The Effect of Salt Stress on Proline Content in Maize (Zea mays) †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Prasanna, B.M.; Vasal, S.K.; Kassahun, B.; Singh, N.N. Quality protein maize. Curr. Sci. 2001, 81, 1308–1319. [Google Scholar]
- Joshi, P.K.; Singh, N.P.; Singh, N.N.; Gerpacio, R.V.; Pingali, P.L. Maize in India Production Systems; Constraints and Research Priorities; CIMMYT: Texcoco, Mexico, 2005; p. 1. [Google Scholar]
- Farooq, M.; Hussain, M.; Wakeel, A.; Siddique, K.H.M. Salt stress in maize: Effects, resistance mechanisms, and management. A review. Agron. Sustain. Dev. 2015, 35, 461–481. [Google Scholar] [CrossRef] [Green Version]
- Hajibagheri, M.A.; Harvey, D.M.R.; Flowers, J. Quantitative ion distribution within root cells of salt-sensitive and salt tolerant maize varieties. New Phytol. 1987, 105, 367–379. [Google Scholar] [CrossRef] [PubMed]
- Omoto, E.; Taniguchi, M.; Miyake, H. Adaptation responses inC4 photosynthesis of maize under salinity. J. Plant Physiol. 2012, 169, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Gong, X.; Chao, L.; Zhou, M.; Hong, M.; Luo, L.; Wang, Y.; Jingwei, C.; Songjie, G.; Fashui, H. Oxidative damages of maize seedlings caused by exposure to a combination of potassium deficiency and salt stress. Plant Soil 2011, 340, 443–452. [Google Scholar] [CrossRef]
- Szabados, L.; Savouré, A. Proline: A multifunctional amino acid. Trends Plant Sci. 2010, 15, 89–97. [Google Scholar] [CrossRef] [PubMed]
- Slama, S.; Bouchereau, A.; Flowers, T.; Abdelly, C.; Savouré, A. Diversity, distribution and roles of osmoprotective compounds accumulated in halophytes under abiotic stress. Ann. Bot. 2015, 115, 433–447. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heuer, B. Role of proline in plant response to drought and salinity. In Handbook of Plant and Crop Stress, 3rd ed.; Pessarakli, A., Ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Alam, R.; Das, D.; Islam, M.; Murata, Y.; Hoque, M. Exogenous proline enhances nutrient uptake and confers tolerance to salt stress in maize (Zea mays L.). Progr. Agric. 2016, 27, 409–417. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M.F.M.R.; Foolad, M.R. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Ashraf, M.; Foolad, M.R. Improving plant abiotic-stress resistance by exogenous application of osmoprotectants glycinebetaine and proline. Environ. Exp. Bot. 2007, 59, 206–216. [Google Scholar] [CrossRef]
- Hare, P.D.; Cress, W.A.; Van Staden, J. Proline biosynthesis and degradation: A model system for elucidating stress related signal transduction. J. Exp. Bot. 1999, 50, 413–434. [Google Scholar] [CrossRef]
- Bates, L.S.; Waldren, R.P.; Trare, L.D. Rapid determination of free proline for water stress studies. Plant Soil 1973, 39, 205–207. [Google Scholar] [CrossRef]
- AI-Saady, N.A.; Khan, A.J.; Rajesh, L.; Esechie, H.A. Effect of salt stress on germination, proline Metabolism and chlorophyll content of Fenugreek (Trignella foenum gracium L.). J. Plant Sci. 2012, 7, 176–185. [Google Scholar] [CrossRef] [Green Version]
- Kaya, C.; Tuna, A.L.; Okant, A.L. Effect of foliar applied kinetin and indole acetic acid on maize plants grown under saline conditions. Turk. J. Agric. For. 2010, 34, 529–538. [Google Scholar]
Proline Content in 520 nm Solution | |||||
---|---|---|---|---|---|
NaCl Concentration (mM) | Advanta Pac 751 Vertex 751 | Syngenta 7720 | Eco-91 | Syngenta 6668 | Syngenta 7710 |
0 mM | 0.6720 | 0.0616 | 1.4941 | 0.2799 | 0.1709 |
50 mM | 0.7527 | 0.2111 | 1.9645 | 0.2345 | 0.6480 |
100 mM | 0.8096 | 0.2799 | 1.3844 | 0.1064 | 0.0888 |
150 mM | 1.0901 | 0.5573 | 1.5434 | 0.6576 | 0.0201 |
200 mM | 0.6152 | 0.5689 | 1.6250 | 0.3982 | 0.8162 |
250 mM | 0.4762 | 0.8432 | 1.7653 | 0.3039 | 0.5191 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pingle, S.N.; Suryawanshi, S.T.; Pawar, K.R.; Harke, S.N. The Effect of Salt Stress on Proline Content in Maize (Zea mays). Environ. Sci. Proc. 2022, 16, 64. https://doi.org/10.3390/environsciproc2022016064
Pingle SN, Suryawanshi ST, Pawar KR, Harke SN. The Effect of Salt Stress on Proline Content in Maize (Zea mays). Environmental Sciences Proceedings. 2022; 16(1):64. https://doi.org/10.3390/environsciproc2022016064
Chicago/Turabian StylePingle, Shruti Nilesh, Shruti Tanaji Suryawanshi, Kiran Ramesh Pawar, and Sanjay N. Harke. 2022. "The Effect of Salt Stress on Proline Content in Maize (Zea mays)" Environmental Sciences Proceedings 16, no. 1: 64. https://doi.org/10.3390/environsciproc2022016064
APA StylePingle, S. N., Suryawanshi, S. T., Pawar, K. R., & Harke, S. N. (2022). The Effect of Salt Stress on Proline Content in Maize (Zea mays). Environmental Sciences Proceedings, 16(1), 64. https://doi.org/10.3390/environsciproc2022016064