during COVID-19: The Cartagena Case Study. Environmental Sciences Proceedings. 2022; 24(1):3. https://doi.org/10.3390/ECERPH-4-13108
Chicago/Turabian StyleGarcía-Ayllón, Salvador. 2022. "Air Pollution Derivatives Linked to Changes in Urban Mobility Patterns during COVID-19: The Cartagena Case Study" Environmental Sciences Proceedings 24, no. 1: 3. https://doi.org/10.3390/ECERPH-4-13108
APA StyleGarcía-Ayllón, S. (2022). Air Pollution Derivatives Linked to Changes in Urban Mobility Patterns during COVID-19: The Cartagena Case Study. Environmental Sciences Proceedings, 24(1), 3. https://doi.org/10.3390/ECERPH-4-13108