Kiwi Plant Growth Monitoring with Soil and Climatic Conditions in the Semi-Arid Region of Pakistan †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Study Parameters
2.3. Monitoring Parameters
2.4. Data Evaluation and Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ferguson, A.R. Kiwifruit: A botanical review. Hortic. Rev. 2011, 6, 6. [Google Scholar]
- Ferguson, A.R.; Seal, A.G. Kiwifruit. In Temperate Fruit Crop Breeding; Springer: Dordrecht, The Netherlands, 2008; pp. 235–264. [Google Scholar]
- Kohale, V.S. Advances in Horticulture Sciences; Integrated Publications: New Delhi, India, 2022; Volume 6. [Google Scholar] [CrossRef]
- Huang, S.; Ding, J.; Deng, D.; Tang, W.; Sun, H.; Liu, D.; Zhang, L.; Niu, X.; Zhang, X.; Meng, M. Draft genome of the kiwifruit Actinidia chinensis. Nat. Commun. 2013, 4, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, S.; Ning, J.; Li, Y.; Zhang, Y.; Xu, G.; Huang, X.; Deng, R.H. Match in my way: Fine-grained bilateral access control for secure cloud-fog computing. IEEE Trans. Dependable Secur. Comput. 2020, 19, 1064–1077. [Google Scholar] [CrossRef]
- Silva, S.S.; Justi, M.; Chagnoleau, J.-B.; Papaiconomou, N.; Fernandez, X.; Santos, S.A.; Passos, H.; Ferreira, A.M.; Coutinho, J.A. Using biobased solvents for the extraction of phenolic compounds from kiwifruit industry waste. Sep. Purif. Technol. 2023, 304, 122344. [Google Scholar] [CrossRef]
- Islam Zeb, M.S.; Ullah, I.; Rahman, J.; Ahmad, Z.; Bibi, F.; Begum, S.K.N.; Ali, S.; Khan, A. Optimization of propagation techniques and timimg for the production of kiwi fruit (Actinidia chinensis) plant at Khyber Pakhtun Khwa Mingora Swat. Pure Appl. Biol. 2017, 6, 889–896. [Google Scholar]
- Yuan, L.; Yanan, T.; Liling, C. Effect of fertilization on kiwifruit yield and quality. J. Northwest Agric. For. Univ. 2011, 39, 171–176. [Google Scholar]
- Zuoping, Z.; Min, D.; Sha, Y.; Zhifeng, L.; Qi, W.; Jing, F.; Yan’an, T. Effects of different fertilizations on fruit quality, yield and soil fertility in field-grown kiwifruit orchard. Int. J. Agric. Biol. Eng. 2017, 10, 162–171. [Google Scholar]
- Waqas, M.S.; Cheema, M.J.M.; Waqas, A.; Hussain, S. Enhancing water productivity of potato (Solanum tuberosum L.) through drip irrigation system. In Proceedings of the 2nd International Conference on Horticultural, Faisalabad, Pakistan, 16–18 February 2016; pp. 18–20. [Google Scholar]
- Waqas, M.S.; Cheema, M.J.M.; Hussain, S.; Ullah, M.K.; Iqbal, M.M. Delayed irrigation: An approach to enhance crop water productivity and to investigate its effects on potato yield and growth parameters. Agric. Water Manag. 2021, 245, 106576. [Google Scholar] [CrossRef]
- Wang, N.; He, H.; Lacroix, C.; Morris, C.; Liu, Z.; Ma, F. Soil fertility, leaf nutrients and their relationship in kiwifruit orchards of China’s central Shaanxi province. Soil Sci. Plant Nutr. 2019, 65, 369–376. [Google Scholar] [CrossRef]
- Hussain, S.; Cheema, M.J.M.; Waqas, M.S.; Waqas, A. Effect of potash application on growth and yield of onion crop with drip system. In Proceedings of the 2nd International Conference on Horticultural, Faisalabad, Pakistan, 16–18 February 2016; pp. 195–201. [Google Scholar]
- Dede, G.; Özdemir, S.; Dede, Ö.H.; Altundağ, H.; Dündar, M.; Kızıloğlu, F.T. Effects of biosolid application on soil properties and kiwi fruit nutrient composition on high-pH soil. Int. J. Environ. Sci. Technol. 2017, 14, 1451–1458. [Google Scholar] [CrossRef]
- Kasampalis, D.A.; Alexandridis, T.K.; Deva, C.; Challinor, A.; Moshou, D.; Zalidis, G. Contribution of remote sensing on crop models: A review. J. Imaging 2018, 4, 52. [Google Scholar] [CrossRef] [Green Version]
- Hussain, S.; Malik, S.; Masud Cheema, M.; Ashraf, M.U.; Waqas, M.; Iqbal, M.; Ali, S.; Anjum, L.; Aslam, M.; Afzal, H. An overview on emerging water scarcity challenge in Pakistan, its consumption, causes, impacts and remedial measures. Big Data Water Resour. Eng. 2020, 1, 22–31. [Google Scholar] [CrossRef]
- Shafeeque, M.; Sarwar, A.; Basit, A.; Mohamed, A.Z.; Rasheed, M.W.; Khan, M.U.; Buttar, N.A.; Saddique, N.; Asim, M.I.; Sabir, R.M. Quantifying the Impact of the Billion Tree Afforestation Project (BTAP) on the Water Yield and Sediment Load in the Tarbela Reservoir of Pakistan Using the SWAT Model. Land 2022, 11, 1650. [Google Scholar] [CrossRef]
- Mandal, D.; Kumar, V.; Ratha, D.; Dey, S.; Bhattacharya, A.; Lopez-Sanchez, J.M.; McNairn, H.; Rao, Y.S. Dual polarimetric radar vegetation index for crop growth monitoring using sentinel-1 SAR data. Remote. Sens. Environ. 2020, 247, 111954. [Google Scholar] [CrossRef]
- Supit, I.; Van Diepen, C.; De Wit, A.; Wolf, J.; Kabat, P.; Baruth, B.; Ludwig, F. Assessing climate change effects on European crop yields using the Crop Growth Monitoring System and a weather generator. Agric. For. Meteorol. 2012, 164, 96–111. [Google Scholar] [CrossRef]
- Malik, S.; Hussain, S.; Waqas, M.S. Effect of water quality and different meals on growth of Catla catla and Labeo rohita. Big Data Water Resour. Eng. 2020, 1, 4–8. [Google Scholar] [CrossRef]
- Nafees, M.; Jafar Jaskani, M.; Ahmad, I.; Ashraf, I.; Maqsood, A.; Ahmar, S.; Azam, M.; Hussain, S.; Hanif, A.; Chen, J.-T. Biochemical analysis of organic acids and soluble sugars in wild and cultivated pomegranate germplasm based in Pakistan. Plants 2020, 9, 493. [Google Scholar] [CrossRef]
- Rowan, D.; Boldingh, H.; Cordiner, S.; Cooney, J.; Hedderley, D.; Hewitt, K.; Jensen, D.; Pereira, T.; Trower, T.; McGhie, T. Kiwifruit Metabolomics—An Investigation of within Orchard Metabolite Variability of Two Cultivars of Actinidia chinensis. Metabolites 2021, 11, 603. [Google Scholar] [CrossRef]
- Sumrah, M.A.; Jan, M.; Hussain, A.; Akhtar, S.; Nawaz, H.; Afzal, M.; Umar, H. Evaluation of some promising varieties of olive (Olea europaea L.) for growth and yield under Pothwar Regions of Punjab, Pakistan. Pak. J. Agric. Res 2021, 34, 446–453. [Google Scholar] [CrossRef]
- Kim, M.; Kim, S.-C.; Moon, D.-Y.; Song, K.J. Rapid shoot propagation from micro-cross sections of kiwifruit (Actinidia deliciosa cv. ‘Hayward’). J. Plant Biol. 2007, 50, 681–686. [Google Scholar] [CrossRef]
- Donati, I.; Cellini, A.; Sangiorgio, D.; Caldera, E.; Sorrenti, G.; Spinelli, F. Pathogens associated to kiwifruit vine decline in Italy. Agriculture 2020, 10, 119. [Google Scholar] [CrossRef] [Green Version]
- Smith, G.S.; Buwalda, J.G. Kiwifruit. In Handbook of Environmental Physiology of Fruit Crops; CRC Press: Boca Raton, FL, USA, 2018; pp. 135–163. [Google Scholar]
- Scortichini, M.; Marcelletti, S.; Ferrante, P.; Petriccione, M.; Firrao, G. Pseudomonas syringae pv. actinidiae: A re-emerging, multi-faceted, pandemic pathogen. Mol. Plant Pathol. 2012, 13, 631–640. [Google Scholar] [CrossRef] [PubMed]
- Bardi, L.; Nari, L.; Morone, C.; Solomita, M.; Mandalà, C.; Faga, M.G.; Migliori, C.A. Kiwifruit Adaptation to Rising Vapor Pressure Deficit Increases the Risk of Kiwifruit Decline Syndrome Occurrence. Horticulturae 2022, 8, 906. [Google Scholar] [CrossRef]
Attock | Simly | GPU | ZTBL | |
---|---|---|---|---|
Nitrogen (mg/kg) | 14 | 16 | 16 | 12 |
Phosphorous (ppm) | 0.919 | 0.615 | 1.046 | 0.288 |
Potassium (ppm) | 3.5 | 1.3 | 3.9 | 2.1 |
EC (us/cm) | 0.4 | 0.1 | 0.1 | 0.1 |
pH | 6.4 | 6.19 | 6 | 6.5 |
Organic matter (%) | 0.93 | 1.28 | 0.24 | 0.59 |
Location | Month | Climatic Factors | ||||
---|---|---|---|---|---|---|
T °C (Average Min) | T °C (Min) | T °C (Average Max) | T °C (Max) | Rainfall (mm) | ||
Attock | March | 20 | 8.1 | 36 | 37 | 66.3 |
April | 21.2 | 17.2 | 37.2 | 38 | 50.7 | |
May | 24.6 | 19.5 | 40 | 43 | 33 | |
June | 31 | 22.5 | 45 | 49 | 32.7 | |
July | 31.5 | 24.3 | 45.5 | 47 | 99.5 | |
August | 29.5 | 23.1 | 43 | 46 | 97.1 | |
ZTBL | March | 17 | 7.1 | 33 | 34.5 | 73.8 |
April | 18 | 14.3 | 34.3 | 35.1 | 59.7 | |
May | 21.5 | 16.1 | 37 | 40 | 39.2 | |
June | 28.2 | 19.5 | 42.3 | 46 | 62.2 | |
July | 27.5 | 19.8 | 42 | 44 | 267 | |
August | 22.9 | 20 | 39.2 | 42 | 309.9 | |
Simly | March | 16.5 | 7.0 | 32 | 33.5 | 140.39 |
April | 17.2 | 13.2 | 33.5 | 34.5 | 94.23 | |
May | 20.8 | 14.8 | 36 | 39.1 | 55.02 | |
June | 27.5 | 18.1 | 41.2 | 43.5 | 63.55 | |
July | 26.6 | 19.3 | 41 | 43.1 | 261.5 | |
August | 21.5 | 19.5 | 38.5 | 41 | 240.31 | |
GPU | March | 18 | 7.5 | 34 | 35 | 71.8 |
April | 19.6 | 15.5 | 35.1 | 36 | 57.7 | |
May | 22 | 17.5 | 38 | 41 | 30 | |
June | 29 | 20.2 | 43.2 | 47.3 | 53.3 | |
July | 29.5 | 21.1 | 43.3 | 45.2 | 237 | |
August | 27.5 | 20.3 | 41.8 | 43.8 | 236 |
Variety | Location | Parameters | ||||||
---|---|---|---|---|---|---|---|---|
Stem Dia. (cm) | Plant Height (cm) | Internodal Distance (cm) | No. of Shoots | No. of Leaves | Disease (%) | Heat Damage (%) | ||
Hayward | Attock | 0.755 | 126.4 | 8.625 | 10 | 50.167 | 2.933 | 23.833 |
GPU | 0.5867 | 125.32 | 8.6267 | 9.8333 | 50.5 | 4.6667 | 5.5 | |
ZTBL | 0.5467 | 125.67 | 8.63 | 12 | 52 | 5 | 8.833 | |
Simly Dam | 0.8333 | 75.5 | 4.8167 | 10.5 | 46.667 | 3.8333 | 3.3333 | |
Hayward grafted | Attock | 0.6083 | 94.2 | 5.7167 | 5.667 | 54 | 7.133 | 25.633 |
GPU | 0.5583 | 101.67 | 6.6 | 8.3333 | 52 | 5.8333 | 10 | |
ZTBL | 0.515 | 111.67 | 8.6267 | 11.667 | 52.5 | 5.3333 | 12.167 | |
Simly Dam | 0.8367 | 128.83 | 6.5133 | 10.167 | 64.833 | 4.5 | 4.8333 | |
Green-fleshed | Attock | 0.6283 | 173.35 | 7.5167 | 6.333 | 53.833 | 4.555 | 4.23 |
GPU | 0.56 | 219.28 | 8.15 | 7.8333 | 57.333 | 5.1667 | 5.167 | |
ZTBL | 0.5133 | 228.17 | 8.2167 | 9 | 72.833 | 4.5 | 5.667 | |
Simly Dam | 0.8533 | 246.17 | 8.2167 | 10.333 | 82.667 | 3.5 | 3.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, M.U.A.; Khan, M.A.; Abbasi, U.A.; Amin, M.; Kalsoom, T.; Basit, A.; Shahzad, B. Kiwi Plant Growth Monitoring with Soil and Climatic Conditions in the Semi-Arid Region of Pakistan. Environ. Sci. Proc. 2022, 23, 36. https://doi.org/10.3390/environsciproc2022023036
Khan MUA, Khan MA, Abbasi UA, Amin M, Kalsoom T, Basit A, Shahzad B. Kiwi Plant Growth Monitoring with Soil and Climatic Conditions in the Semi-Arid Region of Pakistan. Environmental Sciences Proceedings. 2022; 23(1):36. https://doi.org/10.3390/environsciproc2022023036
Chicago/Turabian StyleKhan, Muhammad Umair Arif, Muhammad Azam Khan, Usman Ali Abbasi, Muhammad Amin, Tahira Kalsoom, Abdul Basit, and Basit Shahzad. 2022. "Kiwi Plant Growth Monitoring with Soil and Climatic Conditions in the Semi-Arid Region of Pakistan" Environmental Sciences Proceedings 23, no. 1: 36. https://doi.org/10.3390/environsciproc2022023036
APA StyleKhan, M. U. A., Khan, M. A., Abbasi, U. A., Amin, M., Kalsoom, T., Basit, A., & Shahzad, B. (2022). Kiwi Plant Growth Monitoring with Soil and Climatic Conditions in the Semi-Arid Region of Pakistan. Environmental Sciences Proceedings, 23(1), 36. https://doi.org/10.3390/environsciproc2022023036