#
Estimating Rainfall Erosivity from Daily Precipitation Using Generalized Additive Models^{ †}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Data Acquisition and Processing

^{2}that covers the Water District of Thrace. It is delimited by the boundaries of Greece with Bulgaria and Turkey on the north and east, respectively, by the Thracian Sea on the south, and by the watershed of Nestos River on the west. This area was identified: (a) To have common rainfall erosivity spatiotemporal patterns [3]; (b) to form a region with a distinct monthly temporal distribution of erosivity density [13], a parameter strongly related to seasonal rainfall intensity [10]; and (c) to have similar intra-storm temporal distribution intensity patterns of heavy and, consequently, erosive precipitation [22].

#### 2.2. Rainfall Erosivity Calculations

#### 2.3. Empirical Equations for the Estimation of Erosivity

#### 2.4. Generalized Aditive Models

**X**is the matrix of input variables.

#### 2.5. Validation and Model Performance Criteria

## 3. Results and Discussion

^{−16}and the deviance explained by the model was 86.5% (in the training set). Given the above values, there was strong evidence that both terms explained erosivity adequately.

^{2}was closer to one, and RMSE and MAE had lower values).

## 4. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Nearing, M.A.; Yin, S.; Borrelli, P.; Polyakov, V.O. Rainfall erosivity: An historical review. Catena
**2017**, 157, 357–362. [Google Scholar] [CrossRef] - Li, Z.; Fang, H. Impacts of climate change on water erosion: A review. Earth-Sci. Rev.
**2016**, 163, 94–117. [Google Scholar] [CrossRef] - Vantas, K.; Sidiropoulos, E.; Loukas, A. Estimating Current and Future Rainfall Erosivity in Greece Using Regional Climate Models and Spatial Quantile Regression Forests. Water
**2020**, 12, 687. [Google Scholar] [CrossRef] - Geeson, N.A.; Brandt, C.J.; Thornes, J.B. Mediterranean Desertification: A Mosaic of Processes and Responses; John Wiley & Sons: West Sussex, UK, 2003. [Google Scholar]
- Griggs, D.; Stafford-Smith, M.; Gaffney, O.; Rockström, J.; Öhman, M.C.; Shyamsundar, P.; Steffen, W.; Glaser, G.; Kanie, N.; Noble, I. Sustainable development goals for people and planet. Nature
**2013**, 495, 305–307. [Google Scholar] [CrossRef] - Boardman, J.; Poesen, J. Soil Erosion in Europe: Major Processes, Causes and Consequences. In Soil Erosion in Europe; John Wiley & Sons: Wiltshire, UK, 2006; pp. 477–487. ISBN 10-0-470-85910-5. [Google Scholar]
- Renard, K.G.; Freimund, J.R. Using monthly precipitation data to estimate the R-factor in the revised USLE. J. Hydrol.
**1994**, 157, 287–306. [Google Scholar] [CrossRef] - Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses-a Guide to Conservation Planning; USDA, Agriculture Handbook No. 537; Government Printing Office: Washington, DC, USA, 1978.
- Renard, K.G.; Foster, G.R.; Weesies, G.A.; Porter, J.P. RUSLE: Revised universal soil loss equation. J. Soil Water Conserv.
**1991**, 46, 30–33. [Google Scholar] - USDA-ARS. Science Documentation: Revised Universal Soil Loss Equation, Version 2 (RUSLE 2); USDA-Agricultural Research Service: Washington, DC, USA, 2013.
- Borrelli, P.; Alewell, C.; Alvarez, P.; Anache, J.; Baartman, J.E.M.; Ballabio, C.; Bezak, N.; Biddoccu, M.; Cerdà, A.; Chalise, D.; et al. Soil erosion modelling: A global review and statistical analysis. 2020; Submitted for publication. [Google Scholar]
- Vantas, K.; Sidiropoulos, E.; Evangelides, C. Rainfall Erosivity and Its Estimation: Conventional and Machine Learning Methods. Soil Eros.
**2019**. [Google Scholar] [CrossRef] - Vantas, K.; Sidiropoulos, E.; Loukas, A. Robustness Spatiotemporal Clustering and Trend Detection of Rainfall Erosivity Density in Greece. Water
**2019**, 11, 1050. [Google Scholar] [CrossRef] - Vantas, K.; Sidiropoulos, E. Imputation of erosivity values under incomplete rainfall data by machine learning methods. Eur. Water
**2017**, 57, 193–199. [Google Scholar] - Friedman, J.; Hastie, T.; Tibshirani, R. The Elements of statistical Learning; Springer: New York, NY, USA, 2001; Volume 1. [Google Scholar]
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models. Stat. Sci.
**1986**, 1, 297–318. [Google Scholar] [CrossRef] - James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning; Springer: Berlin/Heidelberg, Germany, 2013; Volume 112. [Google Scholar]
- Wood, S.N.; Pya, N.; S"afken, B. Smoothing parameter and model selection for general smooth models (with discussion). J. Am. Stat. Assoc.
**2016**, 111, 1548–1575. [Google Scholar] [CrossRef] - Ouarda, T.B.M.J.; Charron, C.; Hundecha, Y.; St-Hilaire, A.; Chebana, F. Introduction of the GAM model for regional low-flow frequency analysis at ungauged basins and comparison with commonly used approaches. Environ. Model. Soft.
**2018**, 109, 256–271. [Google Scholar] [CrossRef] - Garcia Galiano, S.G.; Olmos Gimenez, P.; Giraldo-Osorio, J.D. Assessing Nonstationary Spatial Patterns of Extreme Droughts from Long-Term High-Resolution Observational Dataset on a Semiarid Basin (Spain). Water
**2015**, 7, 5458–5473. [Google Scholar] [CrossRef] - Shortridge, J.E.; Guikema, S.D.; Zaitchik, B.F. Machine learning methods for empirical streamflow simulation: a comparison of model accuracy, interpretability, and uncertainty in seasonal watersheds. Hydrol. Earth Syst. Sci.
**2016**, 20, 2611–2628. [Google Scholar] [CrossRef] - Vantas, K.; Sidiropoulos, E.; Vafeiadis, M. Optimal temporal distribution curves for the classification of heavy precipitation using hierarchical clustering on principal components. Glob. NEST J.
**2019**, 21, 530–538. [Google Scholar] - Vantas, K. hydroscoper: R interface to the Greek National Data Bank for Hydrological and Meteorological Information. J. Open Source Soft.
**2018**, 3, 625. [Google Scholar] [CrossRef] - Richardson, C.; Foster, G.; Wright, D. Estimation of erosion index from daily rainfall amount. Trans. ASAE
**1983**, 26, 153–156. [Google Scholar] [CrossRef] - Yu, B.; Rosewell, C. An assessment of a daily rainfall erosivity model for New South Wales. Soil Res.
**1996**, 34, 139–152. [Google Scholar] [CrossRef] - R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2019. [Google Scholar]
- Nelder, J.A.; Wedderburn, R.W.M. Generalized Linear Models. J. R. Stat. Soc. Ser. Gen.
**1972**, 135, 370. [Google Scholar] [CrossRef] - Wood, S.N. Generalized Additive Models: An Introduction with R, 2nd ed.; Chapman and Hall/CRC: New York, NY, USA, 2017. [Google Scholar]
- Hastie, T. gam: Generalized Additive Models. 2020. Available online: https://CRAN.R-project.org/package=gam (accessed on 10 May 2020).
- Hastie, T.J.; Tibshirani, R.J. Generalized Additive Models; CRC press: Boca Raton, FL, USA, 1990; Volume 43. [Google Scholar]
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B
**2011**, 73, 3–36. [Google Scholar] [CrossRef] - Breiman, L.; Friedman, J.H. Estimating Optimal Transformations for Multiple Regression and Correlation. J. Am. Stat. Assoc.
**1985**, 80, 580–598. [Google Scholar] [CrossRef] - Vantas, K. Determination of Rainfall Erosivity in the Framework of Data Science Using Machine Learning and Geostatistics Methods; Aristotle University of Thessaloniki: Thessaloniki, Greece, 2017. [Google Scholar]
- Beguería, S.; Serrano-Notivoli, R.; Tomas-Burguera, M. Computation of rainfall erosivity from daily precipitation amounts. Sci. Total Environ.
**2018**, 637–638, 359–373. [Google Scholar] [CrossRef] [PubMed] - Kvålseth, T.O. Cautionary note about R2. Am. Stat.
**1985**, 39, 279–285. [Google Scholar] - Vantas, K. Hyetor: R Package to Analyze Fixed Interval Precipitation Time Series. 2020. Available online: https://github.com/kvantas/hyetor (accessed on 10 May 2020).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]

**Figure 2.**Plots of the smoothing functions of each variable used in generalized additive models (GAMs). Dashed lines give the confidence intervals of the predictions of the fitted smooth curves (solid lines). The number in the parenthesis (Y-axis) gives the estimated degrees of freedom for the model terms.

**Figure 3.**Calculated annual erosivity values coming from pluviograph data, versus predicted values using the three models on the testing set. The black line symbolizes the identity function f(x) = x. Values are in MJ·mm·ha

^{−1}h

^{−1}.

Name | Latitude (°) | Longitude (°) | Elevation (m) | Duration (y) | |
---|---|---|---|---|---|

1 | TOXOTES | 41.09 | 24.79 | 75 | 27 |

2 | M. DEREIO | 41.32 | 26.10 | 116 | 22 |

3 | FERRES | 40.90 | 26.17 | 43 | 31 |

4 | PARANESTI | 41.27 | 24.50 | 122 | 34 |

5 | GRATINI | 41.14 | 25.53 | 120 | 27 |

6 | KECHROS | 41.23 | 25.86 | 700 | 24 |

7 | M. KSIDIA | 41.13 | 25.64 | 70 | 27 |

8 | THERMES | 41.35 | 25.01 | 440 | 26 |

9 | GERAKAS | 41.20 | 24.83 | 308 | 24 |

10 | ORAIO | 41.27 | 24.83 | 656 | 26 |

11 | SEMELH | 41.09 | 24.84 | 65 | 23 |

12 | CHRYSOUPOLI | 40.99 | 24.69 | 15 | 14 |

**Table 2.**Annual time step estimation of the out-of-sample error metrics for the two empirical equations and GAM. R

^{2}values are unitless. Root-mean-squared error (RMSE) and mean absolute error (MAE) values are in MJ·mm·ha

^{−1}h

^{−1}y

^{−1}.

Model | R^{2} | RMSE | MAE |
---|---|---|---|

GAM | 0.88 | 306.43 | 231.20 |

Richardson et al. | 0.77 | 419.64 | 308.50 |

Yu and Rosewell | 0.76 | 431.19 | 309.24 |

**Table 3.**Daily time step estimation of the out-of-sample error metrics for the two empirical equations and GAM. R

^{2}values are unitless. RMSE and MAE values are in MJ·mm·ha

^{−1}h

^{−1}.

Model | R^{2} | RMSE | MAE |
---|---|---|---|

GAM | 0.73 | 89.19 | 53.00 |

Richardson et al. | 0.63 | 104.83 | 61.28 |

Yu and Rosewell | 0.61 | 107.58 | 59.82 |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Vantas, K.; Sidiropoulos, E.; Evangelides, C.
Estimating Rainfall Erosivity from Daily Precipitation Using Generalized Additive Models. *Environ. Sci. Proc.* **2020**, *2*, 21.
https://doi.org/10.3390/environsciproc2020002021

**AMA Style**

Vantas K, Sidiropoulos E, Evangelides C.
Estimating Rainfall Erosivity from Daily Precipitation Using Generalized Additive Models. *Environmental Sciences Proceedings*. 2020; 2(1):21.
https://doi.org/10.3390/environsciproc2020002021

**Chicago/Turabian Style**

Vantas, Konstantinos, Epaminondas Sidiropoulos, and Chris Evangelides.
2020. "Estimating Rainfall Erosivity from Daily Precipitation Using Generalized Additive Models" *Environmental Sciences Proceedings* 2, no. 1: 21.
https://doi.org/10.3390/environsciproc2020002021