Occupational and Environmental Chemical Risk Assessment in a Changing Climate: A Critical Analysis of the Current Discourse and Future Perspectives †
Abstract
:1. Introduction
2. Direct Effects of Climate Change
2.1. Temperature
2.2. Preciptation, Rainfall Patterns, Floods, Sea Levels
2.3. Water and Soil Salinity
3. Indirect Effects of Climate Change
4. Influence on (Toxic) Action or Interactions between Chemicals and Target Molecules
5. Implications on the Validity of Occupational and Environmental Chemical Risk Assessment
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pirotta, E.; Thomas, L.; Costa, D.P.; Hall, A.J.; Harris, C.M.; Harwood, J.; Kraus, S.D.; Miller, P.J.O.; Moore, M.J.; Photopoulou, T.; et al. Understanding the combined effects of multiple stressors: A new perspective on a longstanding challenge. Sci. Total Environ. 2022, 821, 153322. [Google Scholar] [CrossRef]
- Gissi, E.; Manea, E.; Mazaris, A.D.; Fraschetti, S.; Almpanidou, V.; Bevilacqua, S.; Coll, M.; Guarnieri, G.; Lloret-Lloret, E.; Pascual, M. A review of the combined effects of climate change and other local human stressors on the marine environment. Sci. Total Environ. 2021, 755, 142564. [Google Scholar] [CrossRef]
- He, Q.; Silliman, B.R. Climate change, human impacts, and coastal ecosystems in the Anthropocene. Curr. Biol. 2019, 29, R1021–R1035. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Peng, C.; Wang, M.; Luo, Y.; Li, M.; Zhang, K.; Zhang, D.; Zhu, Q. Dynamics of vegetation autumn phenology and its response to multiple environmental factors from 1982 to 2012 on Qinghai-Tibetan Plateau in China. Sci. Total Environ. 2018, 637, 855–864. [Google Scholar] [CrossRef]
- Brown, C.J.; Saunders, M.I.; Possingham, H.P.; Richardson, A.J. Managing for interactions between local and global stressors of ecosystems. PLoS ONE 2013, 8, e65765. [Google Scholar] [CrossRef] [PubMed]
- Schneider, S.H.; Lane, J. An overview of ‘dangerous’ climate change. In Avoiding Dangerous. Climate Change; Schellnhuber, H.J., Cramer, W., Nakicenovic, N., Wigley, T., Yohe, G., Eds.; Cambridge University Press: Cambridge, UK, 2006; pp. 7–24. [Google Scholar]
- Piggott, J.J.; Niyogi, D.K.; Townsend, C.R.; Matthaei, C.D. Multiple stressors and stream ecosystem functioning: Climate warming and agricultural stressors interact to affect processing of organic matter. J. Appl. Ecol. 2015, 52, 1126–1134. [Google Scholar] [CrossRef]
- Orr, J.A.; Vinebrooke, R.D.; Jackson, M.C.; Kroeker, K.J.; Kordas, R.L.; Mantyka-Pringle, C.; Van den Brink, P.J.; De Laender, F.; Stoks, R.; Holmstrup, M. Towards a unified study of multiple stressors: Divisions and common goals across research disciplines. Proc. R. Soc. B 2020, 287, 20200421. [Google Scholar] [CrossRef]
- Folt, C.; Chen, C.; Moore, M.; Burnaford, J. Synergism and antagonism among multiple stressors. Limnol. Oceanogr. 1999, 44 Pt 2, 864–877. [Google Scholar] [CrossRef] [Green Version]
- Angilletta, M.J., Jr.; Angilletta, M.J. Thermal Adaptation: A Theoretical and Empirical Synthesis; Oxford University Press: Oxford, UK, 2009. [Google Scholar]
- Kır, M.; Kumlu, M.; Eroldoğan, O.T. Effects of temperature on acute toxicity of ammonia to Penaeus semisulcatus juveniles. Aquaculture 2004, 241, 479–489. [Google Scholar] [CrossRef]
- Bao, V.; Koutsaftis, A.; Leung, K. Temperature-dependent toxicities of chlorothalonil and copper Pyrithione to the marine copepod tigriopus japonicus and dinoflagellate Pyrocystis lunula. Australas. J. Ecotoxicol. 2008, 14, 45–54. [Google Scholar]
- Kwok, K.; Leung, K. Toxicity of antifouling biocides to the intertidal harpacticoid copepod Tigriopus japonicus (Crustacea, Copepoda): Effects of temperature and salinity. Mar. Pollut. Bull. 2005, 51, 830–837. [Google Scholar] [CrossRef] [PubMed]
- Li, A.J.; Leung, P.T.; Bao, V.W.; Yi, A.X.; Leung, K.M. Temperature-dependent toxicities of four common chemical pollutants to the marine medaka fish, copepod and rotifer. Ecotoxicology 2014, 23, 1564–1573. [Google Scholar] [CrossRef] [PubMed]
- Hallinger, K.K.; Cristol, D.A. The role of weather in mediating the effect of mercury exposure on reproductive success in tree swallows. Ecotoxicology 2011, 20, 1368–1377. [Google Scholar] [CrossRef]
- Dearing, M.D. Temperature-dependent toxicity in mammals with implications for herbivores: A review. J. Comp. Physiol. B 2013, 183, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Borgå, K.; Saloranta, T.M.; Ruus, A. Simulating climate change-induced alterations in bioaccumulation of organic contaminants in an Arctic marine food web. Environ. Toxicol. Chem. 2010, 29, 1349–1357. [Google Scholar] [CrossRef] [PubMed]
- González-Alcaraz, M.N.; van Gestel, C.A.M. Climate change effects on enchytraeid performance in metal-polluted soils explained from changes in metal bioavailability and bioaccumulation. Environ. Res. 2015, 142, 177–184. [Google Scholar] [CrossRef]
- Noyes, P.D.; McElwee, M.K.; Miller, H.D.; Clark, B.W.; Van Tiem, L.A.; Walcott, K.C.; Erwin, K.N.; Levin, E.D. The toxicology of climate change: Environmental contaminants in a warming world. Environ. Int. 2009, 35, 971–986. [Google Scholar] [CrossRef]
- Faramarzi, M.; Abbaspour, K.C.; Ashraf Vaghefi, S.; Farzaneh, M.R.; Zehnder, A.J.B.; Srinivasan, R.; Yang, H. Modeling impacts of climate change on freshwater availability in Africa. J. Hydrol. 2013, 480, 85–101. [Google Scholar] [CrossRef]
- Adefisan, E. Climate change impact on rainfall and temperature distributions over West Africa from three IPCC scenarios. J. Earth Sci. Clim. Chang. 2018, 9, 476. [Google Scholar]
- Larsen, S.; Andersen, T.; Hessen, D.O. Climate change predicted to cause severe increase of organic carbon in lakes. Glob. Chang. Biol. 2011, 17, 1186–1192. [Google Scholar] [CrossRef]
- Little, S.; Wood, P.J.; Elliott, M. Quantifying salinity-induced changes on estuarine benthic fauna: The potential implications of climate change. Estuar. Coast. Shelf Sci. 2017, 198, 610–625. [Google Scholar] [CrossRef] [Green Version]
- Tomaz, A.; Palma, P.; Alvarenga, P.; Gonçalves, M.C. Chapter 13—Soil salinity risk in a climate change scenario and its effect on crop yield. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 351–396. [Google Scholar]
- Lavado, R.; Shi, D.; Schlenk, D. Effects of salinity on the toxicity and biotransformation of l-selenomethionine in Japanese medaka (Oryzias latipes) embryos: Mechanisms of oxidative stress. Aquat. Toxicol. 2012, 108, 18–22. [Google Scholar] [CrossRef] [PubMed]
- Macken, A.; Byrne, H.J.; Thomas, K.V. Effects of salinity on the toxicity of ionic silver and Ag-PVP nanoparticles to Tisbe battagliai and Ceramium tenuicorne. Ecotoxicol. Environ. Saf. 2012, 86, 101–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Owojori, O.J.; Reinecke, A.J.; Rozanov, A.B. Effects of salinity on partitioning, uptake and toxicity of zinc in the earthworm Eisenia fetida. Soil Biol. Biochem. 2008, 40, 2385–2393. [Google Scholar] [CrossRef]
- Raiesi, F.; Sadeghi, E. Interactive effect of salinity and cadmium toxicity on soil microbial properties and enzyme activities. Ecotoxicol. Environ. Saf. 2019, 168, 221–229. [Google Scholar] [CrossRef] [PubMed]
- Rehman, S.; Abbas, G.; Shahid, M.; Saqib, M.; Umer Farooq, A.B.; Hussain, M.; Murtaza, B.; Amjad, M.; Naeem, M.A.; Farooq, A. Effect of salinity on cadmium tolerance, ionic homeostasis and oxidative stress responses in conocarpus exposed to cadmium stress: Implications for phytoremediation. Ecotoxicol. Environ. Saf. 2019, 171, 146–153. [Google Scholar] [CrossRef]
- Park, J.; Kim, S.; Yoo, J.; Lee, J.-S.; Park, J.-W.; Jung, J. Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: The difference between metal ions and nanoparticles. Mar. Pollut. Bull. 2014, 85, 526–531. [Google Scholar] [CrossRef]
- Leonard, E.M.; Barcarolli, I.; Silva, K.R.; Wasielesky, W.; Wood, C.M.; Bianchini, A. The effects of salinity on acute and chronic nickel toxicity and bioaccumulation in two euryhaline crustaceans: Litopenaeus vannamei and Excirolana armata. Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 2011, 154, 409–419. [Google Scholar] [CrossRef] [Green Version]
- IPCC. Summary for Policymakers. In Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Jo, W.S.; Kim, H.-Y.; Kim, B.J. Climate change alters diffusion of forest pest: A model study. J. Korean Phys. Soc. 2017, 70, 108–115. [Google Scholar] [CrossRef] [Green Version]
- Kocmankova, E.; Trnka, M.; Eitzinger, J.; Dubrovský, M.; Štěpánek, P.; Semeradova, D.; Balek, J.; Skalak, P.; Farda, A.; Juroch, J.; et al. Estimating the impact of climate change on the occurrence of selected pests at a high spatial resolution: A novel approach. J. Agric. Sci. 2011, 149, 185–195. [Google Scholar] [CrossRef]
- Willis, J.C.; Bohan, D.A.; Choi, Y.H.; Conrad, K.F.; Semenov, M.A. Use of an individual-based model to forecast the effect of climate change on the dynamics, abundance and geographical range of the pest slug Deroceras reticulatum in the UK. Glob. Chang. Biol. 2006, 12, 1643–1657. [Google Scholar] [CrossRef]
- Koleva, N.G.; Schneider, U.A.; Tol, R.S. The Impact of Weather Variability and Climate Change on Pesticide Applications in the US—An Empirical Investigation. Int. J. Ecol. Econ. Stat. 2009, 18, 64–81. [Google Scholar]
- Skendžić, S.; Zovko, M.; Živković, I.P.; Lešić, V.; Lemić, D. The Impact of Climate Change on Agricultural Insect Pests. Insects 2021, 12, 440. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Liu, Y.; Zhang, H.; Liu, J.; Jiang, Y.; Wyckhuys, K.A.G.; Wu, K. Global warming modifies long-distance migration of an agricultural insect pest. J. Pest Sci. 2020, 93, 569–581. [Google Scholar] [CrossRef]
- UNEP/AMAP Limate Change and POPs: Predicting the Impacts. Available online: https://www.amap.no/documents/download/3237/inline (accessed on 30 August 2022).
- Biswas, B.; Qi, F.; Biswas, J.K.; Wijayawardena, A.; Khan, M.A.I.; Naidu, R. The fate of chemical pollutants with soil properties and processes in the climate change paradigm—A review. Soil Syst. 2018, 2, 51. [Google Scholar] [CrossRef] [Green Version]
- Simmons, B.I.; Blyth, P.S.; Blanchard, J.L.; Clegg, T.; Delmas, E.; Garnier, A.; Griffiths, C.A.; Jacob, U.; Pennekamp, F.; Petchey, O.L. Refocusing multiple stressor research around the targets and scales of ecological impacts. Nat. Ecol. Evol. 2021, 5, 1478–1489. [Google Scholar] [CrossRef]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. Int. J. 2010, 29, 730–741. [Google Scholar] [CrossRef]
- Hooper, M.J.; Ankley, G.T.; Cristol, D.A.; Maryoung, L.A.; Noyes, P.D.; Pinkerton, K.E. Interactions between chemical and climate stressors: A role for mechanistic toxicology in assessing climate change risks. Environ. Toxicol. Chem. 2013, 32, 32–48. [Google Scholar] [CrossRef] [Green Version]
- Armitage, J.M.; Quinn, C.L.; Wania, F. Global climate change and contaminants—An overview of opportunities and priorities for modelling the potential implications for long-term human exposure to organic compounds in the Arctic. J. Environ. Monit. 2011, 13, 1532–1546. [Google Scholar] [CrossRef] [Green Version]
- Boxall, A.B.; Hardy, A.; Beulke, S.; Boucard, T.; Burgin, L.; Falloon, P.D.; Haygarth, P.M.; Hutchinson, T.; Kovats, R.S.; Leonardi, G. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ. Health Perspect. 2009, 117, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Macdonald, R.W.; Mackay, D.; Li, Y.-F.; Hickie, B. How will global climate change affect risks from long-range transport of persistent organic pollutants? Hum. Ecol. Risk Assess. 2003, 9, 643–660. [Google Scholar] [CrossRef]
- Moretti, A.; Pascale, M.; Logrieco, A.F. Mycotoxin risks under a climate change scenario in Europe. Trends Food Sci. Technol. 2019, 84, 38–40. [Google Scholar] [CrossRef]
- Potapowicz, J.; Szumińska, D.; Szopińska, M.; Polkowska, Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. Sci. Total Environ. 2019, 651, 1534–1548. [Google Scholar] [CrossRef]
- UNEP Climate Change and POPs: Predicting the Impacts. Report of the UNEP/AMAP Expert Group. Available online: https://oaarchive.arctic-council.org/handle/11374/734?show=full (accessed on 30 August 2022).
- Borgå, K.; McKinney, M.A.; Routti, H.; Fernie, K.J.; Giebichenstein, J.; Hallanger, I.; Muir, D.C. The influence of global climate change on accumulation and toxicity of persistent organic pollutants and chemicals of emerging concern in Arctic food webs. Environ. Sci. Process. Impacts 2022, 24, 1544–1576. [Google Scholar] [CrossRef]
- Gavrilescu, M. Fate of pesticides in the environment and its bioremediation. Eng. Life Sci. 2005, 5, 497–526. [Google Scholar] [CrossRef]
- Kookana, R.S.; Baskaran, S.; Naidu, R. Pesticide fate and behaviour in Australian soils in relation to contamination and management of soil and water: A review. Soil Res. 1998, 36, 715–764. [Google Scholar] [CrossRef]
- DeLorenzo, M.E.; Wallace, S.C.; Danese, L.E.; Baird, T.D. Temperature and salinity effects on the toxicity of common pesticides to the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health Part B 2009, 44, 455–460. [Google Scholar] [CrossRef] [Green Version]
- Landis, W.G.; Durda, J.L.; Brooks, M.L.; Chapman, P.M.; Menzie, C.A.; Stahl, R.G., Jr.; Stauber, J.L. Ecological risk assessment in the context of global climate change. Environ. Toxicol. Chem. 2013, 32, 79–92. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Utembe, W.; Sanabria, N.M. Occupational and Environmental Chemical Risk Assessment in a Changing Climate: A Critical Analysis of the Current Discourse and Future Perspectives. Environ. Sci. Proc. 2022, 24, 2. https://doi.org/10.3390/ECERPH-4-13105
Utembe W, Sanabria NM. Occupational and Environmental Chemical Risk Assessment in a Changing Climate: A Critical Analysis of the Current Discourse and Future Perspectives. Environmental Sciences Proceedings. 2022; 24(1):2. https://doi.org/10.3390/ECERPH-4-13105
Chicago/Turabian StyleUtembe, Wells, and Natasha M. Sanabria. 2022. "Occupational and Environmental Chemical Risk Assessment in a Changing Climate: A Critical Analysis of the Current Discourse and Future Perspectives" Environmental Sciences Proceedings 24, no. 1: 2. https://doi.org/10.3390/ECERPH-4-13105
APA StyleUtembe, W., & Sanabria, N. M. (2022). Occupational and Environmental Chemical Risk Assessment in a Changing Climate: A Critical Analysis of the Current Discourse and Future Perspectives. Environmental Sciences Proceedings, 24(1), 2. https://doi.org/10.3390/ECERPH-4-13105