Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping †
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Leuenberger, M.; Parente, J.; Tonini, M.; Pereira, M.G.; Kanevski, M. Wildfire susceptibility mapping: Deterministic vs. stochastic approaches. Environ. Model. Softw. 2018, 101, 194–203. [Google Scholar] [CrossRef]
- Tonini, M.; D’andrea, M.; Biondi, G.; Esposti, S.; Trucchia, A.; Fiorucci, P. A Machine Learning-Based Approach for Wildfire Susceptibility Mapping. The Case Study of the Liguria Region in Italy. Geosciences 2020, 10, 105. [Google Scholar] [CrossRef] [Green Version]
- Bustillo Sánchez, M.; Tonini, M.; Mapelli, A.; Fiorucci, P. Spatial Assessment of Wildfires Susceptibility in Santa Cruz (Bolivia) Using Random Forest. Geosciences 2021, 11, 224. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonini, M.; Pereira, M.G.; Fiorucci, P. Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping. Environ. Sci. Proc. 2022, 17, 38. https://doi.org/10.3390/environsciproc2022017038
Tonini M, Pereira MG, Fiorucci P. Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping. Environmental Sciences Proceedings. 2022; 17(1):38. https://doi.org/10.3390/environsciproc2022017038
Chicago/Turabian StyleTonini, Marj, Mario G. Pereira, and Paolo Fiorucci. 2022. "Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping" Environmental Sciences Proceedings 17, no. 1: 38. https://doi.org/10.3390/environsciproc2022017038
APA StyleTonini, M., Pereira, M. G., & Fiorucci, P. (2022). Performance and Efficiency of Machine Learning Based Approaches for Wildfire Susceptibility Mapping. Environmental Sciences Proceedings, 17(1), 38. https://doi.org/10.3390/environsciproc2022017038